Recent Results in Neutrino Physics Experiments

Francesca Di Lodovico **King's College London**

DISCRETE 2024 in Ljubljana

2-6 Dec 2024

9th Symposium on Prospects in the Physics of Discrete **Symmetries - DISCRETE 2024**

Ljubljana - 2-6 December 2024

Outline

- Oscillation Basics.
- Accelerator Neutrinos.
- Atmospheric Neutrinos.
- Solar Neutrinos.
- Reactor Neutrinos.
- Oscillation Anomalies.
- $0\nu\beta\beta$ searches.
- Neutrino Mass Measurements.
- Searches for Astrophysical and Cosmological Neutrinos.

Disclaimer: The field of neutrino oscillations is broad and extremely active. I tried to give the general overview and main highlights, possibly at the expenses of no citing all the experiments.

2

Sources of Neutrinos

Di Lodovico - DISCRETE 2024, December 3 2024

varies

Neutrino Mixing \Rightarrow Oscillations

- ν 's propagation over time depends on its energy, mass and distance travelled (since $t \approx L$) and PMNS mixing matrix parameters.
- Experimentally, three types of environments w/ different E and L:
 - -Solar neutrinos are predominantly affected by 1 and 2 mass-eigenstates,
 - -Atmospheric neutrinos predominantly affected by 2 and 3 mass-eigenstates,
 - -Reactor neutrinos predominantly affected by 1 and 3 mass-eigenstates (and phase)

• In addition, Long-Baseline Neutrino Experiments are sensitive to $\theta_{13}, \theta_{23}, \delta_{CP}$.

Di Lodovico - DISCRETE 2024, December 3 2024

PMNS (3x3 Unitary) matrix: from neutrino mass-eigenstate to flavour.

• 3 real parameters ($\theta_{12}, \theta_{23}, \theta_{13}$) and a phase (δ_{CP}) $[c_{ij} = \cos \theta_{ij} \text{ and } s_{ij} = \sin \theta_{ij} \text{ below}]$

Decomposed into three matrices: Atmospheric Reactor $\frac{\text{Atmospheric}}{(1 \quad 0 \quad 0)} \underbrace{\frac{\text{Reactor}}{(c_{12} \quad 0 \quad s_{12}e^{-i\delta_{CP}})}}_{(c_{12} \quad s_{12} \quad 0)} \underbrace{\frac{\text{Solar}}{(c_{12} \quad s_{12} \quad 0)}}_{(c_{12} \quad s_{12} \quad 0)}$

$$U = \begin{bmatrix} 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} -s_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \psi(\beta) | \psi(\alpha) \rangle|^{2} =$$

 $V_{II} \rightarrow V_{II} = \overline{V}_{II} \rightarrow \overline{V}_{II}$

7

Neutrino Mixing \Rightarrow Implications

- Neutrino oscillation \Rightarrow neutrinos are massive.
- Vacuum oscillations depend on the mass splittings.
- Many questions:
 - Values of the oscillation parameters?
 - CP symmetry (is $\delta_{CP} = 0$?)?
 - Indications it is non-zero.
 - Ordering of the neutrino masses MO (i.e. sign of Δm_{32}^2)?
 - Additional neutrino states?
 - Implications for New Physics.

 $\sin^2 heta_{12}, \Delta m^2_{21} \sin^2 heta_{23}, \Delta m^2_{32}, \sin^2 heta_{13}$

solar~ 7.5×10^{-10}

atmospheric

 $\sim 2.5 \times 10^{-3} \text{eV}^2$

 $-m_3^2$

0

 m_{3}^{2}

 m_2^2

 m_1^{2}

atmospheric

 $\sim 2.5 \times 10^{-3} eV^2$

solar~7.5×10⁻⁵ eV²

Credit: H. Murayama

All parameters are known to a few percent!

Better precision is needed: e.g. to determine the θ_{23} octant.

> Matter interactions help to distinguish sign.

Neutrino Oscillation Experiments ν_{μ} Oscillation from ν_{μ} ν_{e}

~300-1000km

Far Detector

Oscillation experiments take

T2K and NOvA

	T2K	NOvA
baseline	295 km	810 km
peak energy	600 MeV	2 GeV
CP effect	32%	22%
Matter effect	9%	29%

- Primary goals: $\sin^2 \theta_{23}, |\Delta m_{32}^2|, \text{mass}$ ordering, δ_{CP} , $\sin^2 \theta_{13}$
- Use ν_{μ} (or $\overline{\nu}_{\mu}$) disappearance and ν_e (or $\overline{\nu}_e$) appearance.
- NOvA has better sensitivity to mass-ordering.
- **T2K** has better sensitivity to δ_{CP} .

