Flavour Phenomenology of Light Dark Vectors

Emmanuel Stamou

emmanuel.stamou@tu-dortmund.de

Discrete 2024 Ljubljana

02.12.2024

Quark flavour: SM vs NP

SM loop induced, precision

Heavy NP virtual, indirect probe SUSY, Composite Higgs, Extra Dimensions, ...

Light NP decays to "invisible" Axions, Dark Photons, ... [focus of this talk]

Flavour - the answer to all?

- Data from ongoing and planned experimental flavour program have the **potential** to provide at least some answers.
- **However**, there are no guarantees only best guesses and hopes.
 - →FV in NP may be fully aligned to FV in SM
 - →D.o.f. associated to BSM FV may be too heavy for discovery
 - →our experiments may have blind spots (compressed spectra, missing energy, ...)

→ Two (semi-orthogonal) strategies:

- Expose deviations through precision and global fits (golden observables: EDMs, clean FCNCs, ...; EFTs: WET, SMEFT, ...) [focus of my talk at Discrete2010]
- Go beyond well established interpretation of data and observables

(radiative modes, distributions, light-NP interpretations,...) [focus of this talk at Discrete**2024**]

From my Discrete2010 contribution

Light-NP & flavour – example QCD Axion

$$\Gamma_K^{\rm tot} \sim M_K^5/M_W^4 \qquad \qquad \Gamma_B^{\rm tot} \sim M_B^5/M_W^4$$

• Dimension-5 QCD axion couplings: $\frac{\partial^{\mu}a}{f_a} \bar{q}_i \gamma_{\mu}(\gamma_5) q_j$

[from R. Ziegler @ La Thuille]

Light NP

Scalars

QCD axion (best motivated light NP scenario), ALPs,...

Fermions

light sterile neutrinos, fermionic DM, ...

Vectors

dark Photons, light Z', \ldots

Phenomenology depends strongly on: masses, lifetimes, and couplings to SM

Most promising search strategies may differ!

Outline

Flavourful light Vectors with "invisible" signatures

- Model-independent framework
 Vector-type vs Dipole-type flavour-violating couplings
 Model-dependence and scaling of couplings
- Bounds from two-body spectra
 Form-factor dependence
 Recast of available searches
- Unitarity constraints

Bad high-energy behaviour of $2 \rightarrow 2$ scattering, e.g., $q_i V' \rightarrow q_j V'$ Unitarity leads to bounds on flavour-violating couplings

Conclusions

EFTs for light, flavoured vectors V'

- Dipole interaction

$$\mathscr{L}_{\mathsf{FCNC}}^{D} = \frac{C_{ij}^{D}}{\Lambda} \bar{f}_{i} \sigma^{\mu\nu} f_{j} F'_{\mu\nu} + \frac{C_{ij}^{D5}}{\Lambda} \bar{f}_{i} i \sigma^{\mu\nu} \gamma_{5} f_{j} F'_{\mu\nu}$$

 $*SU(2)_L$ gauge invariance $\Rightarrow \bar{Q}_L H \sigma^{\mu\nu} q_R F'_{\mu\nu} \Rightarrow$ dim-6 counting

- Vector interaction

UV motivation — quadratic scaling

Quadratic scaling (n=2)

$$\left(rac{oldsymbol{m}_{oldsymbol{V}'}}{oldsymbol{\Lambda}}
ight)^{oldsymbol{n}} \, C^{V(5)}_{ij} \, ar{f}_i \gamma^\mu(\gamma_5) f_j V'_\mu$$

- Possible without charging SM fermions under U(1)'
- $S = v' \exp(iG/v)$ Goldstone parametrisation of U(1)' breaking
- $\mathscr{L}^V_{\mathsf{quadratic}} \supset \frac{c_{ij}}{\Lambda^2} (S^{\dagger} \partial_{\mu} S) \bar{f}_{Ri} \gamma^{\mu} f_{jR} \supset \frac{c_{ij}}{\Lambda^2} v' \partial_{\mu} G \bar{f}_{Ri} \gamma^{\mu} f_{jR}$
- GB equivalence theorem: $\partial_{\mu}G \rightarrow -m_{V'}V_{\mu}$

$$\mathscr{L}^V_{\mathsf{quadratic}} \supset c_{ij} \frac{\boldsymbol{v'} \boldsymbol{m}_{\boldsymbol{V'}}}{\Lambda^2} \bar{f}_{Ri} \gamma^\mu f_{jR}$$

