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from lattice QCD & QED

Long-distance contributions



• Isospin-breaking and electromagnetic corrections to hadronic interactions 

• Non-local matrix elements:  decays 

• Multi-hadrons interactions 

• (Not )

K → πℓ+ℓ−

g − 2



Lattice field theory

• Strong interactions described by 
Quantum Chromodynamics (QCD) 

• In a discrete and Euclidean space-time, 
QCD becomes equivalent to a statistical system 

 

• Physical observables can be evaluated  
through Monte-Carlo simulations 
 

         

KG Wilson, Phys Rev D 10(8)  (1974)

⟨O⟩ =
1
𝒵 ∫ DU O[U] det(M[U]) e−S[U]
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Lattice field theory

• Lattice simulations have billions of degrees of freedom 

• They can potentially describe any strongly bound 
quantum field theory from first principles 

• Predictive capacity is directly bounded by 

‣ available supercomputing power 

‣ algorithmic research progress 

‣ understanding of Euclidean field theory
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Isospin-breaking 
corrections to 
hadronic interactions
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Beyond isospin symmetry

Isospin-breaking (IB) corrections

• Isospin symmetry assumed in most lattice calculations 

• Violations generally expected to be  of hadronic observables 

• This is highly relevant for searches for new physics through precision 
measurements (  & weak decays) 

• Main challenge for lattice QCD: adding QED

𝒪(1%)

g − 2
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CKM matrix elements from leptonic decays

IB corrections to weak decays

• Leptonic meson decay: 
quark pair -boson annihilation 

• Rate proportional to  

• Allows to determine CKM matrix 
element from experimental rate… 

• …but needs a high-precision 
description of the hadronic 
dynamics

W

|Vq1q2
|2

7

Image credit: Matteo Di Carlo

P+ (q̄1q2)

ℓ+

νℓ

Γ(P+ → ℓ+νℓ[γ]) =
G2

F

8π
f2
P m2

ℓ MP (1 −
m2

ℓ

M2
P )

2

|Vq1q2
|2 (1 + δRP)



CKM first row

IB corrections to weak decays
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FLAG Review 2024

• Neutron lifetime under scrutiny, but IB corrections to leptonic decays also relevant
Figure 10: The plot compares the information for |Vud|, |Vus| obtained using lattice QCD
for Nf = 2 + 1 and Nf = 2 + 1 + 1 with |Vud| extracted from nuclear ω transitions Eq. (69).
The black dotted line indicates the correlation between |Vud| and |Vus| that follows if the
CKM-matrix is unitary.

As we mentioned, the isospin corrections are becoming relevant for the extraction of
the CKM elements at the current precision of lattice QCD inputs. We obtain |Vus|/|Vud| =
0.23131(45) by taking the average of fK/fω in isosymmetric QCD and combining it with
the value for |Vus|fK/|Vud|fω in Eq. (68). This estimate plotted in Fig. 11 is consistent
with that obtained from Eq. (65) using the isospin corrections from ChPT. Unlike the
corrections from ChPT, the accuracy of the isospin corrections from lattice QCD can be
readily improved by more realistic simulations and higher statistics, further sharpening
the comparisons shown in the figure.

5.4 Tests of the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the
first row obey

|Vu|2 → |Vud|2 + |Vus|2 + |Vub|2 = 1 . (78)

The tiny contribution from |Vub| is known much better than needed in the present context:
|Vub| = 3.82(24)↑ 10→3 [205].25 In the following, we test the first row unitarity Eq. (78)
by calculating |Vu|2 and by analyzing the lattice data within the Standard Model.

In Fig. 10, the correlation between |Vud| and |Vus| imposed by the unitarity of the
CKM matrix is indicated by a dotted line (more precisely, in view of the uncertainty in
|Vub|, the correlation corresponds to a band of finite width, but the e!ect is too small
to be seen here). The plot shows that there is a tension with unitarity in the data for

25See also Sec. 8.8 for our determination of |Vub|.
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Figure 11: Same as Fig. 10 but with |Vus|/|Vud| obtained using Eq. (68).

Nf = 2 + 1 + 1: Numerically, the outcome for the sum of the squares of the first row of
the CKM matrix reads |Vu|2 = 0.9820(65), which deviates from unity at the level of → 2.8
standard deviations. Still, it is fair to say that at this level the Standard Model passes a
nontrivial test on the kaon (semi)leptonic and pion leptonic decays.

The test sharpens considerably by combining the lattice results for f+(0) with the ω
decay value of |Vud|: f+(0) for Nf = 2 + 1 + 1 in Eq. (72) and the PDG estimate of
|Vud| in Eq. (69) lead to |Vu|2 = 0.99802(66), which also shows a → 3.0 ε deviation with
unitarity. On the other hand, unitarity is fulfilled (1.7 ε) with fK±/fω± and |Vud| (69)
(|Vu|2 = 0.99888(67)). Note that the uncertainties on |Vu|2 coming from the error of |Vud|
is larger by a factor of about three than that from |Vus|.

The situation is similar for Nf = 2 + 1: with the lattice data alone one has |Vu|2 =
0.9836(92), which is consistent with unity at the level of → 1.8 standard deviations. The
lattice results for f+(0) in Eqs. (73) with the PDG value of |Vud| (69) lead to |Vu|2 =
0.99824(69), implying a → 2.5ε deviation from unitarity, whereas the deviation is reduced
to 1.4ε with fK±/fω± in Eq. (77) (|Vu|2 = 0.99902(73)).

5.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental
constraints quoted in Eq. (65) and the unitarity condition Eq. (78) then reduce the four
quantities |Vud|, |Vus|, f+(0), fK±/fω± to a single unknown: any one of these determines
the other three within narrow uncertainties.

Numerical results for |Vus| and |Vud| are listed in Tab. 19, where we restrict ourselves
to those determinations that enter the FLAG average in Sec. 5.3 (the error in the exper-
imental numbers used to convert the values of f+(0) and fK±/fω± into values for |Vus|
is included in the statistical error). As Fig. 12 shows, the results obtained for |Vus| and
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Figure 16: Decay constants of the D and Ds mesons [values in Tab. 28 and Eqs. (126-131)].
As usual, full green squares are used in the averaging procedure, pale green squares have
either been superseded by later determinations or are only published in Proceedings or have
not been published within the current deadline (April 30, 2024), while pale red squares do
not satisfy the criteria. The black squares and grey bands indicate our averages.