T2K and NOvA

• Both experiments have a slight preference for the upper octant of θ_{23} and the normal mass ordering (NO).

	NO preference Bayes Factor
NOvA-only	3.2
T2K-only	3.3

- But they prefer different regions of δ_{CP} in the NO case.
- First recently completed joint fit splits the difference in the NO case, improves constraint in IO case.

Joint Analysis Results

- successfully.
- by θ_{13} constraint.

Hyper-Kamiokande and DUNE

• Hyper-Kamiokande:

- 1.3 MW beam
- Water Cherenkov far detector
- 190 kton far detector fiducial mass
- Completion detector by 2027, physics thereafter.

Large degree of complementarity:

- DUNE:
 - Beam:
 - 1.2 MW Phase I first 6 y
 - 2.3 MW Phase II after 6 y
 - Liquid-Argon TimeProjection Chamber (LArTPC) technology
 - Far detector fiducial mass
 - 2 FD (10kton/each) Phase I
 - 4 FD (10kton/each) Phase II
 - First physics in 2029.

Hyper-Kamiokande and DUNE

- Mass ordering:
 - arXiv:1805.04163v2 - Hyper-Kamiokande: from [physics.ins-det] atmospherics+beam fit. Up to 6y for 5σ .
 - DUNE: 1 and 3 years to reach 5σ .
- Oscillation parameters:
 - Long term high precision for Δm_{31}^2 and

 θ_{13} sensitive to ν_{ρ} physics in comparison with reactor measurements.

- CP violation:
 - Long term establishment of CP violation at 3σ over 75% of $\delta_{\rm CP}$ values.
 - Similar 10-year precision of $\sim 6 18^{\circ}$ in $\delta_{\rm cp}$ in both experiments.

Next-to-next generation experiment (ESSvSB) using 5MW European Spallation Neutron Source proton linac being developed: EPJST 231, 3779-3955 (2022).

Super-Kamiokande and T2K

SK (atmospherics) +T2K (Accelerator)

Motivation for a joint fit: :

- SK helps to break the degeneracy between δ_{CP} and mass ordering in T2K.
- T2K can constrain $\sin^2 \theta_{23}$ better \rightarrow improve the mass ordering sensitivity in SK.

T2K near detector can be used to constrain the cross-section uncertainties for the low-energy atmospheric samples.

Results:

- A limited rejection of IO at 90% C.L.
- CP-conservation $(J_{\rm CP}=0)$ rejected at slightly below 2σ .
- No preference on the θ_{23} octant.

Icecube and KM3NET/ORCA

IceCube: ~1 km³ of ice instrumented with strings of Digital Optical Modules (DOMs), each with a PMT. ~100 GeV energy threshold.

1450r - **DeepCore**: densely instrumented region at the center. ~10 GeV energy threshold. 2820 m

arXiv:2405.02163v1 [hep-ex]

- data.

 - 715 kton-yr dataset.
 - Approaching competitive measurement of θ_{23} , not yet in Δm_{31}^2 .

with accelerator results

Oscillation results with 9.3 years of DeepCore

Slight preference for NO with current results.

Good agreement and comparable precision

- neutrino oscillation measurements.
- **PMTs**
- installed.

Atmospheric Neutrinos Future

- [reduce energy threshold to a few GeV].

2022, 55 (2022) and PRD 101, 032006 (2020)).

Solar Neutrinos

Global analysis of solar and KamLAND data Solar Neutrino Flux status

- Best information on $\sin^2 \theta_{12}$ comes from solar neutrino measurements.
- Solar neutrino measurements from Radiochemical experiments (Homestake, GALLEX/ GNO, and SAGE), Super-Kamiokande, SNO, Borexino.
- Best information on Δm_{12}^2 comes from KamLAND.

- SK / SNO lead on the ⁸B flux
- hep neutrinos yet to be observed.
- Borexino: Achieved unprecedentedly high radiopurity and low threshold (100 keV).
- Global fit to the Borexino data in an extended energy range (0.19–2.93) MeV:

Solar Neutrinos

effects in the Earth.