[for details and explicit models see Folch, Klingel, ES, Tabet, Ziegler 24]

UV motivation — linear scaling

Linear scaling (n = 1) $\left(\frac{m_{V'}}{\Lambda}\right)^n C_{ij}^{V(5)} \bar{f}_i \gamma^{\mu}(\gamma_5) f_j V'_{\mu}$

- SM fermions must be charged under $U(1)': \mathscr{L}_{\text{linear}}^V \supset g' V'_{\mu} \bar{d}_R X_d \gamma^{\mu} d_R$
- Rotation to mass-eigenstates →FV couplings (for FV need non-universal X_d charges)
- Generic masses not possible at renormalisable level (for generic masses need S insertions, e.g. Ex. $X_d = \text{diag}(1, 0)$ and $X_Q = X_H = 0$

$$\mathscr{L}_{\mathsf{linear}}^V \supset -y_i Q_i H d_{R2} - z_i \frac{S^{\dagger}}{\Lambda} Q_i H d_{R1} \quad \Rightarrow \quad Y_d \sim \begin{pmatrix} z_1 \frac{v'}{\Lambda} & y_1 \\ z_2 \frac{v'}{\Lambda} & y_2 \end{pmatrix}$$

• Rotation plus GB equivalence theorem: $\partial_{\mu}G \rightarrow -m_{V'}V_{\mu}$

$$\mathscr{L}^{V}_{\mathsf{quadratic}} \supset i \bar{d}_{R1} \partial \!\!\!/ d_{R1} \rightarrow - \frac{\partial_{\mu} G}{v'} \bar{d}_{R1} \gamma^{\mu} d_{R1} \rightarrow \frac{g' v'}{\Lambda} \bar{V}'_{\mu} d_{Ri} \gamma^{\mu} d_{Rj}$$

E. Stamou

[for details and explicit models see Folch, Klingel, ES, Tabet, Ziegler 24]

9

Flavour phenomenology of light Vectors

- dependence on mass of light Vector (& Form Factors)
 →recast of searches required
- multiple channels and experiments required to probe all couplings

```
Two-body decays to invisible V'
Pseudoscalar\rightarrowPseudoscalar+V'
Pseudoscalar\rightarrowVector+V'
Barvon\rightarrowBarvon+V'
```

	$C^{D}_{ij} \ C^{D5}_{ij} \ C^{V}_{ij} \ C^{V5}_{ij}$
sd	
cu	d
bs	depend on V ⁺ mass
bd	

[Folch, Klingel, ES, Tabet, Ziegler 24] [Kamenik, Smith 12]

Two-body decay modes

Pseudoscalar \rightarrow Pseudoscalar +V'• $\mathbb{C}_{ij}^D, \mathbb{C}_{ij}^V \checkmark \mathbb{C}_{ij}^{D5}, \mathbb{C}_{ij}^{V5} \times$ • $B^+ \rightarrow \pi^+, B^+ \rightarrow K^+, D^+ \rightarrow \pi^+, K^+ \rightarrow \pi^+, K_L \rightarrow \pi^0$

Pseudoscalar ightarrow Vector +V'

• $\mathbb{C}_{ij}^D, \mathbb{C}_{ij}^{D5}, \mathbb{C}_{ij}^V, \mathbb{C}_{ij}^{V5} \checkmark$

$$\bullet \hspace{0.1 in} B \rightarrow \rho, B \rightarrow K^{*}, D \rightarrow \rho$$

Baryon ightarrow Baryon +V'

•
$$\mathbb{C}_{ij}^D$$
, \mathbb{C}_{ij}^{D5} , \mathbb{C}_{ij}^V , \mathbb{C}_{ij}^{V5}

