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The notion of “global symmetry” has been generalized in various directions in 
the last 10 years

This has had a huge impact on formal QFT research from 2014-present

What can we learn from generalized symmetries about particle physics?
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This will not be a comprehensive review - sorry for leaving many interesting things out.

My aims are:

1. To introduce the various kinds of generalized symmetry studied in formal theory

2. To select examples that illustrate things people have tried to do with generalized 
symmetries in particle physics (so far…)

Some reviews / lecture notes: 
More pheno: Reece, 2304.08512; Brennan, Hong, 2306.00912

More formal: Schafer-Nameki, 2305.18296; Shao, 2308.00747 ;Bhardwaj et al, 2307.07547; Iqbal, 2407.20815
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Plan
A. Ordinary symmetries via “topological defects”

B. Generalization 1. Higher-form symmetries

C. Generalization 1b. Higher-group symmetries

D. Generalization 2. Non-invertible symmetries
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Plan
A. Ordinary symmetries via “topological defects”

B. Generalization 1. Higher-form symmetries
• Applications: axion quality from 5d; discrete gauge symmetries

C. Generalization 1b. Higher-group symmetries
• Application: topological portal to dark sector

D. Generalization 2. Non-invertible symmetries
• Application: tiny 𝜈 masses; new flavour symmetries
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1. Symmetries as Topological Operators
Gaiotto, Kapustin, Seiberg, Willett, 1412.5148

Joe Davighi, CERN 6

http://arxiv.org/abs/1412.5148


‘Ordinary Symmetries’
We are used to deriving symmetries from an action

• Example: 𝐿 = 𝜕𝜙𝜕𝜙† − 𝑉 𝜙𝜙† , symmetry 𝜙(𝑥) → 𝑒𝑖𝛼𝜙(𝑥), 𝛼 ∈ 2𝜋ℝ/ℤ
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‘Ordinary Symmetries’
We are used to deriving symmetries from an action

Conserved Current

• For continuous symmetries, then derive conserved current from 𝐿 using Noether’s theorem

• 𝑗𝜇 = 𝛿𝜙 ⋅
𝜕𝐿

𝜕(𝜕𝜇𝜙)
 satisfies   𝜕𝜇𝑗𝜇 = 0   on EOMs

• Example: 𝑗𝜇 = 𝑖[ 𝜕𝜇𝜙† 𝜙 − 𝜙† 𝜕𝜇𝜙 ]

Joe Davighi, CERN 8



‘Ordinary Symmetries’
We are used to deriving symmetries from an action

Conserved Current

• For continuous symmetries, then derive conserved current from 𝐿 using Noether’s theorem

• 𝑗𝜇 = 𝛿𝜙 ⋅
𝜕𝐿

𝜕(𝜕𝜇𝜙)
 satisfies   𝜕𝜇𝑗𝜇 = 0   on EOMs

Conserved Charge

• From 𝑗𝜇  we construct a conserved charge by integrating

• 𝑄 = Spatial 𝑀3
𝑗0, conserved up to bdy term:   𝑑𝑄

𝑑𝑡
= 𝑀3

𝑗0 = − 𝑀3��
∇ ⋅ Ԧ𝑗
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‘Ordinary Symmetries’
We are used to deriving symmetries from an action

Conserved Current

• For continuous symmetries, then derive conserved current from 𝐿 using Noether’s theorem

• 𝑗𝜇 = 𝛿𝜙 ⋅
𝜕𝐿

𝜕(𝜕𝜇𝜙)
 satisfies   𝜕𝜇𝑗𝜇 = 0   on EOMs

Conserved Charge

• From 𝑗𝜇  we construct a conserved charge by integrating

• 𝑄 = Spatial 𝑀3
𝑗0, conserved up to bdy term:   𝑑𝑄

𝑑𝑡
= 𝑀3

𝑗0 = − 𝑀3��
∇ ⋅ Ԧ𝑗

Gauging

• Introduce gauge field 𝐴𝜇, and couple via 𝑆 = 𝑀4
𝐴𝜇𝑗𝜇

• Our Abelian Example: 𝜙 → 𝑒𝑖𝛼 𝑥 𝜙, 𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇𝛼 𝑥
Joe Davighi, CERN 10



‘Ordinary Symmetries’ via Differential Forms
We are used to deriving symmetries from an action

Conserved Current

• For continuous symmetries, then derive conserved current from 𝐿 using Noether’s theorem

• 𝑗𝜇 = 𝛿𝜙 ⋅
𝜕𝐿

𝜕(𝜕𝜇𝜙)
 satisfies   𝜕𝜇𝑗𝜇 = 0   on EOMs

• Defines a 1-form 𝑗 = 𝑗𝜇𝑑𝑥𝜇, equivalently a 3-form ⋆ 𝑗 = 𝜖𝜇𝜈𝜌𝜎𝑗𝜇𝑑𝑥𝜇𝑑𝑥𝜈𝑑𝑥𝜌 s.t. 𝑑 ⋆ 𝑗 = 0