Results for Nf = 2 + 1 and 2 + 1 + 1 dynamical flavours are summarized in Tab. 28
and Fig. 16. Since the publication of FLAG 21, a handful of results for fD and fDs have
appeared, as described below. We consider isospin-averaged quantities, although, in a
few cases, results for fD+ are quoted (see, for example, the FNAL/MILC 11,14A and 17
computations, where the strong-isospin-breaking e!ect given by the di!erence between
fD and fD+ has been estimated to be around 0.5 MeV).

For the first time, we restrict the review here to results obtained using Nf = 2+1 and
2 + 1 + 1 dynamical flavours. No new results with Nf = 2 appeared since 2019 and they
have been presented in previous FLAG reviews.

Another novelty is the re-inclusion of the quantity ω(amin) described in the Introduc-
tion. Our working group introduced and applied this quantity in FLAG 13 [2], but it
was not applied in following reviews. As computations have become increasingly precise
and often dominated by systematic uncertainties, we believe that a closer scrutiny of the
continuum extrapolations is needed since such extrapolations usually produce one of the
largest systematic errors. Here, we provide (where possible) an estimate of ω(amin) for all
computations entering the final FLAG averages or ranges. Those estimates do not need
to be very precise as the natural size of the error on ω(amin) is O(1).

Two new results appeared with Nf = 2 + 1. In Ref. [28] (ALPHA 23) maximally
twisted Wilson valence fermions (for light and heavy quarks) are implemented on a set
of ensembles of configurations generated within the CLS initiative using O(a)-improved
Wilson fermions. As a consequence of the maximal twist, observables in the charm sector
are free from O(amc) discretisation e!ects. In addition the decay constants fD(s)

are
automatically normalized and do not require the computation of normalization factors.
Four di!erent lattice spacings have been used in the continuum extrapolation, ranging
between 0.087 and 0.05 fm. Pion masses reach down to 200 MeV and volumes are such
that 3.9 → mωL → 6.4. The uncertainties are dominated by statistics and the chiral-
continuum fits. Judging from the plots in Ref. [28], the values for ω(amin) are around 1
for fD and around 3 for fDs .
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CKM charm and bottom coefficients

IB corrections to weak decays

9

FLAG Review 2024 Belle II Physics Book (2019)
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Isospin breaking corrections critically needed in all cases



First physical  &  leptonic decay calculationK π
IB corrections to weak decays

• First calculation at the physical point of IB 
corrections to  &  leptonic decay rate ratio 

 
 

 

• Largely based on the RM123S formalism 
 

• Still uncontrolled systematics 
FV effects, QED quenching, continuum limit

K π
P Boyle, AP, et al. JHEP 02 (2023)

δRKπ = − 0.0086(3)stat.(+11
−4 )fit

(5)disc.(5)quench.(39)vol.

N Carrasco, et al. PRD 91(7) (2015)

10

Results for 
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�RK⇡ = �0.0112 (21)PT:χ

MDC et al., PRD 100 (2019) 
V. Cirigliano et al., PLB 700 (2011)

(w/o FVE)

RBC-UKQCD (2023)

�PT (2011)

RM123S (2019)

�0.016 �0.012 �0.008 �0.004 0

�RK⇡

• Our recent result is compatible with previous 
lattice calculation (RM123S) and with PT 

• The error is dominated by a large systematic 
uncertainty related to finite-volume effects

χ

<latexit sha1_base64="H0g7uGmy57ucwroUfub5kqfP9q0="></latexit>

�RK⇡ = �0.0086 (3)stat.(
+11
�4 )fit(5)disc.(5)quench.(39)vol.

Solid evidence that          can be computed from first principles non-perturbatively on the lattice!

RBC-UKQCD:

P.Boyle, MDC et al., JHEP 02 (2023) 
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• Periodic boundary conditions 
          EM field feedback loop 

• Large finite-volume (FV) effects expected 

• In reality, it is worse than that: 
Feedback loop diverges 
 
(think about a lattice of Coulomb potentials)

⟹

Zero-mode singularities

Finite-volume QED

11

+

L



Zero-mode singularities, quantum field theory

Finite-volume QED

12

• One-loop QED amplitude 
 

        ,   with    

 
 

• Regularisation or change of BC required 

• : remove all 3D zero-modes . 
Non-local modification of QED

∫
d3k

(2π)3

f(k)
k2

⟼
1
L3 ∑

k

f(k)
k2

k =
2π
L

n

QEDL k = 0

maybe divergent 
IR divergences

undefined because 
of  termf(0)/0

where the self-contracted kernel defines the Oðe2Þ self-
energy function

ð48Þ

Performing the summation in Eq. (47), one obtains

C∞
2 ðpÞ ¼

Z2
P;0

p2 þm2
P;0 − Σ0ðp2Þ − Σðp2Þ

: ð49Þ

The value of Σð−m2
PÞ and its derivative is specified by the

chosen scheme for defining the e → 0 limit of QCDþ QED.
The full QCDþ QED mass is given by solving

p2 þm2
P;0 − Σ0ðp2Þ − Σðp2Þjp2¼−m2

P
¼ 0; ð50Þ

which reduces to

Δm2
P ¼ m2

P −m2
P;0 ¼ −Σð−m2

PÞ þOðe4Þ: ð51Þ

Here we have used that Σ0ðp2Þ ¼ O½ðp2 þm2
P;0Þ2& (by

construction) and thus only contributes at Oðe4Þ.
Following Eq. (37) above, we also define

C∞
2 ðpÞ ¼ ZP ·DðpÞ · ZP; ð52Þ

where ZP is already defined in Eq. (31) and

DðpÞ ¼ Zðp2Þ
p2 þm2

P
; ð53Þ

with Zðp2Þ ¼ 1þO½ðp2 þm2
PÞ&. A particularly important

quantity in the following section will be the ratio between
operator overlaps in the QCD-only and full QCDþ QED
theories. We parametrize this via

ZP ¼ ZP;0ð1þ δZP
Þ: ð54Þ

One can readily show

δZP
¼ 1

2
½Σ0

0ð−m2
PÞ þ Σ0ð−m2

PÞ&: ð55Þ

In contrast to the pole shift, both Σ0ðp2Þ and Σðp2Þ
contribute to the overlap at the order we work.