•
$$\Sigma \to p, \Xi \to \Sigma, \Lambda \to n$$

Summary of searches included

Quark Transition	Hadronic Process	Form Factors	Experimental Limit
	$K^+ \to \pi^+ + V'$	[65, 66]	NA62 [17, 38, 39]
	$\Sigma^+ \to p + V'$	[34, 67-69]	BES III [70], Lifetime _r [22, 63]
d	$\Xi^- \to \Sigma^- + V'$	[34, 67-69]	$Lifetime_r[22, 63]$
$s \rightarrow a$	$\Xi^0 \rightarrow \Sigma^0 + V'$	[34, 67-69]	Lifetime $_r$ [22, 63]
	$\Xi^0 \to \Lambda + V'$	[34, 67-69]	$Lifetime_r[22, 63]$
	$\Lambda \to n+V'$	[34, 67-69]	Lifetime _{r} [22, 63]
	$B^+ \to K^+ + V'$	[71, 71]	BaBar _r [41], Belle II _r [44, 62]
$b \rightarrow s$	$B \to K^* + V'$	[71, 71]	$\operatorname{BaBar}_r[41, 62]$
	$\Lambda_b \to \Lambda + V'$	[72, 72]	$Lifetime_r[22, 63]$
	$B^+ \to \pi^+ + V'$	[71, 73]	$BaBar_r$ [40]
$b \rightarrow d$	$B \rightarrow \rho + V'$	[71, 71]	LEP_r [60, 61]
	$\Lambda_b \to n + V'$	[72, 74]	Lifetime _{r} [22, 63]
a \ 4	$D^+ \to \pi^+ + V'$	[75, 76]	CLEO _r [22, 42]
$c \rightarrow u$	$\Lambda_c \to p + V'$	[77, 77]	BES III [45], Lifetime _r [22, 63]

[Folch, Klingel, ES, Tabet, Ziegler 24]

Dipole interaction — B sector

 $* \sim 2\sigma$ excess in 2023 $B \to K \nu \nu$ Belle2 measurement [recast from Altmannshofer et al 23]

pseudoscalar \rightarrow pseudoscalar decays **insensitive to dipoles** for small $m_{V'}$!

Dipole interaction — K, D sector

* not including a recast of the new NA62 measurement of $K^+
ightarrow \pi^+
u
u$

pseudoscalar ightarrow pseudoscalar decays **insensitive to dipoles** for small $m_{V'}!$

Vector interaction — B sector

Vector interaction — K, D sector

E. Stamou

16

Flavour phenomenologoly of light, dark Vectors

Take-away messages

- FCNCs \rightarrow strong bounds on Λ (UV-completion scale)
- Constraining power depends on $m_{V'}$
- Different decays probe differently the Lorentz structure
- → Full picture requires two-body interpretations of spectra and combination of channels
- X Currently only rudimentary recasts and extrapolations
- X Missing reliable dedicated exp. analyses

Question: what if the two-body decays kinematically inaccessible?

Perturbative-unitarity bounds on FV couplings

• Proca theory is **incomplete**

[=massive vectors without Higgs modes]

→ Place unitarity bounds on FV coupling from $2 \rightarrow 2$ scattering

[similar to unitarity bounds on Higgs mass prior to discovery]

• Partial-wave expansion of **massive** $2 \rightarrow 2$ helicity amplitudes

$$\mathcal{T}_{fi}^{J} = \frac{\beta_i^{1/4} \beta_j^{1/4}}{32\pi s} \int_0^\pi d\theta \sin\theta d_{\lambda_i \lambda_j}^J(\theta) \mathcal{T}_{fi;\lambda_i \lambda_j}(s,\theta)$$

• S-matrix unitarity implies bound for forward scattering i = f

$$\operatorname{Im}[\mathcal{T}_{ii}^{l}] \geq |\mathcal{T}_{ii}^{l}|^{2}$$

[in progress with Folch, Tabet, Ziegler]

- Diagonalisation corresponds to forwards scattering (i = f)
- Unitarity implies bound on largest eigenvalue $|\lambda_{\max}| \leq 1$
- Bound on FV couplings

FV couplings and 2 ightarrow 2 unitarity

Two origins

- Standard pertubativity

Less relevant for UV completion (e.g. applicable also to QED)

- Bad high-energy behaviour $\mathcal{M} \propto (\sqrt{s})^n$ Most interesting and numerically relevant
- Parametrics of badly-behaved amplitudes

— Vector-type from $V'V' o ar{f}f$ [no bad behaviour for $m_{i,j} o 0$]

 $\left(\mathcal{T}_{00}^{\pm\pm}\right)^{J=0} \propto \frac{\sqrt{s}}{\Lambda^2} \sqrt{(m_i - m_j)^2 \, |\mathbb{C}_{ij}^V|^4 + (m_i + m_j)^2 \, |\mathbb{C}_{ij}^{V5}|^4 + \text{interference}}$

