Christoph Englert

Higgs and CP violation

Discrete 2024 02/12/24

2024 DISCRETE

ALVIE DIRECT. BREEZE SUCCESSES BET

LEVERHULME TRUST_____

Science and Technology Facilities Council

What is the nature of the TeV scale?

...and what are its implications?

- plethora of *serious* theoretical/observational problems
- somehow SM correlations are unexpectedly accurate

monetise electroweak data correlations towards BSM discovery?

- New avenues for collider CP sensitivity?
- BSM sensitivity from rare multi-Higgs processes?
- What can the LHC do for us?

"Low energy physics highly rules the Higgs CP game."

e.g. [Pospelov, Ritz `05] [Engel, Ramsay-Musolf, van Kolck `13]

q, e

e.g. [Cirigliano, Crivellin, Dekens et al. `19]

 $\psi^2 \varphi^3$

 $(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$

 $(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$

 $(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$

+...

"Low energy physics highly rules the Higgs CP game."

e.g. [Pospelov, Ritz `05] [Engel, Ramsay-Musolf, van Kolck `13]

[Grzadkowski et al. `17]

underlying UV dynamics can often imply delicate cancellations → comp. Higgs ...

...

...[Brod, Cornell, Skodras, Stamou `22], [Brod, Polonsky, Stamou `23], [Degenkolb, Elmer, Modak, Muhlleitner, Plehn `24]

[Brod, Cornell, Skodras, Stamou `22]

...[Brod, Cornell, Skodras, Stamou `22], [Brod, Polonsky, Stamou `23], [Degenkolb, Elmer, Modak, Muhlleitner, Plehn `24]

...[Brod, Cornell, Skodras, Stamou `22], [Brod, Polonsky, Stamou `23], [Degenkolb, Elmer, Modak, Muhlleitner, Plehn `24]

high energies?

...[Brod, Cornell, Skodras, Stamou `22], [Brod, Polonsky, Stamou `23], [Degenkolb, Elmer, Modak, Muhlleitner, Plehn `24]

high energies?

...[Brod, Cornell, Skodras, Stamou `22], [Brod, Polonsky, Stamou `23], [Degenkolb, Elmer, Modak, Muhlleitner, Plehn `24]

gh energies?

...and we are already in the deep end \bigcirc

[ATLAS, 2006.15458]

 evidence for BSM physics ?

Wilson	Includes	95% confidence interval [TeV ⁻²]		<i>p</i> -value (SM)
coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19_0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	2 78 1 13	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

[ATLAS, 2006.15458]

Higgs CP violation ?

- asymmetry-based measurement in elw.
 Z+2jet production
- symmetric CP even effects cancel
- challenging to combat fluctuations

 evidence for BSM physics ?

> **unlikely but directly testable** [Das Bakshi et al. `20] [Biekötter, Gregg, Krauss, Schönherr `21]

going beyond

- CP-interference net zero results from cancelling event weights

 e.g. [Gritsan et al. `20]
 can create (near) optimal observable from
 binary ± weight distinction?
 [Bhardwaj et al. `21]
 - test cases $h \rightarrow ZZ^*$ (single scale) and weak boson fusion (h+2jets)

CP-interference net zero results from cancelling event weights

e.g. [Gritsan et al. `20]

can create (near) optimal observable from *binary* ± *weight* distinction?

[Bhardwaj et al. `21]

• test cases $h \rightarrow ZZ^*$ (single scale) and weak boson fusion (h+2jets)

 $\begin{aligned} \mathcal{O}_{\Phi\widetilde{B}} &= \Phi^{\dagger}\Phi B^{\mu\nu}\widetilde{B}_{\mu\nu} \,, \\ \mathcal{O}_{\Phi\widetilde{W}} &= \Phi^{\dagger}\Phi W^{i\,\mu\nu}\widetilde{W}^{i}_{\mu\nu} \\ \mathcal{O}_{\Phi\widetilde{W}B} &= \Phi^{\dagger}\sigma^{i}\widetilde{W}^{i\,\mu\nu}B_{\mu\nu} \end{aligned}$

baseline is ATLAS 41 `21 (139/fb) [CERN-EP-2021-019]

	CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{B}}/\Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{W}} / \Lambda^2 \; [\text{TeV}^{-2}]$
	$\Phi_{4\ell}$	[-6.2, 6.2]	[-1.4, 1.4]	[-30,30]
100000	$\Phi_{4\ell},m_{12}$	[-1.9,1.9]	[-0.85, 0.85]	[-3.7,3.7]
	O_{NN} (binary)	[-1.5, 1.5]	[-0.75, 0.75]	[-3.0, 3.0]
	O_{NN} (multi-class)	[-1.4,1.4]	[-0.71, 0.71]	[-2.7, 2.7]

improvements beyond multi-dim fits

[Cabibbo, Maksymowicz `68] [Truman `78] [Dell`Aquila, Nelson `86]...

going beyond

CP-interference net zero results from cancelling event weights

e.g. [Gritsan et al. `20]

can create (near) optimal observable from *binary* ± *weight* distinction?