Returning to the finite-volume system, an identical
argument can be applied to reach a finite-volume version
of Eq. (49) in which C∞

2 → CL
2 and the two self-energies on

the right-hand side both receive L dependence. As was
shown in Ref. [30], the finite-volume QCD-only self-
energy, call it ΣL

0 ðp2
0;p ¼ 0Þ, vanishes as e−mP;0L when

evaluated at p2
0 ¼ −m2

P;0. Therefore, the leading finite-
volume effects are given by the difference between the FV
and IV QED contributions:

Δm2
PðLÞ ¼ mPðLÞ2 −m2

P

¼ −½ΣLð−m2
P; 0Þ − Σð−m2

PÞ&; ð56Þ

where the second argument of ΣL indicates that we focus on
P at rest in the FV frame. The rest of this section could be
derived in an arbitrary FV frame as done in Ref. [10];
however, for the sake of simplicity we will only consider
the rest frame.
The powerlike 1=L scaling within ΣLð−m2

P; 0Þ is due
only to the fact that the spatial part of the photon
momentum k is summed over the discrete modes satisfying
the periodic boundary conditions, with k ¼ 0 removed. In
particular, one can take the IV definition of Cμν within ΣL

as the difference from the FV quantity is again exponen-
tially suppressed. One finds

Δm2
PðLÞ¼−

e2

2
lim

p2
0→−m2

P

Δ0
k

Z
dk0
2π

Cμμðp;k;−kÞ
k2

!!!!
p¼0

; ð57Þ

where Δ0
k is defined in Eq. (4) above. This implies that the

FV effects on the mass, including structure-dependent
contributions, can be related to the physical properties of
the Compton scattering amplitude. In particular, it is clear
that the finite-size effects on the physical mass cannot
depend on the arbitrary choice of the interpolating operator
ϕ, and we expect any term depending on ϕ to cancel in the
final result. To obtain the large-volume expansion of
Eq. (57), one can use the summation formulas derived in
the previous section. This requires one to discuss the
reduction of the Compton kernel which is the purpose of
the next section.

2. Irreducible electromagnetic vertex functions

It is now useful to decompose the Compton kernel in
irreducible diagrams as

ð58Þ
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zn ¼ fn ¼ 0 without loss of generality. However, we found
that keeping those terms and expecting their cancellation is
a useful way of controlling the correctness of the final
result.
All the Oðe2Þ corrections other than the self-energy are

simply obtained by amputating the P− propagator and wave
function in Eq. (115) from the correlation function
Crs
W;1ðp; plÞ − Crs

W;selfðp; plÞ. In summary, all the ampli-
tudes to consider are listed in Fig. 2, using a notation
matching Ref. [9].
Let us conclude this part by relating all the diagrams to

the FV decay width ΓðnÞ
0 ðLÞ in Eq. (104). The decay

rate is related to the squared matrix element

jMj2 ¼
X

r;s

jMrsj2

¼
X

r;s

jMrs
0 j2 þ

X

r;s

½Mrs
1 ðMrs

0 Þ† þH:c:& þOðe4Þ

¼ jðaÞj2 þ 2½ðbÞ þ ðcÞ þ ðdÞ þ ðeÞ þ ðfÞ þ ðgÞ&× ðaÞ†

þOðe4Þ; ð138Þ

and therefore the electromagnetic finite-size effects ΔjMj2
are given by the following sum-integral differences:

ΔjMj2¼2Δ½ðbÞþðcÞþðdÞþðeÞþðfÞþðgÞ&×ðaÞ†: ð139Þ

Finally, the quantity YðnÞðLÞ defined in Eq. (108) can be
obtained by adding the universal IV contribution evaluated
in the pointlike theory to the FV corrections computed up to
terms of Oð1=LnÞ, namely

YðnÞðLÞ ¼ ΔYðnÞðL; λÞ þ Yuni
IV ðλÞ: ð140Þ

The infinite volume contribution Yuni
IV ðλÞ computed in the

W-regularization scheme can be found in Ref. [9] and is
reported in Eq. (180) below. Here λ plays the role of a
photon mass to regulate in the IR the IV integrals.
The quantity Yuni

IV ðλÞ cancels the dependence on λ in
ΔYðnÞðL; λÞ, thus leaving the size L as the IR regulator
of the FV quantity YðnÞðLÞ. The FV correction ΔYðnÞðL; λÞ
can then be expressed in terms of ΔjMj2 as

ΔYðnÞðL; λÞ ¼
!
2
α
4π

"−1 ΔjMj2

jM0j2
; ð141Þ

with jM0j2 ¼
P

r;s jMrs
0 j2 ¼ 4m2

lm
2
Pð1 − r2lÞf2P.

2. The irreducible weak vertex functions

We must now discuss the various irreducible vertex
functions entering into the calculation extending what was
done in Sec. III A 2, which follows a procedure similar to
the one outlined in the appendix of Ref. [9]. Here we extend
the calculation by including higher order terms in the
photon momentum k that are relevant for the 1=L2 FV
corrections.
(a) Electromagnetic vertices: Here we use the general

off-shell definition for the electromagnetic vertex Γμðp; kÞ
introduced above in Eq. (61). Applying simple power-
counting arguments to the diagram ðbÞ þ ðcÞ, where the
vertex Γμνðp; k;−kÞ appears, we deduce that only terms of
Oð1Þ in the photon momentum contribute to the FV
corrections at Oð1=L2Þ. Therefore we can use directly
the expression in Eq. (67) obtained from the WTI up
to OðkÞ.
(b) Weak vertex: The off-shell weak vertex WρðpÞ for a

pseudoscalar of incoming momentum p has been intro-
duced in Eq. (122) above. It is obtained from the ampu-
tation of the correlation function Cρ

WðpÞ in Eq. (121),
namely

WρðpÞ ¼ Z−1
P DðpÞ−1Cρ

WðpÞ ¼ −pρFWðp2Þ: ð142Þ

In QCD and on-shell it reduces toWρðpÞ ¼ −pρfP, as in a
pointlike theory.
(c) Weak vertexþ onephoton: The irreducible kernel

W1 in Eq. (123), for a pseudoscalar and photon of incoming
respective momenta p and k, is defined in terms of the
correlation function

Cρμ
W ðp; kÞ ¼ i

Z
d4z d4x eipzþikx

× h0jT½JρWð0ÞJμðxÞϕ†ðzÞ&j0i: ð143Þ

When evaluated on-shell, this is strictly related to the
amplitude of radiative decays P → lνγ' that was studied in
e.g. Refs. [5,34]. The weak vertex can be defined by

