Long-distance contributions from lattice QCD & QED

Antonin Portelli (The University of Edinburgh) / 06 December 2024 / DISCRETE 2024, Ljubljana, Slovenia

• Non-local matrix elements: $K \rightarrow \pi \ell^+ \ell^-$ decays

Multi-hadrons interactions

• (Not g - 2)

Isospin-breaking and electromagnetic corrections to hadronic interactions

Lattice field theory

- Strong interactions described by **Quantum Chromodynamics (QCD)**
- In a discrete and Euclidean space-time, **QCD** becomes equivalent to a statistical system **E** KG Wilson, Phys Rev D 10(8) (1974)
- Physical observables can be evaluated through Monte-Carlo simulations

$$\langle O \rangle = \frac{1}{\mathscr{Z}} \int DUO[U] \det(M[U]) e^{-S}$$

Image credit: Schuiten & Peeters, 1985, Casterman

З

Lattice field theory

- Lattice simulations have billions of degrees of freedom
- They can potentially describe any strongly bound quantum field theory from first principles
- Predictive capacity is directly bounded by
 - available supercomputing power
 - algorithmic research progress
 - understanding of Euclidean field theory

Image credit: University of Southampton

Isospin-breaking corrections to hadronic interactions

Image credit: Bergische Universität Wuppertal

Isospin-breaking (IB) corrections Beyond isospin symmetry

- Isospin symmetry assumed in most lattice calculations
- Violations generally expected to be $\mathcal{O}(1\%)$ of hadronic observables
- This is **highly relevant for** searches for new physics through precision measurements (g - 2 & weak decays)
- Main challenge for lattice QCD: adding QED

6

IB corrections to weak decays CKM matrix elements from leptonic decays

- Leptonic meson decay:
 quark pair W-boson annihilation
- Rate proportional to $|V_{q_1q_2}|^2$
- Allows to determine CKM matrix element from experimental rate...
- ...but needs a high-precision description of the hadronic dynamics

$$\Gamma(P^+ \to \ell^+ \nu_{\ell}[\gamma]) = \frac{G_F^2}{8\pi} f_P^2 m_{\ell}^2 M_P \left(1 - \frac{m_{\ell}^2}{M_P^2}\right)^2 |V_{q_1 q_2}|^2 (1 + \delta R_P)$$

7

IB corrections to weak decays CKM first row

FLAG2024

E FLAG Review 2024

• Neutron lifetime under scrutiny, but **IB corrections to leptonic decays also relevant**

8

IB corrections to weak decays CKM charm and bottom coefficients

E FLAG Review 2024

Table 30. Lattice inputs for decay constants $f_{B_{(s)}}$ and bag parameters $B_{B_{(s)}}$ in the SM. The current average of $f_{B_{(s)}}$ for $N_f = 2 + 1$ and 2 + 1 + 1 are obtained from Refs. [150,213–216] and Refs. [212,217], respectively. The average of $B_{B_{(s)}}$ is obtained from Refs. [148,150,151]. $f_{B_{(s)}}\sqrt{B_{B_{(s)}}}$ is in units of MeV.

N_f	Input	f_B [MeV]	f_{B_s} [MeV]	f_{B_s}/f_B
	Current	188(3)	227(4)	1.203(0.007)
	5 yr w/o EM	188(1.5)	227(2.0)	1.203(0.0035)
2+1+1	5 yr with EM	188(2.4)	227(3.0)	1.203(0.013)
	10 yr w/o EM	188(0.60)	227(0.80)	1.203(0.0014)
	10 yr with EM	188(2.0)	227(2.4)	1.203(0.012)
2+1	Current	192.0(4.3)	228.4(3.7)	1.201(0.016)
	5 yr w/o EM	192.0(2.2)	228.4(1.9)	1.201(0.0080)
	5 yr with EM	192.0(2.9)	228.4(2.9)	1.201(0.014)
	10 yr w/o EM	192.0(0.86)	228.4(0.74)	1.201(0.0032)
	10 yr with EM	192.0(2.1)	228.4(2.4)	1.201(0.012)
N_f	Input	$f_B \sqrt{B_B}$	$f_{B_s}\sqrt{B_{B_s}}$	Ę
2+1	Current	225(9)	274(8)	1.206(0.017)
	5 yr w/o EM	225(4.5)	274(4.0)	1.206(0.0085)
	5 yr with EM	225(5.0)	274(4.8)	1.206(0.015)
	10 yr w/o EM	225(1.8)	274(1.6)	1.206(0.0034)
	10 yr with EM	225(2.9)	274(3.2)	1.206(0.013)
$\overline{N_f}$	Input	B_B	B_{B_s}	B_{B_s}/B_B
2+1	Current	1.30(0.09)	1.35(0.06)	1.032(0.036)
	5 yr w/o EM	1.30(0.045)	1.35(0.030)	1.032(0.018)
	5 yr with EM	1.30(0.047)	1.35(0.033)	1.032(0.021)
	10 yr w/o EM	1.30(0.018)	1.35(0.012)	1.032(0.0072)
	10 yr with EM	1.30(0.022)	1.35(0.018)	1.032(0.013)