Conserved Charge

• From 𝑗𝜇  we construct a conserved charge by integrating

• 𝑄 = Spatial 𝑀3
𝑗0, conserved up to bdy term:   𝑑𝑄

𝑑𝑡
= 𝑀3

𝑗0 = − 𝑀3��
∇ ⋅ Ԧ𝑗

• 𝑄 𝑀3 = 𝑀3
⋆ 𝑗 on any closed 𝑀3. “Conserved” ⟺ “is topological”, 𝑄 𝑀3 + 𝜕𝑌4 = 𝑄 𝑀3

Gauging

• Introduce gauge field 𝐴𝜇, and couple via 𝑆 = 𝑀4
𝐴𝜇𝑗𝜇

• Gauge field is a 1-form 𝐴 = 𝐴𝜇𝑑𝑥𝜇, coupling 𝑆 = 𝑀4
𝐴 ∧ ⋆ 𝑗

i.e. value is independent of small wiggles of 𝑀3 

11
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Symmetry Defect Operators
• The charge operator 𝑄 𝑀3 , obtained from infinitesimal Noether procedure, lives in Lie 𝐺

• Exponentiate it to get group elements:

 𝑈𝑔=𝑒𝑖𝛼 𝑀3 ≔ exp 𝑖𝛼𝑄 𝑀3 = exp 𝑖𝛼 𝑀3
⋆ 𝑗 

Gaiotto, Kapustin, Seiberg, Willett, 1412.5148

Local operator 𝒪

𝑈𝑔 𝑀3  𝑂 𝑥 = 𝑒𝑖𝛼𝑞𝑂  𝑂 𝑥

If 𝑥 inside 𝑀3

Action on operators

Joe Davighi, CERN 12
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Symmetry Defect Operators
• The charge operator 𝑄 𝑀3 , obtained from infinitesimal Noether procedure, lives in Lie 𝐺

• Exponentiate it to get group elements:

 𝑈𝑔=𝑒𝑖𝛼 𝑀3 ≔ exp 𝑖𝛼𝑄 𝑀3 = exp 𝑖𝛼 𝑀3
⋆ 𝑗 

Key properties

1.  𝑈𝑔 𝑀3  are all topological (“wiggle-independent”) b/c 𝑑 ⋆ 𝑗 = 0

2. The algebra of these topological operators is a group

3. The 𝑈𝑔 𝑀3  act on local ops: linking between 3-mfd and point.

Gaiotto, Kapustin, Seiberg, Willett, 1412.5148

Local operator 𝒪

𝑈𝑔 𝑀3  𝑂 𝑥 = 𝑒𝑖𝛼𝑞𝑂  𝑂 𝑥

If 𝑥 inside 𝑀3

Action on operators
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Symmetry Defect Operators
Suggests of an abstract, action-free definition of symmetry directly in terms of defect operators

1.  𝑈𝑔 𝑀3  are topological 
2. The algebra of these topological operators is a group
3. The 𝑈𝑔 𝑀3  act on local operators

• For continuous symmetries, the key topological property was guaranteed by the existence of 
a current (⋆ 𝑗) = a closed, differential form-valued operator 

• But naturally works for discrete symmetries too (where cannot use Noether b/c no cts 
current); directly define 𝑈𝑔 𝑀3  for e.g. 𝑔 ∈ ℤ𝑁

Gaiotto, Kapustin, Seiberg, Willett, 1412.5148

Global Symmetries = Topological Operators

Joe Davighi, CERN 14
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Symmetry Defect Operators
Suggests of an abstract, action-free definition of symmetry directly in terms of defect operators

1.  𝑈𝑔 𝑀3  are topological 
2. The algebra of these topological operators is a group
3. The 𝑈𝑔 𝑀3  act on local operators

• For continuous symmetries, the key topological property was guaranteed by the existence of 
a current (⋆ 𝑗) = a closed, differential form-valued operator 

• But naturally works for discrete symmetries too (where cannot use Noether b/c no cts 
current); directly define 𝑈𝑔 𝑀3  for e.g. 𝑔 ∈ ℤ𝑁

Gaiotto, Kapustin, Seiberg, Willett, 1412.5148

Global Symmetries = Topological Operators

Both properties 2. and 3. 
can be generalized!

Joe Davighi, CERN 15
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With this “topological defect” picture for symmetries, we can generalize in different directions:

1. Higher-form symmetries  Link symmetries with extended objects!

2. Higher-group symmetries

3. Non-invertible symmetries  Symmetries can form a richer algebra than a group!

Generalized Symmetries

Joe Davighi, CERN 16



Generalization 1. 
Higher Form Symmetries
Gaiotto, Kapustin, Seiberg, Willett, 1412.5148

Joe Davighi, CERN 17
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From 0-Form to 1-Form Symmetries
Ordinary (henceforth “0-form”) symmetry: charged objects = local operators (0-dimensional)

Generalize to 1-form symmetry: charged objects = line operators (1-dimensional)

Line 
operator 𝑊

1-form symmetry
• Top ops 𝑈𝑔 𝑀𝑑−2  links with lines (1d)
• Current 𝐽 = ⋆ 𝑗 2  is a closed 𝑑 − 2 form (if cts.)
• Background g. field is a 2-form 𝐵 ↦ 𝐵 + 𝑑Λ(1)