FIG. 2. The various diagrams contributing to the leptonic decay width at order Oðe2Þ. The labeling (a)–(g) of the diagrams has been
chosen to match the one used in Ref. [9].
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Leptonic decays

Finite-volume QED

• Known, universal ,  finite-size effects 
 

• Known structure-dependent  finite-size effects 
 

• Unknown structure-dependent , potentially large:  
source of large uncertainty in 

log(ML) 1/L
B Lucini, et al. PRD 95(3) (2017)

1/L2

M Di Carlo, et al. PRD 105(1) (2022)

1/L3

P Boyle, AP, et al. JHEP 02 (2023)

13

zn ¼ fn ¼ 0 without loss of generality. However, we found
that keeping those terms and expecting their cancellation is
a useful way of controlling the correctness of the final
result.
All the Oðe2Þ corrections other than the self-energy are

simply obtained by amputating the P− propagator and wave
function in Eq. (115) from the correlation function
Crs
W;1ðp; plÞ − Crs

W;selfðp; plÞ. In summary, all the ampli-
tudes to consider are listed in Fig. 2, using a notation
matching Ref. [9].
Let us conclude this part by relating all the diagrams to

the FV decay width ΓðnÞ
0 ðLÞ in Eq. (104). The decay

rate is related to the squared matrix element

jMj2 ¼
X

r;s

jMrsj2

¼
X

r;s

jMrs
0 j2 þ

X

r;s

½Mrs
1 ðMrs

0 Þ† þH:c:& þOðe4Þ

¼ jðaÞj2 þ 2½ðbÞ þ ðcÞ þ ðdÞ þ ðeÞ þ ðfÞ þ ðgÞ&× ðaÞ†

þOðe4Þ; ð138Þ

and therefore the electromagnetic finite-size effects ΔjMj2
are given by the following sum-integral differences:

ΔjMj2¼2Δ½ðbÞþðcÞþðdÞþðeÞþðfÞþðgÞ&×ðaÞ†: ð139Þ

Finally, the quantity YðnÞðLÞ defined in Eq. (108) can be
obtained by adding the universal IV contribution evaluated
in the pointlike theory to the FV corrections computed up to
terms of Oð1=LnÞ, namely

YðnÞðLÞ ¼ ΔYðnÞðL; λÞ þ Yuni
IV ðλÞ: ð140Þ

The infinite volume contribution Yuni
IV ðλÞ computed in the

W-regularization scheme can be found in Ref. [9] and is
reported in Eq. (180) below. Here λ plays the role of a
photon mass to regulate in the IR the IV integrals.
The quantity Yuni

IV ðλÞ cancels the dependence on λ in
ΔYðnÞðL; λÞ, thus leaving the size L as the IR regulator
of the FV quantity YðnÞðLÞ. The FV correction ΔYðnÞðL; λÞ
can then be expressed in terms of ΔjMj2 as

ΔYðnÞðL; λÞ ¼
!
2
α
4π

"−1 ΔjMj2

jM0j2
; ð141Þ

with jM0j2 ¼
P

r;s jMrs
0 j2 ¼ 4m2

lm
2
Pð1 − r2lÞf2P.

2. The irreducible weak vertex functions

We must now discuss the various irreducible vertex
functions entering into the calculation extending what was
done in Sec. III A 2, which follows a procedure similar to
the one outlined in the appendix of Ref. [9]. Here we extend
the calculation by including higher order terms in the
photon momentum k that are relevant for the 1=L2 FV
corrections.
(a) Electromagnetic vertices: Here we use the general

off-shell definition for the electromagnetic vertex Γμðp; kÞ
introduced above in Eq. (61). Applying simple power-
counting arguments to the diagram ðbÞ þ ðcÞ, where the
vertex Γμνðp; k;−kÞ appears, we deduce that only terms of
Oð1Þ in the photon momentum contribute to the FV
corrections at Oð1=L2Þ. Therefore we can use directly
the expression in Eq. (67) obtained from the WTI up
to OðkÞ.
(b) Weak vertex: The off-shell weak vertex WρðpÞ for a

pseudoscalar of incoming momentum p has been intro-
duced in Eq. (122) above. It is obtained from the ampu-
tation of the correlation function Cρ

WðpÞ in Eq. (121),
namely

WρðpÞ ¼ Z−1
P DðpÞ−1Cρ

WðpÞ ¼ −pρFWðp2Þ: ð142Þ

In QCD and on-shell it reduces toWρðpÞ ¼ −pρfP, as in a
pointlike theory.
(c) Weak vertexþ onephoton: The irreducible kernel

W1 in Eq. (123), for a pseudoscalar and photon of incoming
respective momenta p and k, is defined in terms of the
correlation function

Cρμ
W ðp; kÞ ¼ i

Z
d4z d4x eipzþikx

× h0jT½JρWð0ÞJμðxÞϕ†ðzÞ&j0i: ð143Þ

When evaluated on-shell, this is strictly related to the
amplitude of radiative decays P → lνγ' that was studied in
e.g. Refs. [5,34]. The weak vertex can be defined by

FIG. 2. The various diagrams contributing to the leptonic decay width at order Oðe2Þ. The labeling (a)–(g) of the diagrams has been
chosen to match the one used in Ref. [9].
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Future progress

IB corrections to weak decays

• First calculation for  &  decays 

• Collaboration with KEK on  &  decays 

• Continuum limit for  &  decays 

• Improving FV QED / removing  terms 
 
 

D Ds

B Bs

K π

1/L3

Z Davoudi, AP, et al. Phys Rev D 99(3) (2019)

M Di Carlo, PoS Lattice 2023 (2024)

M Di Carlo, AP, et al. in preparation (2025)
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Figure 2. Quark-connected Feynman diagrams contributing to the leading IB corrections to the
weak decay. The wiggly lines correspond to photons, and the diamond-shaped vertices are scalar
insertions.

with eq1 = +2/3|e| and eq2 = −1/3|e|, and Aφ
P the axial matrix element evaluated in

the full theory. σ(0) indicates that the quantities are evaluated in the target iso-QCD
theory, σ(0) = (g, 0, m̂(0)) as discussed in section 2.2. Since in this case the decay amplitude
factorizes into a hadronic and a leptonic part, we refer to these contributions as “factorizable”.
The relevant diagrams contributing to these corrections are depicted in figures 2(a)–2(e)
and 3(a)–3(e). The second term in eq. (3.28) corresponds instead to the “non-factorizable”
corrections to the matrix element where a photon is exchanged between a quark and the
charged lepton (eℓ = −|e|). These are given by

