Antonin Portelli (The University of Edinburgh) / 06 December 2024 / DISCRETE 2024, Ljubljana, Slovenia

from lattice QCD & QED Long-distance contributions

• Non-local matrix elements: $K \to \pi \ell^+ \ell^-$ decays $K \rightarrow \pi \ell^+ \ell^-$

• Isospin-breaking and electromagnetic corrections to hadronic interactions

• Multi-hadrons interactions

• (Not $g - 2$)

Lattice field theory

- Strong interactions described by **Quantum Chromodynamics (QCD)**
- In a discrete and Euclidean space-time, **QCD becomes equivalent to a statistical system EI** KG Wilson, Phys Rev D 10(8) (1974)
- Physical observables can be evaluated **through Monte-Carlo simulations**

$$
\langle O \rangle = \frac{1}{\mathcal{Z}} \int D U O[U] \det(M[U]) e^{-S[U]}
$$

3

Image credit: Schuiten & Peeters, 1985, Casterman

Lattice field theory

- Lattice simulations have **billions of degrees of freedom**
- **They can potentially describe any strongly bound quantum field theory from first principles**
- Predictive capacity is directly bounded by
	- ‣ **available supercomputing power**
	- ‣ **algorithmic research progress**
	- **understanding of Euclidean field theory**

Image credit: University of Southampton

Isospin-breaking corrections to hadronic interactions

Image credit: Bergische Universität Wuppertal

Beyond isospin symmetry Isospin-breaking (IB) corrections

- Isospin symmetry assumed in most lattice calculations
- Violations generally expected to be $\mathcal{O}(1\%)$ of hadronic observables
- This is **highly relevant for** searches for new physics through precision $measurable(s - 2 & week decays)$
- **Main challenge** for lattice QCD: **adding QED**

6

CKM matrix elements from leptonic decays IB corrections to weak decays

- Leptonic meson decay: **quark pair -boson annihilation** *W*
- Rate proportional to $|V_{q_1q_2}|$ 2
- Allows to determine CKM matrix element from experimental rate…
- …but **needs a high-precision description of the hadronic dynamics**

7

$$
\Gamma(P^+ \to \ell^+ \nu_\ell[\gamma]) = \frac{G_F^2}{8\pi} f_P^2 m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2}\right)^2 |V_{q_1 q_2}|^2 (1 + \delta R_P)
$$

CKM first row IB corrections to weak decays

FLAG2024

8

• Neutron lifetime under scrutiny, but **IB corrections to leptonic decays also relevant** Figure 10: The plot compares the information for *|Vud|*, *|Vus|* obtained using lattice QCD **for** *Neutron* lifetime under scrutiny, but **B** corrections The black dotted line indicates the correlation between *|Vud|* and *|Vus|* that follows if the

N^f = 2 + 1 + 1: Numerically, the outcome for the sum of the squares of the first row of

EI FLAG Review 2024

CKM charm and bottom coefficients IB corrections to weak decays

Table 30. Lattice inputs for decay constants $f_{B(s)}$ and bag parameters $B_{B(s)}$ in the SM. The current average of $f_{B(s)}$ for $N_f = 2 + 1$ and $2 + 1 + 1$ are obtained from Refs. [150,213–216] and Refs. [212,217], respectiv The average of $B_{B_{(s)}}$ is obtained from Refs. [148,150,151]. $f_{B_{(s)}}\sqrt{B_{B_{(s)}}}$ is in units of MeV.