• Minimal coupling 𝑆 = 𝑀4
𝐵(2) ∧⋆ 𝑗 2

Local operator 𝒪

Ordinary “0-form” symmetry
• Top ops 𝑈𝑔 𝑀𝑑−1  link points (0d)
• Current 𝐽 = ⋆ 𝑗(1) is a closed 𝑑 − 1 form (if cts.)
• Background g. field is a 1-form 𝐴 ↦ 𝐴 + 𝑑𝛼

• Minimal coupling 𝑆 = 𝑀4
𝐴 1 ∧⋆ 𝑗(1)

Joe Davighi, CERN 18



From 0-Form to Higher-Form Symmetries
• Higher 𝑝-form symmetry: charged objects = extended 𝑝-dimensional operators

• Current that we integrate is 𝐽 = ⋆ 𝑗, where 𝑗 = 𝑗𝜇1…𝜇𝑝+1
 is a 𝑑 − 𝑝 + 1  form (if cts.)

 [Being a “form” means 𝑗𝜇1…𝜇𝑝+1
 is totally antisymmetric in exchanging indices]

Joe Davighi, CERN 19



From 0-Form to Higher-Form Symmetries
• Higher 𝑝-form symmetry: charged objects = extended 𝑝-dimensional operators

• Current that we integrate is 𝐽 = ⋆ 𝑗, where 𝑗 = 𝑗𝜇1…𝜇𝑝+1
 is a 𝑑 − 𝑝 + 1  form (if cts.)

 [Being a “form” means 𝑗𝜇1…𝜇𝑝+1
 is totally antisymmetric in exchanging indices]

• E.g. for a 𝑈 1 -valued 𝑝-form symmetry, defect operator is 

𝑈𝑔=𝑒𝑖𝛼 𝑀𝑑− 𝑝+1 = exp 𝑖𝛼 න
𝑀𝑑− 𝑝+1

⋆ 𝑗

 which acts on 𝑝-dimensional extended operators (the objects which can carry charge)

Joe Davighi, CERN 20



From 0-Form to Higher-Form Symmetries
• Higher 𝑝-form symmetry: charged objects = extended 𝑝-dimensional operators

• Current that we integrate is 𝐽 = ⋆ 𝑗, where 𝑗 = 𝑗𝜇1…𝜇𝑝+1
 is a 𝑑 − 𝑝 + 1  form (if cts.)

 [Being a “form” means 𝑗𝜇1…𝜇𝑝+1
 is totally antisymmetric in exchanging indices]

• E.g. for a 𝑈 1 -valued 𝑝-form symmetry, defect operator is 

𝑈𝑔=𝑒𝑖𝛼 𝑀𝑑− 𝑝+1 = exp 𝑖𝛼 න
𝑀𝑑− 𝑝+1

⋆ 𝑗

 which acts on 𝑝-dimensional extended operators (the objects which can carry charge)

• The defect operator is “topological” i.e. is a symmetry iff 𝑑𝐽 = 𝑑 ⋆ 𝑗 = 0 . In components

𝜕𝜇𝑗𝜇𝜇1…𝜇𝑝 = 0 [just 𝜕𝜇𝑗𝜇 = 0 in familiar 0-form case]

Joe Davighi, CERN 21



Higher-Form Symmetries are Abelian 
• Any surfaces 𝑀𝑘≤𝑑−2 and 𝑀𝑘≤𝑑−2

′  can be moved around eachother
 [ here we think in the Hamiltonian picture, with time-like foliation… ]

• ∴ no well-defined ordering ∴ 𝑈𝑔 𝑀𝑘≤𝑑−2  and 𝑈𝑔′ 𝑀𝑘≤𝑑−2
′  must commute!

𝑀1

𝑀1
′

Example: 1-form symmetries in 3d

Joe Davighi, CERN 22
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Higher form symmetries are not deduced from variation of the action!

(Lagrangian density is a local operator – its variation naturally yields a 1-form) 

So, how do we find them?

Joe Davighi, CERN 23



Higher-form symmetries: how to find them?
Continuous higher form symmetry

• Need to identify co-closed 𝑝-form operators 𝑗, i.e. satisfying 𝑑 ⋆ 𝑗 = 0, for 𝑝 > 1

Example: Maxwell theory (free photons) in 4d, 𝑺 =  𝒅𝒂 ∧⋆ 𝒅𝒂, has two 1-form symmetries!