[
δ ĎMrs

P (pℓ)
]nf =

[1
2eℓ

∑

q
eq

∂2

∂eq∂eℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

, (3.30)

and the corresponding diagrams are shown in figures 2(f)–2(g) and 3(f). Finally, the third
term in eq. (3.28) consists in the O(e2ℓ ) contribution of the lepton self-energy in figure 2(h),
which is proportional to A(0)

P with a factor that can be computed analytically in perturbation
theory,

[
δ ĎMrs

P (pℓ)
]ℓ =

[1
2e

2
ℓ
∂2

∂e2ℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

= −A(0)
P

[1
2e

2
ℓ
∂2

∂e2ℓ

]
Lrs
φ (pℓ)

∣∣∣∣
σ(0)

, (3.31)

with Lrs
φ (pℓ) = ⟨ℓ+, r,pℓ; νℓ, s,pν |J0

L|0⟩φ. This perturbative correction, however, cancels in
the difference [Γ0(L) − Γ(2)

0 (L)] in eq. (3.2) and therefore can be neglected in practice in
the calculation. Of course, the lepton self-energy must be included in Γpert

P (mγ).
Due to the numerical difficulty of evaluating the quark disconnected diagrams in figure 3

on the lattice, in this work we employ the electro-quenched approximation. This consists in
treating the sea quarks as if they were electrically neutral and hence, in practice, neglecting
the diagrams in figure 3. The deviations from this approximation are expected to be small,
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Rare  decayss → d

• A promising avenue for new physics is to study flavour-changing neutral current decays 

• Those are forbidden at leading order in the SM, sensitivity to new physics is increased 

• They generally feature long-distance multi-hadron corrections 
 NH Christ, AP, et al. Phys Rev D 92(9) (2015) PA Boyle, AP, et al. Phys Rev D Lett 107(1) (2023)

F Erben, AP, et al. JHEP 04 (2024) PA Boyle, AP, et al. arXiv:2406.19193 (2024)
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Amplitude parameterisation

•  amplitude ( ) 
 

                                   

• Low-energy parameterisation 
 
                             

Kc → πcγ* c ∈ {0,+}

𝒜c
μ(q2) = ∫ d4x ⟨πc(p) |T[Jμ(0)HW(x)] |Kc(k)⟩

= − i
GF

(4π)2
[q2(k + p)μ − (M2

K − M2
π)qμ] Vc(z)

Vc(z) = ac + bc z + Vππ
c (z)

q = p − k
z = q2/M2

K
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Analytical continuation issues

• In Euclidean space-time, states below initial energy generate  
large contamination of Euclidean the time integral 

• Happens potentially for  

•  forbidden in  (allowed in ) 

• Several subtraction strategies possible 

K → π, ππ, πππ → πγ*

ππ K → πℓ+ℓ− K → πνν̄

NH Christ, AP, et al., PRD 92(9) 094512 (2015)
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noisier than W and C, it follows that the S diagram will
dominate the error on our final result. We remark that each
diagram in Fig. 5 has already been multiplied by the
appropriate renormalization constants to match to the MS
scheme, as defined in Table V of Ref. [16]. For the scale
μ ¼ 2.15 GeV, we thus multiply our bare lattice operators
Q1 and Q2 by the coefficients Clat

1 ¼ −0.2216 and Clat
2 ¼

0.6439 respectively. For this analysis we neglect any sys-
tematic errors on these Wilson coefficients, as they are not a
primary concern of our exploratory studies. However, a full
discussion of systematic errors of the renormalization of the
HW operator has previously been given in the context of
K → ππ decays; see e.g. Refs. [27,28].

Additionally in Fig. 5 we show how the S and E
diagrams are obtained by subtracting the charm loop
diagram from the up quark loop diagram, i.e. the GIM
subtraction. Here we expect the GIM subtraction to be
more severe than in the physical case, as we are using a
lighter-than-physical charm quark and a heavier-than-
physical light quark. With physical masses we should
expect the S diagram to have a larger magnitude. In the
final correlator the S and W diagrams appear to add
destructively; this may have a severe effect on the final
result if there is a large degree of cancellation between
the contributions of the S and W diagrams to the final
matrix element.

(a) (b)

FIG. 5. The contributions of each of the diagrams to the rare kaon decay corresponding to the weak operators (a) Q1 and (b) Q2, both
before and after the GIM subtraction. Each diagram has been constructed using the appropriate fractional quark charges (excluding the
overall charge factor e), and the correlators have been multiplied by the relevant renormalization constants and Wilson coefficients for
matching to the MS scheme (as described in detail in Ref. [16]). Time positions of the kaon/pion interpolators and current insertion are
indicated.

(a) (b)

FIG. 6. (a) The 4pt rare kaon decay correlator measured in our simulation with k ¼ ð0; 0; 0Þ and p ¼ 2π
L ð1; 0; 0Þ. The ground state

contribution has been constructed from fits to 2pt and 3pt correlators. (b) The 4pt correlator after removing the ground state contribution
(i.e. the single-pion and single kaon intermediate states). Time positions of the kaon/pion interpolators and the current insertion are
indicated.
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Unphysical point

Amplitude result

simulations where it gives the only exponentially growing
contribution. We have demonstrated the analysis tech-
niques to remove this state cleanly with minimal systematic
errors; hence it now remains to extend our simulations to
physical masses such that the contributions of additional
exponentially growing states can be investigated.

