

DISCRETE 2024 in Ljubljana

Branching fractions and CP asymmetries in charm meson decays

Ulrich Nierste

- **Institute for Theoretical Particle Physics**
- **KIT Center for Elementary Particle and Astroparticle Physics (KCETA)**

Outline

Overview

- Two-body D decays: decay rates
- Two-body *D* decays: CP asymmetries
- Summary and outlook

Overview

Cabibbo-Kobayashi-Maskawa (CKM) matrix:

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

with Wolfenstein parameters λ , A, ρ , η .

Charm decays involve the red and blue parameters and
 have no stakes in Standard-Model CKM metrology,
 but have a unique role to probe new physics in the flavor sector of up-type quarks.

Overview

- I discuss decays of D^0, D^+, D_s^+ mesons into two pseudoscalar mesons or a pseudoscalar and a vector meson, $D \to PP'$ or $D \to PV$.
- All these decays are dominated by a *W*-mediated tree amplitude, categorised by the power of the Wolfenstein parameter $\lambda \simeq |V_{\mu s}| = 0.225$.
 - Cabibbo-favoured (CF), $\mathcal{O}(\lambda^0)$: $c \to s \bar{d} u$
 - Singly Cabibbo-suppressed, $\mathcal{O}(\lambda^1)$: $c \rightarrow d\bar{d}u$ or $c \rightarrow s\bar{s}u$

Doubly Cabibbo-suppressed, $\mathcal{O}(\lambda^2)$: $c \rightarrow d\bar{s}u$

W-mediated interaction à la Fermi theory:

Overview

Overview

- Branching fractions in $D \rightarrow PP'$ or $D \rightarrow PV$ decays are insensitive to new physics and "bread and butter" physics to test the calculational tools and check the data for consistency.
- CP asymmetries are tiny in the Standard Model and very sensitive to new physics. SCS decays involve

$$\lambda_d = V_{cd}^* V_{ud}, \ \lambda_s = V_{cs}^* V_{us}, \ \lambda_b = V_{cb}^* V_{ub}$$

and $|\lambda_d| \simeq |\lambda_s| \gg |\lambda_b|$. Use $\lambda_d = -\lambda_s - \lambda_b$
to find all SM CP asymmetries proportional to
 $\lim \frac{\lambda_b}{\lambda_b} = -6 \cdot 10^{-4}$.

$SU(3)_{\rm F}$ symmetry

Isospin: unitary rotations U-spin: unitary rotations

Theorists love symmetries!

 $SU(3)_F$: unitary rotations of d

Useful because s and d have same charge, U-spin connects e.g. K^+ with π^+ . Only approximate symmetry of QCD, because $m_s \neq m_d$.

Two-body D decays: decay rates KCETA

Global SU(3)_F analyses of $D \rightarrow PP'$ or $D \rightarrow PV$ branching fractions, where $D = D^0, D^+, D_s^+$, have a long tradition. It is possible to include linear SU(3)_F breaking to reduce the intrinsic uncertainty from O(30%)to O(10%) in some cases. Gronau 1995, Grossman, Robinson 2012, Müller, UN, Schacht 2015.

Final states with η or η' meson are usually treated with a mixing angle

$$|\eta_8\rangle = |\eta\rangle \cos\theta + |\eta'\rangle \sin\theta$$
 \checkmark SU(3)_F octet state
 $|\eta_1\rangle = -|\eta\rangle \sin\theta + |\eta'\rangle \cos\theta$ \checkmark SU(3)_F singlet state

η - η' mixing angle

- The η - η' mixing angle θ vanishes in the limit of exact SU(3)_F symmetry.
- It is not possible to define a universal mixing angle θ such that $\langle \eta \dots | \dots | \dots \rangle = \langle \eta_8 \dots | \dots | \dots \rangle \cos \theta - \langle \eta_1 \dots | \dots | \dots \rangle \sin \theta$. Leutwyler 1997, Feldmann, Kroll and Stech 1998

η - η' mixing angle

In *D* decays: Cannot relate final states with η' to those with η :

 $\langle P\eta | H | D \rangle = \cos \theta \langle P\eta_8 H | D \rangle - \sin \theta \langle P\eta_1 | H | D \rangle$ $\langle P\eta' | H | D \rangle = \sin \theta \langle P\eta_8 H | D \rangle' + \cos \theta \langle P\eta_1 | H | D \rangle'$

Matrix elements are three-point functions and depend on kinematic variables. But $p_{\eta} \neq p_{\eta'}$, because $M_{\eta} \neq M_{\eta'}$. Thus

$$\langle P\eta_8 | H | D \rangle' \neq \langle P\eta_8 H | D \rangle \langle P\eta_1 | H | D \rangle' \neq \langle P\eta_1 H | D \rangle$$

Bolognani, UN, Schacht, Vos 2024

Global fit for $D \to P \eta'$

Still possible: Global fit to branching ratios of

 $D^{0} \to \pi^{0} \eta', \ D^{0} \to \eta \eta', \ D^{+} \to \pi^{+} \eta', \ D^{+}_{s} \to K^{+} \eta',$ $D^{0} \to \bar{K}^{0} \eta', D^{+}_{s} \to \pi^{+} \eta', D^{0} \to K^{0} \eta', \ D^{+} \to K^{+} \eta'$

Topological amplitudes: SU(3)_F limit: E.g.

c

Linear $SU(3)_F$ breaking: E.g.