Maxwell has two closed 2-form operators, 𝑗 𝑒 = 𝑓 = 𝑑𝑎 and 𝑗 𝑚 = ⋆ 𝑓       [ ⋆ 𝑓 𝜌𝜎 =  𝜖𝜇𝜈𝜌𝜎𝑓𝜇𝜈 ]

Conservation is closure condition:

𝑑 ⋆ 𝑗 𝑒 = 𝑑 ⋆ 𝑓 = 0 b/c no charged matter  𝑑 ⋆ 𝑗 𝑚 = 𝑑𝑓 = 0 by Bianchi id

Topological operators:

𝑈𝑔
𝑒

𝑀2 = exp 𝑖𝛼 𝑀2
⋆ 𝑓 = exp 𝑖𝛼 𝑀2

𝐄 ⋅ 𝐝𝐒 ,  𝑈𝑔
𝑚

𝑀2 = exp 𝑖𝛼 𝑀2
𝑓 = exp 𝑖𝛼 𝑀2

𝐁 ⋅ 𝐝𝐒

These act on (i.e. link with) Wilson line operators 𝐿𝑞 𝛾 = 𝑒
𝑖 𝛾ׯ 𝐴, i.e. worldlines of non-dynamical 

heavy charge, or ‘t Hooft lines (magnetic version)
𝑈

𝑒𝑖𝛼
𝑒

𝑀2 ⋅ 𝐿𝑞 𝛾 = 𝑒𝑖𝛼 Link 𝑀2,𝛾 𝐿𝑞 𝛾

Joe Davighi, CERN 24



Higher-form symmetries: how to find them?
Continuous higher form symmetry

• Need to identify co-closed 𝑝-form operators 𝑗, i.e. satisfying 𝑑 ⋆ 𝑗 = 0, for 𝑝 > 1

Non-Example: Yang-Mills in 4d, 𝑺 =  𝐓𝐫 𝒇 ∧⋆ 𝒇

For 𝑈 1 , Maxwell eqn 𝑑 ⋆ 𝑓 = 0 and Bianchi 𝑑𝑓 = 0

For 𝑆𝑈 𝑁 , Yang-Mills equation 𝐷𝑓~ 𝑑 + 𝑎 ∧ 𝑓 = 0, no closed 2-form! Likewise 𝐷 ⋆ 𝑓 = 0

So Yang-Mills, in contrast to Maxwell theory, does not have continuous 1-form symmetries

Joe Davighi, CERN 25



Higher-form symmetries: how to find them?
Discrete higher form symmetry

• Not even a current! Instead, look directly for the charged objects it might act on

Example: 𝑺𝑼 𝑵  Yang-Mills in 4d 𝑺 =  𝐓𝐫 𝒇 ∧⋆ 𝒇

ℤ𝑁 “centre” 1-form symmetry acts on Wilson lines that cannot be screened by local operators

• The 1-form symmetry distinguishes global form of otherwise identical gauge groups, e.g.

𝐺 = 𝑆𝑈(𝑁): 1-form symmetry is ℤ𝑁
(𝑒),  𝐺 =

𝑆𝑈 𝑁

ℤ𝑁
: 1-form symmetry is ℤ𝑁

(𝑚)

• Similarly, there are 4 different versions of SM gauge group with different 1-form symmetries

• Application: 4d 𝑆𝑈 2𝑁  Yang-Mills at 𝜃 = 𝜋 has a mixed anomaly involving ℤ𝑁
(𝑒)

 1-form symmetry 
and parity. Used to prove the YM vacuum at 𝜃 = 𝜋 is non-trivial.

Joe Davighi, CERN 26

Gaiotto, Kapustin, Komargodski, Seiberg, 1703.00501

c.f. Tong, 1705.01853 etc

https://arxiv.org/abs/1703.00501
https://arxiv.org/abs/1705.01853


Higher-form symmetries: how to break them?
Harder than for ordinary symmetries! 

• They do not “see” local operators in the Lagrangian, so cannot break via “small irrelevant 
operators” as for 0-form accidental symmetries

Instead, we break them by introducing new degrees of freedom

E.g. going from Maxwell → QED

𝑑 ⋆ 𝑗 𝑒 = 𝑑 ⋆ 𝑓 = 𝜌𝑒 𝑥 ≠ 0 anymore! 

This breaks the 𝑈 1 𝑒 1-form symmetry 

[ but not 𝑈 1 𝑚 ]

Joe Davighi, CERN 27



Axion Quality from 1-Form Symmetry
• Spacetime with one extra compact dimension 𝑀5 = ℝ1,3 × 𝑆𝑅

1

• With extra 5d 𝑈 1  gauge field 𝐶, action 𝑆 = 𝑀5
−

1

2𝑔2 𝑑𝐶 ∧⋆ 𝑑𝐶 +
𝑁

8𝜋2 𝐶 ∧ Tr 𝐺 ∧ 𝐺

• Axion is the zero-mode of 5d g.f. along the circle i.e. it is a Wilson line of the extra-dim theory

  𝑎 = 𝑆1 𝐶

• Remember 1-form symmetries act on e.g. Wilson lines 𝐿𝑞 𝛾 = 𝑒
𝑖 𝛾ׯ 𝐶!

• 5d electric 1-form symmetry for 𝐶 ⟶ shift symmetry for 𝑎 (+ 4d electric 1-form symmetry)

𝑈
𝑒𝑖𝛼

𝑒
𝑀3=5−2 ⋅ 𝐿𝑞 𝛾 = 𝑒𝑖𝛼Link 𝑀2,𝛾 𝐿𝑞 𝛾 ,  

dim reduction
 𝑎 ↦ 𝑎 + 𝛼𝑓𝑎 

New insight: 

Axion potential generated by explicit breaking of the 5d 1-form symmetry. 