VI. FORM FACTOR

One opportunity of lattice QCD is to test the previous
work on rare kaon decays performed using effective
theories such as SUð3Þ ChPT. One previous analysis of
the form factor [29] has led to a parametrization of the form

ViðzÞ ¼ ai þ bizþ Vππ
i ðzÞ; ð27Þ

where z ¼ q2=M2
K , and Vππ

i ðzÞ ði ¼ þ; 0Þ is introduced to
account for ππ → γ% rescattering in K → πππ decays
arising through the diagram show in Fig. 13. The most
straightforward check is to test the relation Eq. (27) by
determining the constants ai and bi from simulation
data. The contribution of the term Vππ

i ðzÞ is significantly
smaller that the linear contribution for physical masses;
for our initial calculation we can safely neglect this
term. Experimentally the coefficients aþ and bþ have
been determined from Kþ → πþlþl− spectra: aþ ¼
−0.578ð16Þ and bþ ¼ −0.779ð66Þ from Kþ → πþeþe−

data [5] and aþ ¼ −0.575ð39Þ and bþ ¼ −0.813ð145Þ
from Kþ → πþμþμ− data [6].
The parametrization of Eq. (27) is expected to be a good

approximation to the Oðp6Þ ChPT form factor. It is already
well known that existing Oðp4Þ ChPT predictions [30] for
the parameter bþ do not correctly predict experimental
observations [29,31]. Analysis of this decay in ChPT up to
Oðp4Þ gives the following predictions for the coefficients
ai and bi [29],

aþ ¼ G8

GF

!
1

3
− wþ

"
; a0 ¼ −

G8

GF

!
1

3
− w0

"
; ð28Þ

bþ ¼ − G8

GF

1

60
; b0 ¼

G8

GF

1

60
; ð29Þ

where wi are defined in terms of SUð3Þ low energy
constants (LECs) Nr

14ðμÞ, Nr
15ðμÞ and Lr

9 as

wþ ¼ 64π2

3
ðNr

14ðμÞ − Nr
15ðμÞ þ 3Lr

9ðμÞÞ þ
1

3
ln
!

μ2

MKMπ

"
;

ð30Þ

w0 ¼
32π2

3
ðNr

14ðμÞ þ Nr
15ðμÞÞ þ

1

3
ln
!

μ2

M2
K

"
ð31Þ

for some renormalization scale μ. The coefficient bþ
depends only on the LEC G8, which can be determined
using information from K → ππ decay amplitudes [32]. A
comparison with the experimental result thus demonstrates
that large corrections must be expected at Oðp6Þ. Models
that go beyond Oðp4Þ ChPT in an attempt to make
predictions for bþ have been proposed [31,33], although
such models depend heavily on vector meson masses and
thus a comparison with our lattice data is difficult.
In Fig. 14 we display the dependence of the form factor

extracted from lattice data upon z ¼ q2=M2
K . Although our

simulation takes place with highly unphysical masses of the
pion and kaon, we are able to make some insights. Since we
have only three data points at quite large spacelike
momenta, we will not be able to fully explore the ChPT
anastz in Eq. (27). Here we simply use a linear fit, which
does provide a reasonable description of our data with a
χ2=d:o:f: ¼ 0.74. The parameters we obtain, alatþ ¼ 1.6ð7Þ
and blatþ ¼ 0.7ð8Þ, are different from the parameters
obtained from phenomenological fits to experimental data,
aexpþ ¼ −0.578ð16Þ and bexpþ ¼ −0.779ð66Þ. However such
a comparison must be taken with care given the unphysical
masses used in our simulation.
The most relevant and interesting comparison we make

with experimental results at this stage is to note that the
sizes of the absolute errors on the parameters aþ and bþ

FIG. 13. The one-loop contribution to the decays K → πγ%

arising as ππ → γ% rescattering in K → πππ decays.

FIG. 14. Dependence of the form factor for the decay Kþ →
πþlþl− upon z ¼ q2=M2

K . Our lattice data are fit to a linear
ansatz to obtain a ¼ 1.6ð7Þ and b ¼ 0.7ð8Þ.

NORMAN H. CHRIST et al. PHYSICAL REVIEW D 94, 114516 (2016)
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in [27], the structure of which is described in the
Supplemental Material [17]. We use the AMA technique
[23] for our calculation of these diagrams, computing one
hit of sparse noise with “exact” solver precision (10−8,
10−10, 10−12, and 10−14 for the light, c1, c2, and c3 quarks,
respectively) and the same hit of sparse noise with “inex-
act” solver precision (10−4 for all quarks). We then compute
an additional nine hits of sparse noise with inexact solver
precision and apply a correction computed from the differ-
ence of the reciprocal noises.
We performed all correlation function calculations using

dedicated software [28] based on the Grid [29,30] and
Hadrons [31] libraries. All three are free software under
GPLv2. The raw lattice correlators used in this work are
publicly available online [32].

IV. NUMERICAL RESULTS

The 4pt functions for the lightest charm-quark mass are
shown in Fig. 1, and Fig. 2 shows the Ta dependence of the
integrated correlator for fixed Tb both before and after
removing the exponentially growing contributions using
method 2. We perform a simultaneous fit to the 2pt, 3pt and
integrated 4pt functions, extracting matrix elements, ener-
gies, form factors and A0, using a covariance matrix with
fully correlated 2pt and 3pt sectors and uncorrelated 4pt
sector. From this fit, we obtain A0 ¼ 0.00022ð172Þ with a
χ2=dof ¼ 0.996. Further details on the fitting procedure,
including a discussion of the fit ranges which were used,
are presented in the Supplemental Material [17]. The error
on A0 is entirely statistical.
Table I shows the results for A0 using the three charm-

quark masses, extracted using the different methods
detailed above. The results from method 2 have statistical

(a) (b)

FIG. 1. The (a) Q1 and (b) Q2 operator contributions to the amc1 ¼ 0.25 integrated 4pt rare kaon correlator, separated into C, W, S,
and E diagrams. The light- and charm-quark contributions to the S and E diagrams are shown individually, as well as their difference, the
“GIM” contribution.

FIG. 2. The amc1 ¼ 0.25 integrated 4pt rare kaon correlator
shown for I0ðTa; Tb ¼ 8;k;pÞ [cf. Eq. (8)] to demonstrate the Ta
dependence. The green data shows the raw 4pt function, and in
red we show the same data after removing the single-pion
exponential growth via method 2. The fit to the plateau, shown
in blue, gives A0 ¼ 0.00022ð172Þ.

TABLE I. Fit results for A0 for the three unphysical charm-
quark masses and value found from extrapolating these to the
physical point. The first four results are obtained using
the various approaches to method 1, as described in Sec. II B,
and the final result is obtained using method 2.

Analysis mc1 mc2 mc3

Method 1
Direct fit −0.00052ð208Þ −0.00046ð210Þ −0.00040ð211Þ
2pt/3pt recon −0.00036ð162Þ −0.00024ð164Þ −0.00017ð165Þ
0 mom transfer −0.00087ð165Þ −0.00086ð166Þ −0.00086ð167Þ
SUð3Þ symm lim 0.00055(165) 0.00085(166) 0.00112(167)

Method 2
cs shift 0.00022(172) 0.00024(173) 0.00027(174)
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in [27], the structure of which is described in the
Supplemental Material [17]. We use the AMA technique
[23] for our calculation of these diagrams, computing one
hit of sparse noise with “exact” solver precision (10−8,
10−10, 10−12, and 10−14 for the light, c1, c2, and c3 quarks,
respectively) and the same hit of sparse noise with “inex-
act” solver precision (10−4 for all quarks). We then compute
an additional nine hits of sparse noise with inexact solver
precision and apply a correction computed from the differ-
ence of the reciprocal noises.
We performed all correlation function calculations using

dedicated software [28] based on the Grid [29,30] and
Hadrons [31] libraries. All three are free software under
GPLv2. The raw lattice correlators used in this work are
publicly available online [32].

