$b \rightarrow s\ell\ell$ transitions at LHCb

Marie-Hélène Schune IJCLab – CNRS Univ. Paris-Saclay on behalf of LHCb collaboration

- Setting up the scene
- Branching Fractions results
- Angular analyses

Setting up the scene

The two LHCb incarnations

Excellent PID (RICH detectors for $\pi/K/p$)

Peak luminosity $\sim x 5$

- \rightarrow Readout at 40 MHz
- \rightarrow Removal of the LO hardware trigger
- \rightarrow New tracking system

DISCRETE 2 - 6 December 2024 -> Real Time reconstruction & Alignement

Two main families of analyses for $b \rightarrow s \ell^+ \ell^-$ transitions

 $H_b \rightarrow H_s \ \ell^+ \ell^-$ Most of the recent results

Relative importance of the different diagrams varies with $q^2 = M^2(\ell^+\ell^-)$ Eg : photon pole dominates when $q^2 \to 0$

Flavour Changing Neutral Currents: a tool to search for NP

Rule of the game

- Precisely predicted
- Precise measurements (as much as possible !)

How NP would manifest?

- Modification of the decay rates (\uparrow or \downarrow)
- Modification of the angular distributions
- New sources of CP violation

Potentially different for $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow se^+e^-$

Anatomy of the decays

Decay described by

- $q^2 = M^2(\ell^+\ell^-)$
- 3 angles (only one if $B \rightarrow K\ell\ell$)

Branching fractions measurements

BF measurements

DISCRETE Z - O DECEMBER ZOZA

b-mesons: a tendency to measure BF lower than predictions (low and central q^2).

b-baryons: BF in agreement with LQCD (high-q²). Lack of precise predictions in the rest of phase space.

Predictions uncertainties correlated between bins

LFU tests using Branching Ratios

K, K*, φ, pK ...

Analyses in bins of q^2

 $B^{+,0}$, B_{S} , Λ_b

$$R_{H_s} = \frac{\int \frac{\mathrm{d}\Gamma(B \to H_s \,\mu^+ \,\mu^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2}{\int \frac{\mathrm{d}\Gamma(B \to H_s \,e^+ \,e^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2} \stackrel{SM}{\cong} 1$$

 $= \frac{BR(B \to H_s \mu \mu)}{BR(B \to H_s ee)} \times \frac{BR(B \to H_s J/\psi(ee))}{BR(B \to H_s I/\psi(\mu \mu))}$

Double ratio \Rightarrow cancels out most of the

systematics due to e/μ differences

$$\frac{\Gamma(J/\psi \to e^+ e^-)}{\Gamma(J/\psi \to \mu^+ \mu^-)} = 1 \text{ [pdg]}$$

 $= \frac{\mathcal{N}_{H_{S}\mu\mu}}{\mathcal{N}_{H_{S}J/\psi(\mu\mu)}} \times \frac{\mathcal{E}_{H_{S}J/\psi(\mu\mu)}}{\mathcal{E}_{H_{S}\mu\mu}} \times \frac{\mathcal{N}_{H_{S}J/\psi(ee)}}{\mathcal{N}_{H_{S}ee}} \times \frac{\mathcal{E}_{H_{S}J/\psi(ee)}}{\mathcal{E}_{H_{S}ee}}$

Yields obtained from mass fits

Efficiencies obtained from corrected MC using data-driven techniques Use of $r_{J/\psi} = \frac{BR(B \to H_s J/\psi(\mu\mu))}{BR(B \to H_s J/\psi(ee))}$ and $R_{\psi(2S)}$ as cross-checks

 $B_{s} \rightarrow$

- Blind analysis in 3 q² regions
- Narrow ϕ resonance, no partially reconstructed hadronic background (" ϕ^{**} ")
- Combinatorial & double semi-leptonic backgrounds suppressed using multivariate classifiers
- Residual hadron \rightarrow e mids-ID background measured from data

2410.13748 submitted to PRL

Similar analysis but using $B^\pm o K\pi\pi\,\ell\,\ell$

LHCb-PAPER-2024-046 in preparation

One kinematic region $1.1 < q^2 < 7 \text{ GeV}^2/c^4$

Larger background due to the K $\pi\pi$ system instead of the ϕ Systematic uncertainty dominated by the modelling of mass distribution of the hadron \rightarrow e mids-ID background

Cross-checks and results

	B _s → <i>φ</i> ℓℓ	$B^\pm o K\pi\pi \ \ell \ \ell$	
$r_{J/\psi}$	0.997 ±0.013	1.033 ±0.017	(stat [data + MC]) only
$R_{\psi(2S)}$	1.010 ±0.026	1.040 ±0.030	(stat [data + MC]) only
$R_{1.1-6 \text{ GeV}/c^2}^{-1}$	$\mathbf{0.91^{+0.20}_{-0.19}\pm 0.05}$	$\mathbf{1.31^{+0.18}_{-0.17}\pm 0.12}$	

In agreement with previous measurements and SM prediction

- 5 to 10 % precision
- dominated by statistical uncertainty

Angular analyses

Angular analyses

+ additional nuisances parameters (S-wave)

EPJS 233, 409-428 (2024)