Higher-form symmetries are harder to break! Tightly controlled axion potential & quality

Craig, Kongsore  2408.10295

Naturally periodic 𝑎 ∼ 𝑎 + 2𝜋𝑓, where 𝑓𝑎 = 1/𝑔 2𝜋𝑅

Joe Davighi, CERN 28
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New insight: 
Can classify all the ways of generating axion potential (from 5d) via the 1-form symmetry

Axion Quality from 1-Form Symmetry

From Marius Kongsore’s BSM Forum 
@ CERN, 26/9/2024

Craig, Kongsore  2408.10295

Joe Davighi, CERN 29
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While this 5d axion story is in a sense already known, it is an example of a general statement: 

 𝑝-form symmetry in 4 + 𝑝 -dimensions → 0-form symmetry in 4d.

  [ very well known in string theory ]

Other PP applications? E.g. can we apply to the hierarchy problem?

 Ack! Remember, higher-form symmetries must be Abelian...

Some speculation

Joe Davighi, CERN 30



More higher-form speculation

Why? 

• They predict extended operators e.g. strings which cannot be shrunk away because they carry a 
quantized topological charge. A higher-form symmetry measures this charge.

So what?

• What happens when I throw such strings into a black hole? Cannot radiate the topological charge!

• This is the “swampland cobordism conjecture” 

• Must break the global higher-form symmetry! 

• We saw this was hard, but that it can be done via dynamical extended objects! 
 E.g. cosmic strings, monopoles, …

Joe Davighi, CERN 31

Work in progress with Markus Dierigl

McNamara, Vafa, 1909.10355

String theory examples: 
Montero, Vafa, 2008.11729

Discrete gauge symmetries in 4d (e.g. to explain neutrino mass and mixings) 
generically lead to higher-form discrete global symmetries

https://arxiv.org/abs/1909.10355
https://arxiv.org/pdf/2008.11729.pdf


More higher-form speculation

Joe Davighi, CERN 32

Work in progress with Markus Dierigl

Non-trivial global 
anomalies

Predict strings, monopoles!

1-form 
symmetry

2-form 
symmetry JD, Gripaios, Lohitsiri, 2207.10700 

Discrete gauge symmetries in 4d (e.g. to explain neutrino mass and mixings) 
generically lead to higher-form discrete global symmetries
• These “unshrinkable” objects are classified by “bordism groups”:

https://arxiv.org/pdf/2207.10700.pdf


Generalization 1b. 
Higher Group Symmetries
Kapustin, Thorngren, 1309.4721; Sharpe, 1508.04770; Cordova, Dumitrescu, Intriligator, 2009.00138

Joe Davighi, CERN 33
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Higher Group Symmetries
• Higher form symmetries of different degrees can mix to form what is known as a “higher-

group” structure in mathematics (described by higher-bundles with connection)
• Simplest case is 2-group symmetry:

• 2-group connection consists of a pair of gauge fields with intertwined g. transformation:

 1-form g. field: 𝐴 ↦ 𝐴 + 𝑑𝛼

 2-form g. field: 𝐵 ↦ 𝐵 + 𝑑Λ(1) +
𝑛

2𝜋
𝛼𝑑𝐴

0-form symmetry 1-form symmetry

FUSE! = 2-group generalized symmetry

𝑛 ∈ ℤ, called the “Postnikov class”, 
that classifies the particular 2-group 
symmetry we have

Joe Davighi, CERN 34



Higher Group Symmetry is Quantized!
• There is a 2-group current algebra analogous to the familiar anomalous current algebra:

𝜕𝜇𝑗𝜇
𝐿,𝐴 𝑥 𝑗𝜈

𝐿,𝐵 𝑦 − 𝛿 𝑥 − 𝑦 𝑓𝐴𝐵𝐶𝑗𝜈
𝐶 𝑦 ∼ 𝑛 𝛿𝐴𝐵𝜕𝜌𝛿 𝑥 − 𝑦 𝑗𝜌𝜈

2
𝑦

Joe Davighi, CERN 35



Higher Group Symmetry is Quantized!

1802.04790

2212.13193

• There is a 2-group current algebra analogous to the familiar anomalous current algebra:

𝜕𝜇𝑗𝜇
𝐿,𝐴 𝑥 𝑗𝜈

𝐿,𝐵 𝑦 − 𝛿 𝑥 − 𝑦 𝑓𝐴𝐵𝐶𝑗𝜈
𝐶 𝑦 ∼ 𝑛 𝛿𝐴𝐵𝜕𝜌𝛿 𝑥 − 𝑦 𝑗𝜌𝜈

2
𝑦

From anomaly matching to symmetry matching!

• 2-group class 𝑛 ∈ ℤ ∴ cannot change continuously under any deformation, including RG

• … so, like an anomaly, it must match from UV to IR! 