8

Cross: *s*-quark line

11 DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulri

Ulrich Nierste, KIT

Global fit for $D \to P \eta'$

Results:

The global fit is consistent with $\mathcal{B}(D^0 \rightarrow \pi^0 n')$ \leq 30% SU(3)_F breaking in the amplitudes. $\mathcal{B}(D^0 \rightarrow nn')$ The fit predicts the branching fractions of $D_s^+ \to K^+ \eta'$ and $\mathcal{B}(D^+ \rightarrow \pi^+ n')$ $D^+ \rightarrow K^+ \eta'$ by 1σ too low and too high, respectively. $\mathcal{B}(D_s^+ \rightarrow K^+ \eta')$ The SU(3)_F limit is ruled out by $\mathcal{B}(D^0 \to K_S \eta') \stackrel{-}{\to}$ 5.6 σ . Bolognani, UN, Schacht, Vos 2024

12 DISCRETE 2024 Gospodarsko razstavišče Ljubljana

Charm meson decays

Ulrich Nierste, KIT

Direct CP violation stems from the interference of A_b with A_{sd} .

13 DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulrich Nierste, KIT

March 21, 2019:

$$\Delta a_{CP} \equiv a_{CP}^{\text{dir}}(D^0 \to K^+ K^-)$$
$$-a_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-)$$

 $= (-15.4 \pm 2.9) \cdot 10^{-4}$

discovery of CP violation in charm decays

LHCb sees a new flavour of matterantimatter asymmetry

The LHCb collaboration has observed a phenomenon known as CP violation in the decays of a particle known as a D0 meson for the first time 21 MARCH. 2019

Direct CP asymmetries

For U-spin limit
$$m_s = m_d$$
:
 $A_b(D^0 \to K^+K^-) = A_b(D^0 \to \pi^+\pi^-)$
and $A_{sd}(D^0 \to K^+K^-) = -A_{sd}(D^0 \to \pi^+\pi^-),$

so that
$$\Delta a_{\rm CP} = 2a_{\rm CP}(D^0 \to K^+K^-) = -2a_{\rm CP}(D^0 \to \pi^+\pi^-).$$

CP asymmetry in
$$D^0 \rightarrow K^+ K^-$$

Interference of A_b with A_{sd} :

16 DISCRETE 2024 Gospodarsko razstavišče Ljubljana C

Charm meson decays

Ulrich Nierste, KIT

Theory always at your service

The theory community has delivered a perfect service to the experimental colleagues:

Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

- within the Standard Model and
- as evidence for new physics!

And we are not stubborn at all: "New data —- new opinions!"

LHCb 2019: $\Delta a_{CP} = (-15.4 \pm 2.9) \cdot 10^{-4}$

Prediction using QCD sum rules: $|\Delta a_{CP}| \le (2.0 \pm 0.3) \cdot 10^{-4}$ A. Khodjamirian, A. Petrov, Phys.Lett. B774 (2017) 235

Difference by a factor of 7.

New physics?

Or poorly understood QCD dynamics enhancing the penguin contribution?

Long-distance QCD

"I summon the spirits of long-distance enhancement"

¹⁹ DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulrich Nierste, KIT

²⁰ DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulrich Nierste, KIT

2022: $a_{CP}(D^0 \to K^+K^-)$

LHCb 2022: $a_{CP}(D^0 \to K^+K^-) = (7.7 \pm 5.7) \cdot 10^{-4}.$

- Thus $\Delta a_{\rm CP}$ implies $a_{\rm CP}(D^0 \to \pi^+\pi^-) = (23.1 \pm 6.1) \cdot 10^{-4}$.
- a_{CP}(D⁰ → K⁺K⁻) complies with the calculation of Khodjamirian and Petrov.
 For approximate U-spin limit a_{CP}(D⁰ → K⁺K⁻) ≈ a_{CP}(D⁰ → π⁺π⁻) to work, with future data a_{CP}(D⁰ → K⁺K⁻) must flip sign.
- Will future data decrease $|\Delta a_{CP}|$ and will the 5 σ discovery eventually go away?
- Or did LHCb discover new physics in 2019?

New physics

New physics amplitude interfering with Standard-Model (SM) tree amplitude:

.