IV. NUMERICAL RESULTS

The 4pt functions for the lightest charm-quark mass are
shown in Fig. 1, and Fig. 2 shows the Ta dependence of the
integrated correlator for fixed Tb both before and after
removing the exponentially growing contributions using
method 2. We perform a simultaneous fit to the 2pt, 3pt and
integrated 4pt functions, extracting matrix elements, ener-
gies, form factors and A0, using a covariance matrix with
fully correlated 2pt and 3pt sectors and uncorrelated 4pt
sector. From this fit, we obtain A0 ¼ 0.00022ð172Þ with a
χ2=dof ¼ 0.996. Further details on the fitting procedure,
including a discussion of the fit ranges which were used,
are presented in the Supplemental Material [17]. The error
on A0 is entirely statistical.
Table I shows the results for A0 using the three charm-

quark masses, extracted using the different methods
detailed above. The results from method 2 have statistical

(a) (b)

FIG. 1. The (a) Q1 and (b) Q2 operator contributions to the amc1 ¼ 0.25 integrated 4pt rare kaon correlator, separated into C, W, S,
and E diagrams. The light- and charm-quark contributions to the S and E diagrams are shown individually, as well as their difference, the
“GIM” contribution.

FIG. 2. The amc1 ¼ 0.25 integrated 4pt rare kaon correlator
shown for I0ðTa; Tb ¼ 8;k;pÞ [cf. Eq. (8)] to demonstrate the Ta
dependence. The green data shows the raw 4pt function, and in
red we show the same data after removing the single-pion
exponential growth via method 2. The fit to the plateau, shown
in blue, gives A0 ¼ 0.00022ð172Þ.

TABLE I. Fit results for A0 for the three unphysical charm-
quark masses and value found from extrapolating these to the
physical point. The first four results are obtained using
the various approaches to method 1, as described in Sec. II B,
and the final result is obtained using method 2.

Analysis mc1 mc2 mc3

Method 1
Direct fit −0.00052ð208Þ −0.00046ð210Þ −0.00040ð211Þ
2pt/3pt recon −0.00036ð162Þ −0.00024ð164Þ −0.00017ð165Þ
0 mom transfer −0.00087ð165Þ −0.00086ð166Þ −0.00086ð167Þ
SUð3Þ symm lim 0.00055(165) 0.00085(166) 0.00112(167)

Method 2
cs shift 0.00022(172) 0.00024(173) 0.00027(174)
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Physical point

Amplitude result

errors compatible with method 1 results. As method 2 has
the simplest fit structure, we use it to extrapolate to the
physical charm-quark mass and to compute the form factor
as our final result. We stress that method 1 remains an
important cross-check on the analysis. Figure 3 shows the
extrapolation of the method 2 results to the physical charm-
quark mass, giving a value of A0 ¼ 0.00035ð180Þ. From
Eq. (1) we can relate our result to the form factor to achieve
VðzÞ ¼ −0.87ð4.44Þ. For our choice of kinematics we have
z ¼ 0.013ð2Þ; we expect the bþz contribution to be ∼10−2
assuming bþ is Oð1Þ, and we estimate VππðzÞ ¼
−0.00076ð73Þ following [2]. We may therefore take our
result for aþ as an approximation for the intercept of the
form factor.

V. CONCLUSION

We have carried out the first lattice QCD calculation of
the Kþ → πþlþl− decay amplitude using physical pion
and kaon masses. When using physical light-quark masses,
even with unphysically light charm-quark masses, the
contributions in the GIM loops statistically decorrelate,
as shown in Fig. 4. This contributes to the unsatisfactory

amount of noise in GIM subtraction, as can be seen in
Fig. 1. Although sparse noises reduced the statistical error
introduced by the single-propagator trace contribution to
the Eye and Saucer diagrams, we are not able to obtain a
well-resolved result for the amplitude.
The form factor that encapsulates the behavior of the

long-distance amplitude of the rare kaon decay was found
to be Vð0.013ð2ÞÞ ¼ −0.87ð4.44Þ. When this is compared
to experimental results, Vexpð0Þ≡ aexpþ ¼ −0.578ð16Þ
from the electron and aexpþ ¼ −0.592ð15Þ from the muon,
it can be seen that the error on our lattice result is about 8
times larger than the central value of the experimental
result. However, our error is 3 times larger than the
phenomenological central value obtained in [9,10], which
suggests that lattice QCD calculations will be able to
provide a competitive theoretical bound on aþ in the
coming years.
We would like to stress that since the noise emerges

mainly from the lack of correlation in the GIM subtraction,
the error obtained here has the potential to be reduced
beyond square-root scaling by optimizing the stochastic
estimator used for the up-charm loops. Such problems have
common elements with similar challenges in computing
quark-disconnected diagrams, for example as discussed
in [33].
Finally, it might also be possible to work in three-flavor

QCD, forgoing the calculation of the charm-quark loop
[34], further reducing computational costs. This would
require a new renormalization procedure which would be
analogous to that of the K → πνν̄ study that was performed
by the RBC-UKQCD collaborations previously [35,36].
In conclusion, despite obtaining a first physical result

with a large uncertainty, we believe that optimization of the
methodology, combined with the increased capabilities of
future computers, should allow for a competitive prediction
of the Kþ → πþlþl− amplitude within the next years.

FIG. 3. The extrapolation of the A0 results found using method 2
to the physical charm-quark mass. The linear fit and extrapolated
result are shown in blue, giving a result of A0 ¼ 0.00035ð180Þ.
Red, green, and black show the results at the cmasses we simulate
at, and we extrapolate those to the blue data point at physical
charm mass.