• This gives 2-group more power than 1-form and 0-form separately: cannot break one the 1-form 
symmetry without explicitly breaking the 0-form “flavour” symmetry at the same scale

[ like non-abelian current algebra ]

This is the “2-group emergence theorem” of Cordova, Dumitrescu, Intriligator 1802.04790  

Used in Cordova, Koren 2212.13193 to study GUT embeddings of SM 
Joe Davighi, CERN 36

https://arxiv.org/abs/1802.04790
https://arxiv.org/pdf/2212.13193


Topological Portal to Dark Sector
We propose a new portal to the dark sector, that is a topological effective interaction:

• Invariant under 𝑆𝑈 3 𝐿 × 𝑆𝑈 3 𝑅 × 𝑆𝑈 2 𝐷  global symmetry; scale 𝐸 ~100s MeV ÷ GeV

• 𝑛 ∈ ℤ for consistency of EFT; c.f. Dirac monopole

JD, Greljo, Selimović, 2401.09528

Joe Davighi, CERN 37

𝑆 = 𝑛 න
𝑋5

Tr 𝑔−1𝑑𝑔 3  ∧ Vol2

⟶
𝑛

16𝜋2𝑓𝐷2
න

𝑀4

1

𝑓𝜋
3 𝑓𝑎𝑏𝑐𝑑𝜋𝑎𝑑𝜋𝑏𝑑𝜋𝑐 +

1

𝑓𝜋
𝜋0 +

𝜂

3
 𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

Visible Sector
𝜋, 𝐾, 𝜂, 𝛾

Dark Sector

𝜒 = DM pions on 𝑆2 =
𝑆𝑈 2

𝑈 1

https://arxiv.org/abs/2401.09528


Topological Portal to Dark Sector
We propose a new portal to the dark sector, that is a topological effective interaction:

• Invariant under 𝑆𝑈 3 𝐿 × 𝑆𝑈 3 𝑅 × 𝑆𝑈 2 𝐷  global symmetry; scale 𝐸 ~100s MeV ÷ GeV

• 𝑛 ∈ ℤ for consistency of EFT; c.f. Dirac monopole

JD, Greljo, Selimović, 2401.09528
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𝑆 = 𝑛 න
𝑋5

Tr 𝑔−1𝑑𝑔 3  ∧ Vol2

⟶
𝑛

16𝜋2𝑓𝐷2
න

𝑀4

1

𝑓𝜋
3 𝑓𝑎𝑏𝑐𝑑𝜋𝑎𝑑𝜋𝑏𝑑𝜋𝑐 +

1

𝑓𝜋
𝜋0 +

𝜂

3
 𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

Visible Sector
𝜋, 𝐾, 𝜂, 𝛾

Unique QCD-like coset featuring topological portal!

https://arxiv.org/abs/2401.09528


Topological Portal to Dark Sector
JD, Greljo, Selimović, 2401.09528
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𝑆 = 𝑛 න
𝑀4

𝑓𝑎𝑏𝑐𝑑𝜋𝑎𝑑𝜋𝑏𝑑𝜋𝑐 + 𝜋0 +
𝜂

3
 𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

+

Contrast to SIMP DM:
• WZW involving 5 dark pions 

gives 3 → 2 purely within DS
• additional portal needed for 

thermalisationThe topological  portals
The 2 → 2 is more relevant

See Josef Pradler’s talk

https://arxiv.org/abs/2401.09528


Topological Portal to Dark Sector

• With indices: 𝑛

16𝜋2𝑓𝜋𝑓𝐷
2 𝜖𝜇𝜈𝜌𝜎𝑒𝜋0𝐹𝜇𝜈𝜕𝜌𝜒1𝜕𝜎𝜒2

• Can explain DM relic abundance via 𝜋0𝛾 ⟷ 𝜒1𝜒2 freeze-out after QCD phase transition, 
for 𝒎𝝌 up to few GeV

• If small mass splitting 𝑚𝜒2
− 𝑚𝜒1

> 𝑚𝜋0
 then 𝜒2 → 𝜒1𝛾𝜋0, leaving 𝜒1 as relic DM

Remember differential forms are antisymmetric!

• So there is no corresponding “elastic channel” involving 𝜒1𝜒1 → SM 

• Naturally explains why we haven’t seen DM in direct/indirect detection

JD, Greljo, Selimović, 2401.09528

Joe Davighi, CERN 40

𝑆 = 𝑛 න
𝑀4

𝜋0 +
𝜂

3
𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

https://arxiv.org/abs/2401.09528


The Topological Portal Encodes 2-group Symmetry
JD, Lohitsiri, 2407.20340

Joe Davighi, CERN 41

QCD

𝑆WZW = 𝑛 න
𝑀4

𝜋0𝐹 ∧ 𝐹

QCD + dark pions

𝑆WZW = 𝑛 න
𝑀4

𝜋0𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

https://arxiv.org/abs/2407.20340


The Topological Portal Encodes 2-group Symmetry
JD, Lohitsiri, 2407.20340
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QCD

𝑆WZW = 𝑛 න
𝑀4

𝜋0𝐹 ∧ 𝐹

Matches anomalies in 𝑆𝑈 3 𝐿 × 𝑆𝑈 3 𝑅

Quarks in the UV theory

UV ??

