Recent Results in Neutrino Physics Experiments

Francesca Di Lodovico King's College London

DISCRETE 2024 in Ljubljana

2-6 Dec 2024

9th Symposium on Prospects in the Physics of Discrete Symmetries - DISCRETE 2024

Ljubljana - 2-6 December 2024

Outline

- Oscillation Basics.
- Accelerator Neutrinos.
- Atmospheric Neutrinos.
- Solar Neutrinos.
- Reactor Neutrinos.
- Oscillation Anomalies. ever
- $0\nu\beta\beta$ searches.
- •Neutrino Mass Measurements.
- Searches for Astrophysical and Cosmological Neutrinos.

2

Disclaimer: The field of neutrino oscillations is broad and extremely active. I tried to give the general overview and main highlights, possibly at the expenses of no citing all the experiments.

Di Lodovico - DISCRETE 2024, December 3 2024

Sources of Neutrinos

Di Lodovico - DISCRETE 2024, December 3 2024

Neutrino Mixing ⇒ **Oscillations**

• PMNS (3x3 Unitary) matrix: from neutrino mass-eigenstate to flavour.

• 3 real parameters $(\theta_{12}, \theta_{23}, \theta_{13})$ and a phase (δ_{CP}) $[c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$ below]

Mass eigenstates

(propagation) • Decomposed into three matrices: Atmospheric **Reactor**

- v's propagation over time depends on its energy, mass and distance travelled (since $t \approx L$) and PMNS mixing matrix parameters.
- •Experimentally, three types of environments w/ different E and L:
	- -Solar neutrinos are predominantly affected by 1 and 2 mass-eigenstates,
	- -Atmospheric neutrinos predominantly affected by 2 and 3 mass-eigenstates,
	- -Reactor neutrinos predominantly affected by 1 and 3 mass-eigenstates (and phase)

• In addition, Long-Baseline Neutrino Experiments are sensitive to $\theta_{13}, \theta_{23}, \delta_{CP}$.

$$
P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \psi(\beta) | \psi(\alpha) \rangle|^2 = |\sum
$$

j

 $U_{\alpha i}^*$

αj

Uβ^j

 $V_{\perp} \rightarrow V_{\perp} = \nabla_{\perp} \rightarrow \nabla_{\perp}$

e−*ⁱ*

 $\sin^2\theta_{12}, \Delta m^2_{21}\sin^2\theta_{23}, \Delta m^2_{32}, \sin^2\theta_{13} \, ,$

Neutrino Mixing ⇒ **Implications**

- Neutrino oscillation ⇒neutrinos are massive.
- Vacuum oscillations depend on the mass splittings.
- Many questions:
	- Values of the oscillation parameters?
	- CP symmetry (is $\delta_{CP} = 0$?)?
		- Indications it is non-zero.
	- Ordering of the neutrino masses MO (i.e. sign of Δm_{32}^2)? Δm_{3}^2 32
	- Additional neutrino states?
		- Implications for New Physics.

Matter interactions help to distinguish sign.

All parameters are known to a few percent!

Better precision is needed: e.g. to determine the θ_{23} octant.

Neutrino Oscillation Experiments ν_{μ} **Oscillation from** ν_{μ} ν_{e}

T2K and NOvA

- Primary goals: $\sin^2\theta_{23}$, Δm^2_{32} , mass $\mathsf{ordering}, \, \delta_{CP}, \, \sin$ 2 *θ*23 , Δ *m* 2 32 2 θ_{13}
- Use $ν_{\mu}$ (or $\overline{ν}_{\mu}$) disappearance and ν_e (or $\overline{\nu}_e$) appearance. *e*
- **NOvA** has better sensitivity to mass-ordering .
- **T2K** has better sensitivity to . *δ CP*

T2K and NOvA

• Both experiments have a slight preference for the upper octant of θ_{23} and the normal mass ordering (NO).

- But they prefer different regions of δ_{CP} in the NO case.
- First recently completed joint fit splits the difference in the NO case, improves constraint in IO case.

Joint Analysis Results

- successfully.
-
-

Di Lodovico - DISCRETE 2024, December 3 2024

Hyper-Kamiokande and DUNE

• Hyper-Kamiokande:

- 1.3 MW beam
- Water Cherenkov far detector
- 190 kton far detector fiducial mass
- Completion detector by 2027, physics thereafter.

- DUNE:
	- Beam:
		- ‣ 1.2 MW Phase I first 6 y
		- ‣ 2.3 MW Phase II after 6 y
	- Liquid-Argon TimeProjection Chamber (LArTPC) technology
	- Far detector fiducial mass
		- ‣ 2 FD (10kton/each) Phase I
		- ‣ 4 FD (10kton/each) Phase II
	- First physics in 2029.