(a) (b)

FIG. 4. The cross-correlation in the Eye diagram between the light-quark and the lightest charm-quark correlation functions for
(a) the exploratory study [13] at heavier-than-physical light-quark mass and (b) the calculation reported on in this work at physical
light-quark mass. Although equal time slices exhibit a distinguishable correlation in both cases, it is greatly diminished in the
physical-point calculation. This results in a poor statistical cancellation in the GIM loop, driving the large statistical error from this
calculation.
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A hint about the noise issue

• Correlations between up and charm loops is a huge factor in GIM loops uncertainty

errors compatible with method 1 results. As method 2 has
the simplest fit structure, we use it to extrapolate to the
physical charm-quark mass and to compute the form factor
as our final result. We stress that method 1 remains an
important cross-check on the analysis. Figure 3 shows the
extrapolation of the method 2 results to the physical charm-
quark mass, giving a value of A0 ¼ 0.00035ð180Þ. From
Eq. (1) we can relate our result to the form factor to achieve
VðzÞ ¼ −0.87ð4.44Þ. For our choice of kinematics we have
z ¼ 0.013ð2Þ; we expect the bþz contribution to be ∼10−2
assuming bþ is Oð1Þ, and we estimate VππðzÞ ¼
−0.00076ð73Þ following [2]. We may therefore take our
result for aþ as an approximation for the intercept of the
form factor.

V. CONCLUSION

We have carried out the first lattice QCD calculation of
the Kþ → πþlþl− decay amplitude using physical pion
and kaon masses. When using physical light-quark masses,
even with unphysically light charm-quark masses, the
contributions in the GIM loops statistically decorrelate,
as shown in Fig. 4. This contributes to the unsatisfactory

amount of noise in GIM subtraction, as can be seen in
Fig. 1. Although sparse noises reduced the statistical error
introduced by the single-propagator trace contribution to
the Eye and Saucer diagrams, we are not able to obtain a
well-resolved result for the amplitude.
The form factor that encapsulates the behavior of the

long-distance amplitude of the rare kaon decay was found
to be Vð0.013ð2ÞÞ ¼ −0.87ð4.44Þ. When this is compared
to experimental results, Vexpð0Þ≡ aexpþ ¼ −0.578ð16Þ
from the electron and aexpþ ¼ −0.592ð15Þ from the muon,
it can be seen that the error on our lattice result is about 8
times larger than the central value of the experimental
result. However, our error is 3 times larger than the
phenomenological central value obtained in [9,10], which
suggests that lattice QCD calculations will be able to
provide a competitive theoretical bound on aþ in the
coming years.
We would like to stress that since the noise emerges

mainly from the lack of correlation in the GIM subtraction,
the error obtained here has the potential to be reduced
beyond square-root scaling by optimizing the stochastic
estimator used for the up-charm loops. Such problems have
common elements with similar challenges in computing
quark-disconnected diagrams, for example as discussed
in [33].
Finally, it might also be possible to work in three-flavor

QCD, forgoing the calculation of the charm-quark loop
[34], further reducing computational costs. This would
require a new renormalization procedure which would be
analogous to that of the K → πνν̄ study that was performed
by the RBC-UKQCD collaborations previously [35,36].
In conclusion, despite obtaining a first physical result

with a large uncertainty, we believe that optimization of the
methodology, combined with the increased capabilities of
future computers, should allow for a competitive prediction
of the Kþ → πþlþl− amplitude within the next years.

FIG. 3. The extrapolation of the A0 results found using method 2
to the physical charm-quark mass. The linear fit and extrapolated
result are shown in blue, giving a result of A0 ¼ 0.00035ð180Þ.
Red, green, and black show the results at the cmasses we simulate
at, and we extrapolate those to the blue data point at physical
charm mass.
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FIG. 4. The cross-correlation in the Eye diagram between the light-quark and the lightest charm-quark correlation functions for
(a) the exploratory study [13] at heavier-than-physical light-quark mass and (b) the calculation reported on in this work at physical
light-quark mass. Although equal time slices exhibit a distinguishable correlation in both cases, it is greatly diminished in the
physical-point calculation. This results in a poor statistical cancellation in the GIM loop, driving the large statistical error from this
calculation.
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4-point physical correlators / work with R Hill and R Hodsgon

Improved estimators
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Standard estimator Frequency-splitting estimator
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M Bordone, et al., to appear soon (Kaon@J-PARC 2024 Summary) 



Multi-hadron 
interactions

Image Credit: DOI 10.1007/s00601-012-0376-4 



General issue for lattice simulations

Multi-hadron interactions

• There is a theorem saying that hadronic 
scattering amplitudes cannot, in principle, be 
extracted from Euclidean field theory 

 

• This was circumvented by noticing that splittings 
between discrete energy levels in a finite 
volume encode information about scattering 
amplitudes 

• This is often referred as Lüscher formalism 

L Maiani & M Test, Phys Lett B 245 (1990)

M Lüscher, Commun. Math. Phys. 105(2) (1986)
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Euclidean FV spectrum

Minkowski cut



1. Determine Euclidean FV energy levels 

2. Relate to phase-shift model using  
Lüscher quantisation condition 

 
 

 

3. Solve for amplitude poles

M Lüscher, Commun. Math. Phys. 105(2) (1986)

nπ − δ ( ω2
n − 4m2) = ϕ ( L

2π
ω2

n − 4m2)

Lattice determination

Hadronic resonances
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ResonanceBound state

Euclidean FV spectrum
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First physical point  &  simulationρ K*
Lattice description of resonances

• First determination of the  and  poles using physical point 2+1 lattice simulations 

• First data-driven assessment of analysis modelling and systematic errors 

ρ K*

PA Boyle, AP, et al. arXiv:2406.19193 (2024)
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FIG. 7: Breakdown of data-driven systematic spread of pole-positions between the BW,ERE models and all the
hyperparameter choices in Table II, labelled as run1, run2, run3 and run4. The systematic interval is denoted by the
cross errorbar and the statistical error ellipse shows the correlation between M and →!. The two-dimensional
histogram is the AICPS-weighted frequency over corresponding finite-volume energy samples and it is plotted on a log
scale. The normalization of the weights is taken such that the histograms on all panels are comparable to each other.
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Conclusion



• Lattice QCD is entering the era of physical, precise predictions for 

• Long-distance hadronic & electromagnetic corrections to weak decays 

• Weak decays into unstable states 

• More theoretical work on the way in key aspects e.g. 

• Treatment of heavy quarks 

• Final state long-distance interactions, particularly electromagnetic 

• Hopefully crucial help for flavour physics measurements in future experiments

Thank you for your attention!