 $\mathscr{A}^{\mathrm{SCS}} \equiv \lambda_{sd} A_{sd} + a A_{\mathrm{NP}}$

neglecting SM penguin.

$$a_{CP}^{dir} = -2 \operatorname{Im} \frac{a}{\lambda_{sd}} \operatorname{Im} \frac{A_{NP}}{A_{sd}}$$

Two generic scenarios:

$$A_{\rm NP}$$
 is $\Delta U = 0$ amplitude ------

$$A_{\rm NP}$$
 is $\Delta U = 1$ amplitude —

→ indistinguishable from large SM penguin amplitude → same sign of $a_{CP}(D^0 \rightarrow K^+K^-)$ and $a_{CP}(D^0 \rightarrow \pi^+\pi^-)$

with complex coupling a,

Charm meson decays Ulrich Nierste, KIT

²⁴ DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulrich Nierste, KIT

What if?

If $a_{CP}(D^0 \to \pi^+\pi^-)$ is governed by the SM... ...the QCD sum rule calculation does not work and ...either U-spin symmetry fails for A_b or in future measurements $a_{CP}^{dir}(D^0 \to K^+K^-)$ will move by 2σ and flip sign.

If a_{CP}(D⁰ → π⁺π⁻) is dominated by NP...
 ...the NP contribution necessarily has a ΔU = 1 contribution and
 ...either also a ΔU = 0 NP contribution or some enhancement over the QCD sum rule prediction.

"Extraordinary claims require extraordinary evidence."

(Sherlock Holmes in The Sign of Four)

Derive sum rules between further CP asymmetries; distinguish between the $\Delta U = 0$ and $\Delta U = 1$ cases.

New physics scenarios

27 DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulrich Nierste, KIT

- Recall: $\mathscr{A}^{\text{SCS}} \equiv \lambda_{sd} A_{sd} + a A_{\text{NP}}$
- Tool: Use Wigner Eckart theorem to express A_{sd} and A_{NP} in terms of Clebsch-Gordan coefficients (related to U-spin SU(2)) and reduced matrix elements. Known from SM analysis.

Grossman, Ligeti, Robinson, JHEP 01 (2014) 066

and many more with π^{0} 's or η 's, which are difficult for LHCb.

Here
$$\operatorname{Im} \delta_{\operatorname{CP}}(D \to f) \propto a_{\operatorname{CP}}(D \to f) \Gamma(D \to f).$$

Iguro, UN, Overduin, Schüssler, 2024

and many more.

Iguro, UN, Overduin, Schüssler, 2024

³⁰ DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulrich Nierste, KIT

Summary

- A universal $\eta \eta'$ mixing angle defined through unitary rotations of matrix elements with η_8 and η_1 is known since 27 years to be ill-defined. It is nevertheless commonly used in global SU(3)_F analyses of *D* or *B* decay data.
- We have devised a consistent treatment of $\eta \eta'$ mixing, which permits a global analysis of $D \rightarrow P\eta'$ or $D \rightarrow P\eta$ data, while it is not possible to relate the former to the latter.
- A global fit to $D^0 \to \pi^0 \eta'$, $D^0 \to \eta \eta'$, $D^+ \to \pi^+ \eta'$, $D_s^+ \to K^+ \eta'$, $D^0 \to \overline{K}^0 \eta'$, $D_s^+ \to \pi^+ \eta'$, $D^0 \to K^0 \eta'$, $D^+ \to K^+ \eta'$ branching ratios complies with $\leq 30\%$ SU(3)_F breaking, with slight tensions in $D_s^+ \to K^+ \eta'$ and $D^+ \to K^+ \eta'$.
- ³¹ DISCRETE 2024 Gospodarsko razstavišče Ljubljana Charm meson decays Ulrich Nierste, KIT

Summary

- The LHCb measurements $\Delta a_{CP} = (-15.4 \pm 2.9) \cdot 10^{-4}$ and $a_{CP}(D^0 \rightarrow K^+K^-) = (7.7 \pm 5.7) \cdot 10^{-4}$ are not consistent with SM and U-spin symmetry.
- New physics explanations involve a $\Delta U = 1$ amplitude (with a different phase than $V_{cs}^*V_{us}$) and a $\Delta U = 0$ amplitude (SM or NP) as well.
- One can check this in the future in other decay modes in which CP asymmetries are not yet measured to be non-zero.

sum rules between CP asymmetries

Especially interesting for LHCb are sum rules with $a_{CP}(D_s^+ \to K^0 \pi^+)$ and $a_{CP}(D^+ \to \overline{K}^{*0}K^+)$ as well as sum rules with CP asymmetries in $D^0 \to K^0 \overline{K}^{*0}$, $D^0 \to \overline{K}^0 K^{*0}$, $D_s^+ \to K^{*0} \pi^+$, and $D^+ \to \overline{K}^{*0} K^+$.

Outlook

Theory parallel talk:

Eleftheria Solomonidi, Tuesday 16:30 h, Urška 4: Implications of cascade topologies for rare charm decays and CP violation

Experimental parallel talks:

Luca Balzani, Tuesday 16:45 h, Urška 4:

Particle-antiparticle asymmetries in hadronic charm decays at LHCb

 $\rightarrow D - \overline{D}$ mixing and CP violation

Marco Colonna, Tuesday 17:00 h, Urška 4:

Rare charm decays at LHCb

 $\rightarrow D \rightarrow hh'e^+e^-$ and more