N_f	Input	f_B [MeV]	f_{B_s} [MeV]	f_{B_s}/f_B
	Current	188(3)	227(4)	1.203(0.007)
	5 yr w/o EM	188(1.5)	227(2.0)	1.203(0.0035)
$2+1+1$	5 yr with EM	188(2.4)	227(3.0)	1.203(0.013)
	$10 \,\text{yr}$ w/o EM	188(0.60)	227(0.80)	1.203(0.0014)
	10 yr with EM	188(2.0)	227(2.4)	1.203(0.012)
	Current	192.0(4.3)	228.4(3.7)	1.201(0.016)
	5 yr w/o EM	192.0(2.2)	228.4(1.9)	1.201(0.0080)
$2 + 1$	5 yr with EM	192.0(2.9)	228.4(2.9)	1.201(0.014)
	$10 \,\text{yr}$ w/o EM	192.0(0.86)	228.4(0.74)	1.201(0.0032)
	10 yr with EM	192.0(2.1)	228.4(2.4)	1.201(0.012)
N_f	Input	$f_B\sqrt{B_B}$	$f_{B_S}\sqrt{B_{B_S}}$	ξ
$2+1$	Current	225(9)	274(8)	1.206(0.017)
	5 yr w/o EM	225(4.5)	274(4.0)	1.206(0.0085)
	5 yr with EM	225(5.0)	274(4.8)	1.206(0.015)
	$10 \,\text{yr}$ w/o EM	225(1.8)	274(1.6)	1.206(0.0034)
	10 yr with EM	225(2.9)	274(3.2)	1.206(0.013)
N_f	Input	$B_B\!\!\!\!\!\!\!/$	B_{B_S}	B_{B_s}/B_B
$2 + 1$	Current	1.30(0.09)	1.35(0.06)	1.032(0.036)
	5 yr w/o EM	1.30(0.045)	1.35(0.030)	1.032(0.018)
	5 yr with EM	1.30(0.047)	1.35(0.033)	1.032(0.021)
	$10 \,\text{yr}$ w/o EM	1.30(0.018)	1.35(0.012)	1.032(0.0072)
	10 yr with EM	1.30(0.022)	1.35(0.018)	1.032(0.013)

9

CKM charm and bottom coefficients IB corrections to weak decays

9

Table 30. Lattice inputs for decay constants $f_{B(s)}$ and bag parameters $B_{B(s)}$ in the SM. The current average of $f_{B(s)}$ for $N_f = 2 + 1$ and $2 + 1 + 1$ are obtained from Refs. [150,213–216] and Refs. [212,217], respectiv The average of $B_{B_{(s)}}$ is obtained from Refs. [148,150,151]. $f_{B_{(s)}}\sqrt{B_{B_{(s)}}}$ is in units of MeV.

N_f	Input	f_B [MeV]	f_{B_s} [MeV]	f_{B_S}/f_B
$2+1+1$	Current $5 \,\mathrm{yr}$ w/o EM 5 yr with EM $10 \,\text{yr}$ w/o EM 1.71 1 ₀	188(3) 188(1.5) 188(2.4) 188(0.60) 100 (2.0)	227(4) 227(2.0) 227(3.0) 227(0.80) 227/2	1.203(0.007) 1.203(0.0035) 1.203(0.013) 1.203(0.0014) 1.0020
	critically needed in all cases			$ 012\rangle$ 016) 0080) 014) 0032) 012) 017)
$2+1$	<u>J yi w/u lini</u> 5 yr with EM $10 \,\text{yr}$ w/o EM 10 yr with EM	227(7.5) 225(5.0) 225(1.8) 225(2.9)	21T(TU) 274(4.8) 274(1.6) 274(3.2)	<u>1.20010.0085)</u> 1.206(0.015) 1.206(0.0034) 1.206(0.013)
N_f	Input	$B_B\!\!\!\!\!\!/$	B_{B_S}	B_{B_S}/B_B
$2+1$	Current 5 yr w/o EM 5 yr with EM $10 \,\text{yr}$ w/o EM 10 yr with EM	1.30(0.09) 1.30(0.045) 1.30(0.047) 1.30(0.018) 1.30(0.022)	1.35(0.06) 1.35(0.030) 1.35(0.033) 1.35(0.012) 1.35(0.018)	1.032(0.036) 1.032(0.018) 1.032(0.021) 1.032(0.0072) 1.032(0.013)

First physical *K* & **π** leptonic decay calculation IB corrections to weak decays

• First calculation at the physical point of **IB** corrections to K & π leptonic decay rate ratio P Boyle, **AP**, *et al.* JHEP 02 (2023)

- Largely based on the RM123S formalism N Carrasco, *et al.* PRD 91(7) (2015)
- Still **uncontrolled systematics** FV effects, QED quenching, continuum limit