Solar Neutrinos Future

- SNO+ Water phase results published, Scintillator phase data-taking ongoing; results to come shortly. Reactor and solar neutrino experiment capabilities.
- Hyper-Kamiokande Largest solar detector starting in 2027. Upturn and daylight sensitivity.
- DUNE Largest LArTPCs ever built starting in 2029. Sensitivity to ${}^{8}B$ neutrinos $\gtrsim 10 \text{MeV}$.
- JUNO From 2025. Reactor and solar neutrino experiment capabilities. Potential to improve on some low-energy solar neutrino measurements from Borexino
- Jingping Neutrino Experiment Big overburden, 500 m³. Possibility of using LiCl as medium
- New technologies and opportunities under active R&D:
 - THEIA: Hybrid scintillation+Cherenkov detector
 - LiquidO: Topology discrimination and In doping via opaque scintillation

Reactor Neutrinos

Best information on Δm_{21}^2 and $\sin^2 \theta_{13}$ comes from reactor experiments

- $\Delta m_{21}^2 \Rightarrow \text{KamLAND}$
- $\sin^2 2\theta_{13} \Rightarrow$ short baseline (< 2 km) experiments that access first maximum modulated by $\sin^2 2\theta_{13}$:
 - Use neutron capture on Hydrogen (nH) and/ or on Gadolinium (nGd) to identify $\bar{\nu}_{\rho}$'s (detection channel $\bar{\nu}_e + p \rightarrow e^+ + n$).
- Current reactor measurement of θ_{13} likely to remain the world's most precise for a long time.
- Proposal for a Super CHOOZ with LiquidO technology under development (corresponding detector prototype CLOUD).

By combining all reactor results, ultimate precision of $\sin^2 2\theta_{13}$: 2.5 % [Neutrino 2024 Zeyuan Zu]

24	2.8%
	6.5%
22	2.6%
	6.5%
3	15.9%
2	11.8%
21	2.5%
	15.9%
	14.2%

- collection in 2025:
 - 20 kton liquid scintillator detector
 - Baseline of ~ 52.5 km from 8 nuclear reactors
 - Energy resolution of 3% @ 1 MeV
 - Aims:
 - - Determine the neutrino mass ordering.
- matter effects

Oscillation Anomalies

- LSND + MiniBooNE: $\sim 6\sigma$ excess of electron (anti)neutrinos in a muon (anti)neutrino beam.
 - eV-scale sterile ν oscillations in conflict with accelerator and reactor disappearance measurements.
 - The Fermilab SBN and J-PARC JSNS² experiments will provide definite tests of the oscillation hypothesis.
- Reactor Anomaly: a 6% deficit with 3σ significance in the measured total reactor $\bar{\nu}_{e}$ flux versus the prediction from the Huber+Mueller model at short baselines.
 - Not observed by other experiments apart from Neutrino-4 2023.

- Gallium Anomaly: Capture rates of ν_{ρ} from calibration sources on 71 Ga are below expectation.
 - Seems not due to sterile neutrinos but other explanations should be looked for.

$0\nu\beta\beta$ Searches

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁰Pd, ¹¹⁶Cd, ¹²⁴Sn, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Key requirements:

- Large exposure (ton-scale)
- Low background (< 1 cts/year/t/ROI)
- Excellent energy resolution

 $(<1\% @ Q_{\beta\beta})$

$\langle \gamma$ $m^2_{\beta\beta}$ effective mass

$$\begin{split} n_{\beta\beta} \rangle &= \left| \sum |U_{ei}|^2 e^{i\phi_i} m_i \right| \\ &= \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i\alpha} + s_{13}^2 m_1 \right| \end{split}$$

Effective mass depends on the mixing matrix parameters. α, β are unknown Majorana phases. Not measurable in oscillation experiments.

uncertainties.

β Searches Parameter space:

- Ongoing / completed projects probe degenerate regime e.g. LEGEND-200, CUORE, EXO, KamLAND-ZEN. 2024 results from. LEGEND-200, CUORE and KamLAND-ZEN.
- nEXO..

- If neutrinos are Majorana, experimental results must fall in the shaded regions.
- Extent of the regions determined by uncertainties on mixing matrix elements and Majorana phases.

• Planned projects will fully cover the inverted ordering scenario e.g. LEGEND-1000, CUPID,

$0\nu\beta\beta$ Searches Sensitive background and exposure for recent and future experiments ABDMV, RMP 2022, arXiv:2202.01787

- Grey dashed lines: discovery sensitivity on the $T_{1/2}$ (isotope-independent)
- Colored dashed lines: $m_{\beta\beta}$ sensitivities to get to the bottom of the IO region for specific isotopes, taking into account NME (nuclear matrix element) & phase space

Direct Neutrino Mass Measurements

- From cosmology: $\Sigma m_i < \sim 0.1 eV @ 95 \% CL$
- Future experiments may determine the mass (4 σ) in 10 years
 - β decays can probe $m_{\beta} \sim 0.2 eV$ (future 0.02) eV ?)