QCD + dark pions

𝑆WZW = 𝑛 න
𝑀4

𝜋0𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

But no mixed anomaly between 𝑆𝑈(3) and 𝑆𝑈 2 𝐷

Quantized WZW term without anomalies?? 
   
     (NEW!)

https://arxiv.org/abs/2407.20340


The Topological Portal Encodes 2-group Symmetry
JD, Lohitsiri, 2407.20340
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QCD

𝑆WZW = 𝑛 න
𝑀4

𝜋0𝐹 ∧ 𝐹

Matches anomalies in 𝑆𝑈 3 𝐿 × 𝑆𝑈 3 𝑅

Quarks in the UV theory

QCD + dark pions

𝑆WZW = 𝑛 න
𝑀4

𝜋0𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

Generalized symmetries solve the puzzle:
There is a 2-group symmetry to match!

Quick way:
• 1-form symmetry, 𝑗 2 = ⋆ 𝑑𝜒1 ∧ 𝑑𝜒2

• Minimal coupling 𝑆coup = 𝑀4
𝐵(2) ∧ ⋆ 𝑗 2

• 2-group background gauge transformation
𝜋0 → 𝜋0 + 𝑑𝛼 𝐵 ↦ 𝐵 + 𝑛𝛼𝐹

• 𝑆WZW + 𝑆coup is invariant ∴ 2-group symmetry

https://arxiv.org/abs/2407.20340


The Topological Portal Encodes 2-group Symmetry
JD, Lohitsiri, 2407.20340
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QCD + dark pions

𝑆WZW = 𝑛 න
𝑀4

𝜋0𝐹 ∧ 𝑑𝜒1 ∧ 𝑑𝜒2

2-group matching then guides us to the UV:

• Non-abelian dark gauge group ruled out!
• Abelian dark gauge field does work, with very 

particular UV couplings
• 2-group, and top portal coefficient, is quantized 

so EFT matching is tree-level exact! (New!)

[ Reminiscent of anomaly matching in 2d Schwinger 
model across bosonization duality ]

https://arxiv.org/abs/2407.20340


Is this just a theoretical mechanism for dark matter, or can it be tested?

We already saw there is no signal in (in)direct detection experiments.

Joe Davighi, CERN 45



Is this just a theoretical mechanism for dark matter, or can it be tested?

We already saw there is no signal in (in)direct detection experiments.

But

  and fitting relic abundance tells us 𝑚𝜒~ 3 GeV…

Joe Davighi, CERN 46

⟹



A Novel Phenomenology

47

⟹

Final state 𝜋0 reconstructed as photon if boosted to few GeV, so can recast 𝛾 + Inv searches for signature 1

Monophoton recast demonstrates 
tremendous prospects at Belle II

Joe Davighi, CERN

JD, Greljo, Selimović 
2401.09528 

There is no data relevant to the DV region (currently 
veto-ed in these mono-photon searches)

If observe a signal, there is a definite prediction      
𝜎 e+e−→𝜂𝜒1𝜒2

𝜎 e+e−→𝜋0𝜒1𝜒2
=

1

√3
 smoking gun!

To be studied: complementary high-𝐸 stuff at LHC
 (UV completion via 2-group is essential)

𝑚𝜒~

3 GeV

https://arxiv.org/abs/2401.09528


Generalization 2. 
Non-Invertible Symmetries
Origins in many old examples in condensed matter, CFT, e.g. Kramers-Wannier duality

Joe Davighi, CERN 48



Non-invertible Symmetries
• Generalize group multiplication law 𝑈𝑔 𝑀3 𝑈𝑔′ 𝑀3 = 𝑈𝑔𝑔′ 𝑀3  to a “fusion algebra”:

𝑈𝑎 𝑀3 𝑈𝑏 𝑀3 = 

𝑐

𝑁𝑎𝑏
𝑐 𝑈𝑐 𝑀3

• Each 𝑈𝑎 need not have an inverse

• Mathematically, these fusion categories are rigorous only in low dimensions

Joe Davighi, CERN 49

𝑈𝑔
≠

Any 𝑈



4d NIS from ABJ anomalies
Consider 0-form global 𝑈 1  symmetry with Noether current 𝑗 s.t. there is an ABJ anomaly

  𝑑 ⋆ 𝑗 =
1

16𝜋2 𝑓 ∧ 𝑓

Naively, we lose topological property of our defect operators 𝑈𝛼 𝑀3 = 𝑒
𝑖𝛼 𝑀3

⋆𝑗  b/c 𝑑 ⋆ 𝑗 ≠ 0

But, for 𝛼 = 𝑝/𝑞 ∈ ℚ, can fix up by subtracting a fractional Chern—Simons theory on 𝑀3

Upshot: ∃ topological gauge invariant operators (a.k.a. symmetries) for each rational angle 𝛼 =
𝑝/𝑞, but without inverses. 