Large degree of complementarity:

Hyper-Kamiokande and DUNE

 θ_{13} sensitive to ν_e physics in comparison with reactor measurements.

- CP violation:
	- Long term establishment of CP violation at 3σ over 75% of δ_{CP} values.
	- Similar 10-year precision of $\sim 6-18^{\circ}$ in $\delta_{\rm cp}$ in both experiments.
- Mass ordering:
	- Hyper-Kamiokande: from **arAIV:1805.0416** atmospherics+beam fit. Up to 6y for 5σ . arXiv:1805.04163v2
	- DUNE: 1 and 3 years to reach 5σ .
- Oscillation parameters:
	- Long term high precision for Δm^2_{31} and 31

Next-to-next generation experiment (ESSvSB) using 5MW European Spallation Neutron Source proton linac being developed: EPJST 231, 3779-3955 (2022).

 $\frac{100}{90}$ 80^{\sim} 70F 60 E 50 E 40 l 30 E 20 ⊨ $\delta_{\rm CP}$ valu $10 \vDash$ 0^{E}_{O}

-
-
-
-

Super-Kamiokande and T2K

 \odot

SK (atmospherics) +T2K (Accelerator)

Motivation for a joint fit: :

- SK helps to break the degeneracy between δ_{CP} and mass ordering in T2K.
- T2K can constrain $\sin^2\theta_{23}$ better \rightarrow improve the mass ordering sensitivity in SK.

- A limited rejection of IO at 90% C.L.
- CP-conservation $(J_{CP} = 0)$ rejected at slightly below 2σ.
- No preference on the θ_{23} octant.

T2K near detector can be used to constrain the cross-section uncertainties for the low-energy atmospheric samples.

Results:

Icecube and KM3NET/ORCA

 $lecCube: ~ 1 km³$ of ice instrumented with strings of Digital Optical Modules (DOMs), each with a PMT. ~100 GeV energy threshold.

1450_n - DeepCore: densely instrumented region at the center. ~10 GeV energy threshold. 2820m

- data. {
	-
	- 715 kton-yr dataset.
	- Approaching competitive measurement of , not yet in Δm^2_{31} . θ_{23} , not yet in Δm^2_{31}

with accelerator results

- neutrino oscillation measurements.
- PMTs
- installed.
-

• Oscillation results with 9.3 years of DeepCore

Slight preference for NO with current results.

Good agreement and comparable precision

arXiv:2405.02163v1 [hep-ex]

Normal Ordering 90% C.L. 3.2 **NOvA 2022** $---$ MINOS+ 2020 IceCube 2024 T2K 2023 3.0 (this result) Super-K 2018 eV^2] $[10^{-3}]$ 2.6 Δm^{2}_{32}
2.4 2.2 $2.0 \cdot$ 0.40 0.55 0.60 0.65 0.70 0.35 0.45 0.50 $\frac{0.3}{0.3}$ 0.4 $\frac{0.5}{0.3}$ 0.6 0.7 14

Atmospheric Neutrinos Future

- [reduce energy threshold to a few GeV].
-

2022, 55 (2022) and PRD 101, 032006 (2020)).

Di Lodovico - DISCRETE 2024, December 3 2024 15

Solar Neutrinos

- SK / SNO lead on the ${}^{8}B$ flux
- hep neutrinos yet to be observed.
- Borexino: Achieved unprecedentedly high radiopurity and low threshold (100 keV).
- Global fit to the Borexino data in an extended energy range (0.19–2.93) MeV:

Solar Neutrino Flux status Global analysis of solar and KamLAND data

- Best information on $\sin^2\theta_{12}$ comes from solar neutrino measurements.
- Solar neutrino measurements from Radiochemical experiments (Homestake, GALLEX/ GNO, and SAGE), Super-Kamiokande, SNO, Borexino.
- Best information on Δm_{12}^2 comes from KamLAND. $\mathbf{12}$

effects in the Earth.

Solar Neutrinos Future

- SNO+ Water phase results published, Scintillator phase data-taking ongoing; results to come shortly. Reactor and solar neutrino experiment capabilities.
- Hyper-Kamiokande Largest solar detector starting in 2027. Upturn and daylight sensitivity.
- DUNE Largest LArTPCs ever built starting in 2029. Sensitivity to 8B neutrinos $~\gtrsim 10 {\rm MeV}.$
- JUNO From 2025. Reactor and solar neutrino experiment capabilities. Potential to improve on some low-energy solar neutrino measurements from Borexino 29. Sensitivity to ⁸*B* net
NO - From 2025. React
periment capabilities. P
me low-energy solar ne
m Borexino
gping Neutrino Experim
0 m³. Possibility of usin
w technologies and op_l
D:
THEIA: Hybrid scintillat
LiquidO
- Jingping Neutrino Experiment Big overburden, 500 m^3 . Possibility of using LiCl as medium
- New technologies and opportunities under active R&D:
	- THEIA: Hybrid scintillation+Cherenkov detector LiquidO: Topology discrimination and In doping
	-