9

IB corrections to weak decays CKM charm and bottom coefficients

Table 30. Lattice inputs for decay constants $f_{B_{(s)}}$ and bag parameters $B_{B_{(s)}}$ in the SM. The current average of $f_{B_{(s)}}$ for $N_f = 2 + 1$ and 2 + 1 + 1 are obtained from Refs. [150,213–216] and Refs. [212,217], respectively. The average of $B_{B_{(s)}}$ is obtained from Refs. [148,150,151]. $f_{B_{(s)}}\sqrt{B_{B_{(s)}}}$ is in units of MeV.

	$\overline{N_f}$	Input	f _B [MeV]	f_{B_s} [MeV]	f_{B_s}/f_B
	2+1+1	Current 5 yr w/o EM 5 yr with EM 10 yr w/o EM	188(3) 188(1.5) 188(2.4) 188(0.60)	227(4) 227(2.0) 227(3.0) 227(0.80)	$1.203(0.007) \\1.203(0.0035) \\1.203(0.013) \\1.203(0.0014) \\1.203(0.014)$
critic	ally	needeo	d in all	case	S (012) 016) 0080) 014) 0032) 012) 017) 0085)
	2+1	5 yr with EM 10 yr w/o EM 10 yr with EM	225(4.5) 225(5.0) 225(1.8) 225(2.9)	274(4.8) 274(1.6) 274(3.2)	1.206(0.0035) $1.206(0.0035)$ $1.206(0.0034)$ $1.206(0.013)$
	$\overline{N_f}$	Input	B_B	B_{B_s}	B_{B_s}/B_B
	2+1	Current 5 yr w/o EM 5 yr with EM 10 yr w/o EM 10 yr with EM	1.30(0.09) $1.30(0.045)$ $1.30(0.047)$ $1.30(0.018)$ $1.30(0.022)$	$1.35(0.06) \\1.35(0.030) \\1.35(0.033) \\1.35(0.012) \\1.35(0.018)$	$\begin{array}{c} 1.032(0.036)\\ 1.032(0.018)\\ 1.032(0.021)\\ 1.032(0.0072)\\ 1.032(0.013)\end{array}$

9

IB corrections to weak decays First physical K & π leptonic decay calculation

First calculation at the physical point of IB
 corrections to K & π leptonic decay rate ratio
 P Boyle, AP, et al. JHEP 02 (2023)

$$\delta R_{K\pi} = -0.0086(3)_{\text{stat.}} {+11 \choose -4}_{\text{fit}} (5)_{\text{disc.}} (5)_{\text{quence}}$$

- Largely based on the RM123S formalism
 N Carrasco, et al. PRD 91(7) (2015)
- Still uncontrolled systematics
 FV effects, QED quenching, continuum limit

 $\delta R_{K\pi}$

Solid evidence that $\delta R_{K\pi}$ can be computed from

Finite-volume QED Zero-mode singularities

• Periodic boundary conditions

\implies EM field feedback loop

- Large finite-volume (FV) effects expected
- In reality, it is worse than that: **Feedback loop diverges**

(think about a lattice of Coulomb potentials)

Finite-volume (JFD Zero-mode singularities, quantum field theory

• One-loop QED amplitude

 $\int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \frac{f(\mathbf{k})}{\mathbf{k}^{2}} \longmapsto \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{f(\mathbf{k})}{\mathbf{k}^{2}}, \text{ with } \mathbf{k} = \frac{2\pi}{L} \mathbf{n}$

undefined because maybe divergent **IR divergences** of $f(\mathbf{0})/\mathbf{0}$ term

- Regularisation or change of BC required
- QED_I : remove all 3D zero-modes $\mathbf{k} = \mathbf{0}$. **Non-local** modification of QED

Finite-volume () Leptonic decays

- Known, universal log(ML), 1/L finite-size effects **E** B Lucini, et al. PRD 95(3) (2017)
- Known structure-dependent $1/L^2$ finite-size effects **E** M Di Carlo, et al. PRD 105(1) (2022)
- Unknown structure-dependent $1/L^3$, potentially large: Source of large uncertainty in **D** P Boyle, **AP**, et al. JHEP 02 (2023)