 $\delta R_{K\pi}$

$$
\delta R_{K\pi} = -0.0086(3)_{\text{stat.}} \left(\frac{+11}{-4}\right)_{\text{fit}} (5)_{\text{disc.}} (5)_{\text{quen}}
$$

Image credit: Matteo Di Carlo **Carlo and an archiple in the computed from the computed from** $\delta R_{K\pi}$ **can be computed from**

• Periodic boundary conditions

\implies **EM field feedback loop**

- **Large finite-volume (FV) effects expected**
- In reality, it is worse than that: **Feedback loop diverges**

(think about a lattice of Coulomb potentials)

Zero-mode singularities Finite-volume QED

- Regularisation or change of BC required
- QED_L : remove all 3D zero-modes $k = 0$. **Non-local** modification of QED The value of Zone
The value of Zone
The value of Zone of c hosen scheme for defining the e $\frac{1}{2}$

Zero-mode singularities, quantum field theory Finite-volume QED where the self-contracted the ory self-contracted kernel defines the Ode2D self-contracted kernel of \mathcal{L} \Box

• One-loop QED amplitude

 $\frac{1}{1-\frac{1$ ∫ d^3k $(2\pi)^3$ *f*(**k**) **k**2 \longmapsto 1 L^3 ∠ **k** *f*(**k**) **k**2

 $\mathbf{k} =$ 2*π L* **n**

maybe divergent **IR divergences** undefined because of *f*(**0**)/0 term RELATIVISTIC, MODEL-INDEPENDENT DETERMINATION OF … PHYS. REV. D 105, 074509 (2022)

Leptonic decays Finite-volume Q

- Known, universal $log(ML)$, $1/L$ finite-size effects B Lucini, *et al.* PRD 95(3) (2017) $F_{\rm EOMD}$ with various decay $1_{\rm CO}(MI)$ at T finite at \sim of the diagrams has been diagram • Known, universal $\log (ML)$,
- Known structure-dependent $1/L^2$ finite-size effects M Di Carlo, *et al.* PRD 105(1) (2022) \overline{F} M Di Carlo et al. PRD 105(1) (2022) and the correction of controlling the correction of the final correction of t
- Unknown structure-dependent $1/L^3$, potentially large: source of large uncertainty in P Boyle, **AP**, *et al.* JHEP 02 (2023) Source of large uncertainty in ED P Boyle, AP, et al. simply obtained by and water and propagator and propagator and wave propagator and wave propagator and wave pr

ly large:

Future progress IB corrections to weak decays

- First calculation for $D \& D_s$ decays
- **Collaboration with KEK** on $B \otimes B_s$ decays
- Continuum limit for $K \otimes \pi$ decays
- Improving FV QED / removing $1/L^3$ terms Z Davoudi, **AP**, *et al.* Phys Rev D 99(3) (2019) **EI** M Di Carlo, PoS Lattice 2023 (2024) M Di Carlo, **AP**, *et al.* in preparation (2025)

14

 $dt = 10$

Image credit: AP, Southampton 2013

Rare *s* → *d* decays

• A promising avenue for new physics is to study **flavour-changing neutral current** decays

• Those are forbidden at leading order in the SM, **sensitivity to new physics is increased**

-
-
- They generally feature **long-distance multi-hadron corrections** NH Christ, **AP**, *et al.* Phys Rev D 92(9) (2015) PA Boyle, **AP**, *et al.* Phys Rev D Lett 107(1) (2023) F Erben, **AP**, *et al.* JHEP 04 (2024) PA Boyle, **AP**, *et al.* arXiv:2406.19193 (2024)

Amplitude parameterisation

• $K^c \to \pi^c \gamma^*$ amplitude ($c \in \{0, +\}$)