8 parameters Could be optimised to reduce the sensitivity to FF

Global fits using results from branching ratios & angular analyses:

Two analyses aiming at constraining non-local contributions from data

Analysis with 6D fit $(M(K\pi\mu\mu), M(K\pi), q^2, \vec{\Omega})$

Extract $C_{9,10}^{(\prime)}$ + non-local contributions modelled by polynomials

Phys. Rev. Lett. 132 (2024) 131801 Phys. Rev. D 109 (2024) 052009

Analysis with 5D fit $(M(K\pi\mu\mu), q^2, \vec{\Omega})$ over the whole q^2 spectrum

Extract $C_{9,10}^{(\prime)}$ C_9^{τ} + non-local contributions (shift to C₉)

Take-away message from these 2 analyses:

- Non-local contributions seem larger than what has been assumed so far
- C₉ still shifted from SM
- More data is needed

Angular analysis of $B^0 \rightarrow K^*ee$ in the central q^2 region

 \Rightarrow Data-driven methods

Angular acceptance modelled in $(\cos \theta_{\ell}, \cos \theta_K, \varphi, q^2)$, used as a per-event weight

NEW

LHCb-PAPER-2024-022

PARTIALLY

RECONSTRUCTED

in preparation

SIGNAL

DOUBLE SEMILEPTONIC

(DSL) DECAYS

 $B^0 \rightarrow D^- (\rightarrow K^{*0} e^- \bar{\nu}_e) e^+ \nu_e$

DISCRETE 2 - 6 December 2024

Drawings: Zhenzi Wang

Fit projections:

20

$F_{ m L}$	$0.582 \pm 0.045 \pm 0.050$
S_3	$-0.000 \pm 0.042 \pm 0.023$
S_4	$-0.119 \pm 0.073 \pm 0.042$
S_5	$-0.077 \pm 0.054 \pm 0.033$
$A_{ m FB}$	$-0.146 \pm 0.052 \pm 0.035$
S_7	$-0.077 \pm 0.056 \pm 0.038$
S_8	$0.129 \pm 0.072 \pm 0.056$
S_9	$0.066 \pm 0.045 \pm 0.020$

Main sources of systematics:

- Double semi-leptonic & combinatorial backgrounds parametrisation
- Acceptance modeling

In agreement with SM prediction

GRvDV → [N. Gubernari, M. Reboud, D. Van Dyk, J. Virto, JHEP 09 (2022) 133] **25** ABCDMN → [M. Algueró, A. Biswas, B.Capdevila, S. Descotes-Genon, J. Matias, EPJC 83 (2023) 7, 648]

LFU test

- Use the set of observables which are less sensitive to Form Factors
- Compare with the results from the muon fit (as in PRL 132 (2024) 131801 but without S-wave for overall coherence)

$$Q_i = P_i^{(\mu)} - P_i^{(e)}$$

 Q_3

consistent with LFU conservation

Similar shift in $K^*\mu\mu$ and K^*ee

Form factors constrained from [JHEP 12 (2023) 153] and non-local QCD terms from [JHEP 02 (2021) 088, JHEP 09 (2022) 133] Hadronic contributions shared between $K^*\mu\mu$ and K^*ee

Measurement of the photon polarisation using ${\sf B}_{\sf s} o \phi(o {\sf KK})$ ee

NEW

® virtual photon: go for q² as low as possible \mathbb{R} use electrons : 10 MeV< m_{ee} <500 MeV

4D fit : m(KKee), $\cos\theta_{\rm K}$, $\cos\theta_{\rm K}$

$$egin{aligned} A_{\mathrm{T}}^{^{(2)}} &= -0.045 \pm 0.235 \pm 0.014 \,, \ A_{\mathrm{T}}^{ImCP} &= 0.002 \pm 0.247 \pm 0.016 \,, \ A_{\mathrm{T}}^{ReCP} &= 0.116 \pm 0.155 \pm 0.006 \,, \ F_{\mathrm{L}} &< 11.5\% @ 90\% \ \mathrm{CL} \,. \end{aligned}$$

effective region: $0.0009 < q^2 < 0.2615 \text{ GeV}^2/c^4$ The photon polarisation in b \rightarrow s γ transitions is known with a precision of $\sim 4\%$

All measurements are in good agreement

[LHCb-PAPER-2024-030, in preparation]

- **Branching ratio measurements :**
 - tensions still present in b \rightarrow s $\mu \mu$
 - LFU holds at the few % level \bullet
- Angular analyses:
 - tensions still present in b \rightarrow s $\mu \mu$ origin not yet clarified •
 - First $B^0 \rightarrow K^{*0}$ ee angular analysis in the central q^2 region for the first time: in agreement ulletboth with the SM and $B^0 \rightarrow K^{*0} \mu \mu$
 - First use of $B_s \rightarrow \phi$ ee to measure the photon polarisation in b $\rightarrow s\gamma$ transition with is entering the few % precision era. Stay tuned !

We need (and have) more data

Back-up slides

Background mostly of combinatorial nature due to the very specific kinematical region and **\$\$\$ resonance**

The radiative decay with a converted photon is a nice control channel : $B_s \rightarrow \phi(\rightarrow K^+K^-)\gamma_e$