IB corrections to weak decays Future progress

- First calculation for $D \& D_s$ decays
- Collaboration with KEK on $B \& B_s$ decays
- Continuum limit for $K \& \pi$ decays
- Improving FV QED / removing 1/L³ terms
 Z Davoudi, AP, et al. Phys Rev D 99(3) (2019)
 M Di Carlo, PoS Lattice 2023 (2024)
 M Di Carlo, AP, et al. in preparation (2025)

dt = 10

14

Image credit: AP, Southampton 2013

Rare $s \rightarrow d$ decays

- They generally feature long-distance multi-hadron corrections **E** NH Christ, **AP**, et al. Phys Rev D 92(9) (2015) **E** F Erben, **AP**, et al. JHEP 04 (2024)

• A promising avenue for new physics is to study **flavour-changing neutral current** decays

• Those are forbidden at leading order in the SM, sensitivity to new physics is increased

E PA Boyle, **AP**, et al. Phys Rev D Lett 107(1) (2023)

E PA Boyle, **AP**, et al. arXiv:2406.19193 (2024)

Amplitude parameterisation

• $K^c \rightarrow \pi^c \gamma^*$ amplitude ($c \in \{0,+\}$)

$$\mathscr{A}^{c}_{\mu}(q^{2}) = \int d^{4}x \langle \pi^{c}(\mathbf{p}) | \mathbf{T} |$$
$$= -i \frac{G_{F}}{(4\pi)^{2}} [q^{2}(k + m)]$$

Low-energy parameterisation

$$V_{c}(z) = a_{c} + b_{c} z + V_{c}^{\pi\pi}(z)$$

 $\left[J_{\mu}(0)H_{W}(x)\right]\left|K^{c}(\mathbf{k})\right\rangle$

q = p - k $z = q^2 / M_K^2$

 $(+p)_{\mu} - (M_K^2 - M_{\pi}^2)q_{\mu}]V_c(z)$

17

Analytical continuation issues

- In Euclidean space-time, states below initial energy generate large contamination of Euclidean the time integral
- Happens potentially for $K \to \pi, \pi\pi, \pi\pi\pi \to \pi\gamma^*$
- $\pi\pi$ forbidden in $K \to \pi\ell^+\ell^-$ (allowed in $K \to \pi\nu\bar{\nu}$)
- Several subtraction strategies possible **I** NH Christ, AP, et al., PRD 92(9) 094512 (2015)

18

4-point correlators Unphysical point **E** NH Christ, AP, et al., PRD 94(11) 114516 (2016)

Amplitude result Unphysical point IN M Christ, AP, et al., PRD 94(11) 114516 (2016)

4-point correlators Physical point I pa Boyle, AP, et al., PRD 107(1) L011503 (2022)

Amplitude result Physical point IPA Boyle, AP, et al., PRD 107(1) L011503 (2022)

 $a_{+} = -0.87(4.44)$

A hint about the noise issue

2016 unphysical data

• Correlations between up and charm loops is a huge factor in GIM loops uncertainty

2022 physical point data

23

Improved estimators 4-point physical correlators / work with R Hill and R Hodsgon

I M Bordone, et al., to appear soon (Kaon@J-PARC 2024 Summary)

24

Multi-hadron interactions

Image Credit: DOI 10.1007/s00601-012-0376-4

Multi-hadron interactions General issue for lattice simulations

- There is a theorem saying that hadronic scattering amplitudes cannot, in principle, be extracted from Euclidean field theory
 L Maiani & M Test, Phys Lett B 245 (1990)
- This was circumvented by noticing that splittings between discrete energy levels in a finite volume encode information about scattering amplitudes
- This is often referred as Lüscher formalism
 M Lüscher, Commun. Math. Phys. 105(2) (1986)

26

Hadronic resonances Lattice determination

- Determine Euclidean FV energy levels
- 2. Relate to phase-shift model using Lüscher quantisation condition

M Lüscher, Commun. Math. Phys. 105(2) (1986)

$$n\pi - \delta\left(\sqrt{\omega_n^2 - 4m^2}\right) = \phi\left(\frac{L}{2\pi}\sqrt{\omega_n^2 - 4m^2}\right)$$

3. Solve for amplitude poles

Lattice description of resonances First physical point $\rho \& K^*$ simulation

- First data-driven assessment of analysis modelling and systematic errors **E** PA Boyle, **AP**, et al. arXiv:2406.19193 (2024)

• First determination of the ρ and K^* poles using physical point 2+1 lattice simulations

Image credit: Nelson Lachini

28

Conclusion

- Lattice QCD is entering the era of physical, precise predictions for
 - Long-distance hadronic & electromagnetic corrections to weak decays
 - Weak decays into **unstable states**
- More theoretical work on the way in key aspects e.g.
 - Treatment of heavy quarks
 - **Final state long-distance interactions**, particularly electromagnetic
- Hopefully crucial help for flavour physics measurements in future experiments

Thank you for your attention!