Reactor Neutrinos

Best information on Δm^2_{21} and $\sin^2\theta_{13}$ comes from reactor experiments

- $\Delta m^2_{21} \Rightarrow$ KamLAND $\frac{2}{21}$ \Rightarrow
- $\sin^2 2\theta_{13}$ \Rightarrow short baseline (< 2 km) experiments that access first maximum modulated by $\sin^2 2\theta_{13}$: $\sin^2 2\theta_{13}$
	- Use neutron capture on Hydrogen (nH) and/ or on Gadolinium (nGd) to identify $\bar{\nu}_e$'s (detection channel $\bar{\nu}_e + p \rightarrow e^+ + n$). $\bar{\nu}_e + p \rightarrow e^+ + n$
- Current reactor measurement of θ_{13} likely to remain the world's most precise for a long time. - Proposal for a Super CHOOZ with LiquidO
- technology under development (corresponding detector prototype CLOUD).

By combining all reactor results, ultimate precision of $\sin^2 2\theta_{13}$: 2.5 % [Neutrino 2024 Zeyuan Zu]

- collection in 2025:
	- 20 kton liquid scintillator detector
	-
	- Energy resolution of 3% @ 1 MeV
	- Aims:
	- - Determine the neutrino mass ordering.
	-
- matter effects

Oscillation Anomalies

- Gallium Anomaly: Capture rates of ν_e from calibration sources on ${}^{71}\mathrm{Ga}$ are below expectation.
	- Seems not due to sterile neutrinos but other explanations should be looked for.

- LSND + MiniBooNE: \sim 6*σ* excess of electron (anti)neutrinos in a muon (anti)neutrino beam.
	- eV-scale sterile ν oscillations in conflict with accelerator and reactor disappearance measurements.
	- The Fermilab SBN and J-PARC JSNS 2 experiments will provide definite tests of the oscillation hypothesis.
- Reactor Anomaly: a 6% deficit with 3*σ* significance in the measured total *reactor* $\bar{\nu}_e$ flux versus the prediction from the Huber+Mueller model at short baselines.
	- Not observed by other experiments apart from Neutrino-4 2023.

0*νββ* **Searches**

Effective mass depends on the mixing matrix parameters. α, β are unknown Majorana phases. Not measurable in oscillation experiments.

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁰Pd, ¹¹⁶Cd, ¹²⁴Sn, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

uncertainties.

Key requirements:

- Large exposure (ton-scale)
- Low background (< 1 cts/year/t/ROI)
- Excellent energy resolution

 $($ < 1 % $@Q_{\beta\beta}$

Di Lodovico - DISCRETE 2024, December 3 2024

$\langle n$ $\boxed{m_{\beta\beta}^2}$ effective mass

$$
n_{\beta\beta}\rangle = \left| \sum |U_{ei}|^2 e^{i\phi_i} m_i \right|
$$

= $|c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i\omega} + s_{13}^2 m_1 \right|$

- If neutrinos are Majorana, experimental results must fall in the shaded regions.
- Extent of the regions determined by uncertainties on mixing matrix elements and Majorana phases.

0*νββ* **Searches** Parameter space:

- Ongoing / completed projects probe degenerate regime e.g. LEGEND-200, CUORE, EXO, KamLAND-ZEN. 2024 results from. LEGEND-200, CUORE and KamLAND-ZEN.
- nEXO..

• Planned projects will fully cover the inverted ordering scenario e.g. LEGEND-1000, CUPID,

Di Lodovico - DISCRETE 2024, December 3 2024 24

0*νββ* **Searches** Sensitive background and exposure for recent and future experiments
ABDMV, RMP 2022, arXiv:2202.01787

- Grey dashed lines: discovery sensitivity on the $\mathrm{T_{1/2}}$ (isotope-independent)
- Colored dashed lines: $m_{\beta\beta}$ sensitivities to get to the bottom of the IO region for specific isotopes, taking into account NME (nuclear matrix element) & phase space

Direct Neutrino Mass Measurements

- From cosmology: $\Sigma m_i < \sim 0.1$ eV @ 95 % CL
- Future experiments may determine the mass (4σ) in 10 years
	- *β* decays can probe $m_{\beta} \sim 0.2$ eV (future 0.02 eV ?)