— Dipole-type from $V'V' o ar{f}f$ [same for various ff o ff amplitudes]

 $\left(\mathcal{T}_{\pm\pm}^{\pm\mp}\right)^{J=1} \propto \tfrac{s}{\Lambda^2} \sqrt{|\mathbb{C}_{ij}^D|^4 + |\mathbb{C}_{ij}^{D5}|^4 + \mathsf{interference}}$

Assume unitarity up to $\sqrt{s_{\max}} = 10$ TeV ightarrowBound on $\mathbb{C}_{ij}^{V/D(5)}/\Lambda$

- **X** Bounds on vector-type weak because $\propto m_{\mathsf{fermion}}$
- Small dependence on $m_{V'}$

[leading approximation independent of it]

Bounds valid for any $m_{V'}$

[no kinematic constraint as for decays]

Example: **bd-sector vector-type**

[preliminary, in progress with Folch, Tabet, Ziegler]

Conclusions

• Possible to hide NP with Light NP

- \rightarrow QCD axions, sterile ν 's, and dark-photons/light dark vectors
- → Quark-flavour can provide competitive tests
- → Look for interpretations of invisible signatures

Light Dark Vectors

- → Rich flavour phenomenology
- → Considered vector- and dipole-type couplings
- → Multiple channels and dedicated analyses needed for full picture

Unitarity Bounds

- \clubsuit Constrain FV couplings from $2 \to 2$ scattering
- → Much weaker if flavour bounds apply

backup

Leptons

$$\mu
ightarrow eV', au
ightarrow \mu V', au
ightarrow e$$

 $au
ightarrow \mu V'$ and au
ightarrow e

- Bounds from total rate of $au o \mu/e + ext{invis.}$ from Belle2
- Only sensitive to combination $|\mathbb{C}_{\tau\ell}^{V/D}|^2 + |\mathbb{C}_{\tau\ell}^{V/D5}|^2$

 $\mu \to eV'$

Use polarisation to suppress SM backgrounds in Michel decays

$$\frac{d\Gamma}{d\cos\theta}\propto (1+A\cos\theta)$$

 θ : angle between muon spin and direction of electron isotropic : A = 0 V-A : A = -1 V+A : A = +1

[see Callibi et al 20, Jho et al 22, Knapen et al 22/23, Hill et al 23, Folch et al 24]

Bounds on au e and $au \mu$ couplings to V'

[Folch, Klingel, ES, Tabet, Ziegler 24]

Bounds on μe coupling to V'

[Jodidio recast: Calibbi, Redigolo, Ziegler, Zupan 18]

[TWIST recast: Folch, Klingel, ES, Tabet, Ziegler 24]

Two theoretically motivated / minimal light-NP setups

QCD axion

- solution to Strong CP Problem [Peccei, Quinn 77; Wilczek 78; Weinberg 78] - only requirement: $\frac{a}{f_{z}} G \widetilde{G}$, $m_{a} \ll \Lambda_{QCD}$

Dark Photon

– minimal U(1)' extention of SM [Holdom 86: Favet 90: ...] - kinetic mixing with photon: $\epsilon FF'$, massive or massless

But more couplings than

$$\frac{1}{a}G\widetilde{G}$$
 or $\epsilon FF'$

→ More discovery channels!

→ Comparison/correlations between experiments often misleading

QCD axion

 F_{ij}^V : constraints from $M \to Pa$ $K^+ \to \pi^+ a, D^+ \to \pi^+, B^+ \to K^+/\pi^+ a$ excellent prospects [NA62, Belle 2]

$$F_{ij}^A$$
: $\Lambda \rightarrow na$ (SN), $B^+ \rightarrow K^{*+}a$
 $M - \overline{M}$ (weak, UV dependent)

$$\mathcal{L}_{\text{FCNC}} = \frac{\partial_{\mu}a}{F_{ij}^{V}} \bar{f}_{i}\gamma^{\mu}f_{j} + \frac{\partial_{\mu}a}{F_{ij}^{A}} \bar{f}_{i}\gamma^{\mu}\gamma_{5}f_{j}$$

	F_{ii}^V [GeV]	F_{ii}^A [GeV]
sd	$6.8 imes10^{11}$	5.4×10^9
cu	9.7×10^7	4.8×10^7
bs	3.3×10^8	$1.3 imes 10^8$
bd	1.1×10^8	2.3×10^6

[Leading constraints from Camalich et al 20]