$$m_{\beta} = \left[\Sigma_{i} \left| U_{ei} \right|^{2} m_{v_{i}}^{2} \right]^{1/2}$$
$$0v\beta\beta \text{ decays can probe } M_{\beta\beta} \sim 0.01 \text{eV}$$
$$\left| M_{\beta\beta} \right| = \left| \Sigma_{i} \left(U_{ei} \right)^{2} m_{v_{i}} \right|$$

Ю NO 10^{0} $\sum m_{\nu} \, [eV]$ 10^{-2} 10^{-1} $m_{\rm lightest} \, [{\rm eV}]$ I. Esteban, S. Gariazzo rate [a.u.] entire spectrum 1.0 region close to endpoint 8.0 g <u>.</u> <u>0</u>.6 a V $m(v_e) = 0 eV$ ම 0.6 0.4 e. 0.4 only 2 x 10⁻¹³ of 0.2 decays in last 1 eV $m(v_e) = 1 e^{-1}$ 0.2 10 14 6 E - E₀ [eV] Electron-energy E [keV] arXiv:1908.08355v1 [hep-ph] 1σ Range after JUNO Measurements 1σ Range of Current Oscillation Data 10^{-1} 10^{-} $\begin{bmatrix} \mathbf{A} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{e} \\ \mathbf{M} \end{bmatrix} \mathbf{I} \mathbf{0}^{-2}$ $\begin{bmatrix} \mathbf{e} \mathbf{V} \\ \mathbf{e} \end{bmatrix}_{\mathcal{B}^{\mathcal{B}}} \mathbf{10}^{-2}$ 10^{-3} 10^{-3} 10^{-4} 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-4} 10^{-1} 10^{-4} $m_1 \; [\mathrm{eV}]$ $m_1 \; [\mathrm{eV}]$

Direct Neutrino Mass Measurements

Key requirements:

- Strong radioactive source
- Tritium (12.3 years, $E_0 = 18.6 \text{keV}$)
- Holmium (4500 years, $E_0 = 2.8 \text{keV}$)
- Excellent energy resolution (1 eV)
- Low background (< 100 mcps)
- Understanding of spectral shape

- 7 different configurations, 59 spectra, 1609 data points, parameter correlations across datasets.
- p-value =0.84, squared neutrino mass best-fit: $m_{\nu}^2 = -0.14^{+0.13}_{-0.15} eV^2$

resulting in an upper limit of $m_{\nu} < 0.45 \text{ eV}$ at 90 % confidence level. Di Lodovico - DISCRETE 2024, December 3 2024

arXiv:2406.13516v1 [nucl-ex] Wiesinger, ICHEP 2024

Direct Neutrino Mass Measurements

ECHO & HOLMS

- Calorimetric sensors coupled to ¹⁶³Ho implanted sources
- Obtained neutrino mass limit: 150 eV
- Promise: ~1eV

- Project 8: Cyclotron Radiation Spectroscopy(CRES)
- Phase I: prove of principle (2016)
- Phase II successful (2016-2020)
 - Uncertainties understood
 - $m_{\beta} < 178 eV$ @90% C.L.
- Phase III (ongoing):
 - Atomic T system & Larger cavity
 - Goal in 5 years: $m_{\beta} < 0.4 \mathrm{eV}$
- Phase IV:
 - Goal: $m_{\beta} < 0.04 eV$

Cosmic Neutrinos and Multimessangers

- Astrophysical neutrinos firstly observed by Icecube
 - Diffused flux and sources "identified". Several other observations (Glashow resonance, flavour measurements and identified ν_{τ} candidates, ν from the Galactic plane, etc.
 - Baikai-GVD confirmed the flux result, KM3NET is joining
- Multi-messengers detectors to provide a wide range of measurements:
 - neutrinos: JUNO, Hyper-K, DUNE, ...
 - GWs: LIGO, Virgo, Kagro, Cosmic-Explorer, LISA,...
 - Cosmic-rays and HE γ 's: CTA, HWAC, HESS, Magic, LHAASO, CTA, ...
 - γ -rays and X-rays in space: Swift, Fermi, GECAM, eXTP,...
- A bright new era for astrophysics:
 - Are high-energy neutrinos linked to ultra-high-energy sources?
 - When and how will the first cosmogenic neutrino be detected?
 - What are the primary sources contributing to the IceCube diffuse flux?

Conclusions

- take data:
 - CP violation observation, mass ordering, θ_{23} octant,...
 - Neutrino Dirac or Majorana.
 - Neutrino mass
 - Sterile neutrinos
 - Astrophysical neutrinos.
- Stay tuned for more exciting results and (bopefully) some surprises!

Increasing precision of neutrino experiments, but still important discoveries ahead of us and experiments are soon starting to