Joe Davighi, CERN 50

𝑓 = 𝑈(1) gauge field

𝑓

𝐹

𝑈𝛼

=  𝑍fractional CS 𝑀3 ≠ 1
𝑈−𝛼

[ I won’t explain what this means, sorry! ]



4d NIS from ABJ anomalies
Consider 0-form global 𝑈 1  symmetry with Noether current 𝑗 s.t. there is an ABJ anomaly

  𝑑 ⋆ 𝑗 =
1

16𝜋2 𝑓 ∧ 𝑓

• These “remnant symmetries” remain after the ABJ breaks 𝑈(1) 
• Protects e.g. 𝑈 1 𝐵 in SM, despite the mixed anomaly with hypercharge!

• There is no analogous NIS remaining after an ABJ anomaly with a non-abelian 𝑓

• Simpler to see this distinction via selection rules on correlators:

𝑂  ~  𝐷𝑎𝐷𝜓𝐷 ത𝜓𝑒−𝑆𝑂 →  𝐷𝑎𝐷𝜓𝐷 ത𝜓 1 + 𝑖𝛼 න
𝑆4

𝑓 ∧ 𝑓 𝑒−𝑆𝑂 = 𝑂

• The action on local ops (therefore scattering observables) is just like an invertible symmetry

Joe Davighi, CERN 51

𝑓 = 𝑈(1) gauge field

𝑓

𝐹

= 0 for abelian 𝑓 [ but ≠ 0 if non-abelian ]



Tiny Neutrino Masses from NIS
• This NIS can be emergent in the IR, upon breaking non-abelian 𝐺 → 𝑈(1) with ABJ!

• Then effects breaking the NIS come from UV instantons ⇒ exponentially suppressed

Example: gauge lepton-flavoured symmetries for tiny neutrinos masses

Joe Davighi, CERN 52

UV 𝐺 = 𝑆𝑈 3 𝐿

IR  𝐺 = 𝑈 1 𝐿𝜇−𝐿𝜏

𝑓𝜇−𝜏

𝑓𝜇−𝜏

𝐹𝑒−𝜇

Córdova, Hong, Koren, Ohmori, 
2211.07639 

Neutrino Dirac mass gets 
generated by 𝑆𝑈 3 𝐻  instantons

𝑦𝜈 = 𝑦𝜏𝑒
−

8𝜋2

𝑔𝐻
2

≪ 𝑦𝜏

https://arxiv.org/pdf/2211.07639


Discrete NIS for Flavour
• Type IIB string theory compactified on 𝑇2 × 𝑇2 × 𝑇2

• Magnetic flux through torus has two consequences:
1. Breaks 𝑈(1) translations down to discrete ℤ𝑁 subgroups
2. Gives chiral fermion zero modes (index theorem), acted on by the ℤ𝑁s 

• Last step: gauge ℤ2 reflection: turns the ℤ𝑁s into non-invertible symmetries!

Joe Davighi, CERN 53

Kobayashi, Otsuka, 2408.13984
Kobayashi, Otsuka, Tanimoto, 2409.05270

Discrete ℤ𝑁, gauge ℤ2 reflection
Charges 𝑞 and 𝑁 − 𝑞 are identified

Very similar in spirit to modular 
symmetry approach
See Ferruccio Feruglio’s talk 

https://arxiv.org/abs/2408.13984
https://arxiv.org/abs/2409.05270


Discrete NIS for Flavour

Selection rules for different ℤ𝑁 give different “nearest-neighbour interaction” Yukawa textures.

A new playground for explaining quark and lepton mass and mixings

Example, 𝑁 = 5

Joe Davighi, CERN 54

Kobayashi, Otsuka, 2408.13984
Kobayashi, Otsuka, Tanimoto, 2409.05270

Discrete ℤ𝑁, gauge ℤ2 reflection (not a subgroup)
Charges 𝑞 and 𝑁 − 𝑞 are identified

https://arxiv.org/abs/2408.13984
https://arxiv.org/abs/2409.05270


Conclusions
Generalized symmetries have already taught us a huge amount in Hep-TH and string theory

We are just beginning to find interesting examples of generalized symmetries in particle physics.

So far, lots of the PP applications are “reframings” of previously known phenomena e.g:

• ABJ anomalies ~ Non-invertible symmetry

• Operator-valued anomalies ~ 2-group symmetry

• Instanton generated effects are small ~ protected by non-invertible symmetry

• Axion shift symmetry protected in 5d by gauge invariance ~ protected by 1-form symmetry

But there are also new BSM ideas coming out in 2024, e.g:

• Topological portals to dark matter manifest 2-group symmetry, exotic EFT matching

• Non-invertible symmetries for novel flavour textures

We want more applications of generalized symmetries that tell us something completely new!

Dictionary for translating 
anomalies to new symmetries

Joe Davighi, CERN 55



1-form 
symmetry

2-group 
symmetry

Subsystem 
symmetry

?

?

?

Unification 
patterns for SM 
gauge group

Topological Portals 
to Dark Matter

Axion quality 
problemGlobal structure 

of SM gauge group

Non-
invertible 
symmetry

ABJ anomalies

Neutrino masses

Proton stability

Strong CP problem

Joe Davighi, CERN 56

Conjugacy class 
symmetries for the 
flavour puzzle

Not obvious how this can be applied in HEP

Defect predictions for 
discrete gauge theories
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