• Low-energy parameterisation

 $q = p - k$ $z = q^2/M_K^2$ *K*

 $(k+p)_{\mu} - (M_K² - M_{\pi}²)q_{\mu}$] $V_c(z)$

$$
\mathscr{A}_{\mu}^{c}(q^{2}) = \int d^{4}x \langle \pi^{c}(\mathbf{p}) | T |
$$

$$
= -i \frac{G_{F}}{(4\pi)^{2}} [q^{2}(k \cdot
$$

$$
V_c(z) = a_c + b_c z + V_c^{\pi\pi}(z)
$$

 $\langle \mathbf{p})|T[J_\mu(0)H_W(x)]|K^c(\mathbf{k})\rangle$

17

Analytical continuation issues

- **• In Euclidean space-time, states below initial energy generate large contamination of Euclidean the time integral**
- Happens potentially for $K \to \pi, \pi\pi, \pi\pi\pi \to \pi\gamma^*$
- $\pi\pi$ forbidden in $K \to \pi\ell^+\ell^-$ (allowed in $K \to \pi\nu\bar{\nu}$)
- Several subtraction strategies possible NH Christ, AP, et al., PRD 92(9) 094512 (2015)

18

Unphysical point 4-point correlators NH Christ, AP, et al., PRD 94(11) 114516 (2016)

Unphysical point Amplitude result T , and the parametrization of \mathbf{R} is expected to be a good \mathbf{R} approximation to the Odd Form factor. It is well known that existing ^Oðp⁴^Þ ChPT predictions [30] for I Innhyring I not onpriservations a comparison must be taken with care given the unphysical care gi \rightarrow resulting in our simulation. The most relevant and interesting comparison we make \Box NILO heigt AD at al DDD 04(11) 114516 (2016) \sum is the absolute errors of the parameters (2010) NH Christ, AP, et al., PRD 94(11) 114516 (2016)

Physical point 4-point correlators PA Boyle, AP, et al., PRD 107(1) L011503 (2022)

Physical point Amplitude result J CLI \bigcup ULIIL **EU** PA BOYIE, AP, Et GI., PRD 107(1) LOTI503 (2022) PA Boyle, AP, et al., PRD 107(1) L011503 (2022)

 $a_+ = -0.87(4.44)$

• Correlations between up and charm loops is a **huge factor in GIM loops uncertainty**

A hint about the noise issue HTTL GOON NHC TIO by the RBC-UKQCD collaborations previously [35,36]. In conclusion, despite obtaining a first physical result

 $\frac{23}{2}$ 23

2016 unphysical data 2022 physical point data

4-point physical correlators / work with R Hill and R Hodsgon Improved estimators

24

M Bordone, et al., to appear soon (Kaon@J-PARC 2024 Summary)

Multi-hadron interactions

Image Credit: DOI 10.1007/s00601-012-0376-4

General issue for lattice simulations Multi-hadron interactions

- There is a theorem saying that hadronic scattering amplitudes cannot, in principle, be extracted from Euclidean field theory ED L Maiani & M Test, Phys Lett B 245 (1990)
- This was circumvented by noticing that splittings between **discrete energy levels in a finite volume encode information about scattering amplitudes**
- This is often referred as *Lüscher formalism* **EI** M Lüscher, Commun. Math. Phys. 105(2) (1986)

26

- 1. Determine **Euclidean FV energy levels**
- 2. Relate to phase-shift model using **Lüscher quantisation condition**

3. **Solve for amplitude poles**

M Lüscher, Commun. Math. Phys. 105(2) (1986)

$$
n\pi - \delta \left(\sqrt{\omega_n^2 - 4m^2} \right) = \phi \left(\frac{L}{2\pi} \sqrt{\omega_n^2 - 4m^2} \right)
$$

Lattice determination Hadronic resonances

27

First physical point *ρ* & *K** simulation Lattice description of resonances

-
- First data-driven assessment of **analysis modelling and systematic errors** PA Boyle, **AP**, *et al.* arXiv:2406.19193 (2024)

• First determination of the ρ and K^* poles using **physical point 2+1 lattice simulations** 0*.*04 n:
.

28

Image credit: Nelson Lachini

Conclusion

- Lattice QCD is entering the **era of physical, precise predictions** for
	- **Long-distance hadronic & electromagnetic** corrections to weak decays
	- Weak decays into **unstable states**
- More theoretical work on the way in key aspects e.g.
	- Treatment of **heavy quarks**
	- **Final state long-distance interactions**, particularly electromagnetic
- Hopefully crucial help for flavour physics measurements in future experiments

Thank you for your attention!