$$
m_{\beta} = \left[\Sigma_{i} | U_{ei}|^{2} m^{2} v_{i}\right]^{1/2}
$$

- $0 \nu \beta \beta$ decays can probe $M_{\beta\beta} \sim 0.01 \text{eV}$

$$
| M_{\beta\beta} | = \left| \Sigma_{i} (U_{ei})^{2} m_{v_{i}} \right|
$$

IO NO 10^0 $\sum m_{\nu}\,[\text{eV}]$ $\frac{1}{10^{-2}}$ 10^{-1} $m_{\text{lightest}}\,[\text{eV}]$ I. Esteban, S. Gariazzo rate $\begin{bmatrix} a.u. \\ 0.8 \end{bmatrix}$ entire spectrum region close to endpoint 1.0 $\frac{2}{9}$ 0.8 $\overline{\mathbb{Q}}$ 0.6 \gtrsim $m(v_e) = 0$ eV $\frac{8}{9}$ 0.6 0.4 $\overline{\phi}$ 0.4 only 2 x 10-13 of 0.2 decays in last 1 eV $m(v_e) = 1 e^{v}$ 0.2 10 14 6 $E - E_0$ [eV] Electron-energy E [keV] arXiv:1908.08355v1 [hep-ph] \Box 1 σ Range after JUNO Measurements \Box 1 σ Range of Current Oscillation Data 10^{-1} 10^{-} $\begin{array}{c}\n\sum_{\substack{\infty \\ \infty}} 10^{-2}\n\end{array}$ $\begin{array}{c}\n\sum_{\substack{\infty \\ \infty}} 10^{-2}\n\end{array}$ 10^{-3} $\overline{)}$ 10^{-3} 10^{-4} 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-4} 10^{-4} 10^{-1} Di Lodovico - DISCRETE 2024, December 3 2024 m_1 [eV] 25

- 7 different configurations, 59 spectra, 1609 data points, parameter correlations across datasets.
- p -value =0.84, squared neutrino mass best-fit: $m_{\nu}^2 = -0.14^{+0.13}_{-0.15} eV^2$

Di Lodovico - DISCRETE 2024, December 3 2024 resulting in an upper limit of $m_\nu < 0.45$ eV at 90 % confidence level.
Nico - DISCBETE 2024 December 3, 2024

Direct Neutrino Mass Measurements

Key requirements:

- Strong radioactive source
- Tritium (12.3 years, $E_0 = 18.6 keV$)
- Holmium (4500 years, $E_0 = 2.8 keV$)
- Excellent energy resolution (1 eV)
- Low background (< 100 mcps)
- Understanding of spectral shape

arXiv:2406.13516v1 [nucl-ex] Wiesinger, ICHEP 2024

Direct Neutrino Mass Measurements

ECHO & HOLMS

- Calorimetric sensors coupled to 163 Ho implanted sources
- Obtained neutrino mass limit: 150 eV
- Promise: ~1eV

- Project 8: Cyclotron Radiation Spectroscopy(CRES)
- Phase I: prove of principle (2016)
- Phase II successful (2016-2020)
	- Uncertainties understood
	- m_β < 178eV @90% C.L.
- Phase III (ongoing):
	- Atomic T system & Larger cavity
	- Goal in 5 years: *m^β* < 0.4eV
- Phase IV:
	- Goal: m*^β* < 0.04eV

Cosmic Neutrinos and Multimessangers

- Astrophysical neutrinos firstly observed by Icecube
	- Diffused flux and sources "identified". Several other observations (Glashow resonance, flavour measurements and identified ν_{τ} candidates, ν from the Galactic plane, etc.
	- Baikai-GVD confirmed the flux result, KM3NET is joining
- Multi-messengers detectors to provide a wide range of measurements:
	- neutrinos: JUNO, Hyper-K, DUNE, ...
	- GWs: LIGO, Virgo,Kagro, Cosmic-Explorer, LISA,...
	- Cosmic-rays and HE $γ$'s: CTA, HWAC, HESS, Magic, LHAASO, CTA, ...
	- γ-rays and X-rays in space: Swift, Fermi, GECAM, eXTP,...
- A bright new era for astrophysics:
	- Are high-energy neutrinos linked to ultra-high-energy sources?
	- When and how will the first cosmogenic neutrino be detected?
	- What are the primary sources contributing to the IceCube diffuse flux?

Conclusions

• Increasing precision of neutrino experiments, but still important discoveries ahead of us and experiments are soon starting to

- take data:
	- CP violation observation, mass ordering, θ_{23} octant,..
	- Neutrino Dirac or Majorana.
	- Neutrino mass
	- Sterile neutrinos
	- Astrophysical neutrinos.
- Stay tuned for more exciting results and (bopefully) some surprises!