[Bhardwaj et al. `21]

• test cases $h \rightarrow ZZ^*$ (single scale) and weak boson fusion (h+2jets)

baseline is ATLAS $\tau \tau$ VBF_1 (139/fb) [ATLAS-CONF-2021-044]

CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{B}}/\Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{W}} / \Lambda^2 \; [\text{TeV}^{-2}]$
$\Delta \phi_{jj}$	[-21, +21]	[-149, +149]	[-0.60, +0.60]
O_{NN} (binary)	[-11,+11]	[-43,+43]	[-0.66, +0.66]
O_{NN} (multi-class)	[-10,+10]	[-36, +36]	[-0.42, +0.42]

improvements beyond multi-dimetrits possible but reference to SM necessary to gain kinematic reference point

[Plehn, Rainwater `01]

SMEFT SU(2)xU(1)/U(1)

SMEFT SU(2)xU(1)/U(1)

$$\mathcal{O}_{\Phi\widetilde{B}} = \frac{c_{\Phi\widetilde{B}}}{\Lambda^2} \Phi^{\dagger} \Phi B^{\mu\nu} \widetilde{B}_{\mu\nu}$$

SMEFT SU(2)xU(1)/U(1)

$\mathcal{O}_{\Phi \widetilde{B}} = \frac{c_{\Phi \widetilde{B}}}{\Lambda^2} \Phi^{\dagger} \Phi B^{\mu \nu} \widetilde{B}_{\mu \nu}$

$$\mathcal{F}_{h,B} \operatorname{Tr} \left[B_{\mu\nu} \sigma^3 \widetilde{B}^{\mu\nu} \sigma^3 \right]$$
$$= \left(c_{hB} \frac{h}{v} + c_{hhB} \frac{h^2}{2v^2} + \dots \right) B^{\mu\nu} \widetilde{B}_{\mu\nu}$$

SMEFT SU(2)xU(1)/U(1)

$$\mathcal{O}_{\Phi\widetilde{B}} = \frac{c_{\Phi\widetilde{B}}}{\Lambda^2} \Phi^{\dagger} \Phi B^{\mu\nu} \widetilde{B}_{\mu\nu}$$

HEFT SU(2)xSU(2)/SU(2)

$$\mathcal{F}_{h,B} \operatorname{Tr} \left[B_{\mu\nu} \sigma^3 \widetilde{B}^{\mu\nu} \sigma^3 \right]$$
$$= \left(c_{hB} \frac{h}{v} + c_{hhB} \frac{h^2}{2v^2} + \dots \right) B^{\mu\nu} \widetilde{B}_{\mu\nu}$$

correlation across multiplicities

$$\frac{c_{h\widetilde{B}}}{v} = c_{\Phi\widetilde{B}} \frac{v}{\Lambda^2} , \ c_{hh\widetilde{B}} = c_{\Phi\widetilde{B}} \frac{v^2}{\Lambda^2} , \dots$$

SMEFT SU(2)xU(1)/U(1)

$$\mathcal{O}_{\Phi\widetilde{B}} = \frac{c_{\Phi\widetilde{B}}}{\Lambda^2} \Phi^{\dagger} \Phi B^{\mu\nu} \widetilde{B}_{\mu\nu}$$

correlation across multiplicities

$$\frac{c_{h\widetilde{B}}}{v} = c_{\Phi\widetilde{B}} \frac{v}{\Lambda^2} , \ c_{hh\widetilde{B}} = c_{\Phi\widetilde{B}} \frac{v^2}{\Lambda^2} , \dots$$

$$\mathcal{F}_{h,B} \operatorname{Tr} \left[B_{\mu\nu} \sigma^3 \widetilde{B}^{\mu\nu} \sigma^3 \right]$$
$$= \left(c_{hB} \frac{h}{v} + c_{hhB} \frac{h^2}{2v^2} + \dots \right) B^{\mu\nu} \widetilde{B}_{\mu\nu}$$

SMEFT SU(2)xU(1)/U(1)

(non-linear) fermion-Higgs interactions

(non-linear) fermion-Higgs interactions

quartic top-Higgs contact interaction drive phenomenology

[Grober et al. `10] [Banerjee et al. `22]

(non-linear) fermion-Higgs interactions

 additional *tthh* sensitivity mitigates limitations (more work to be done for the LHC)

[CE, Krauss, Spannowsky, Thompson `14] [ATLAS `16] • sad but true: jury is still out on what's at play at the electroweak scale

- sad but true: jury is still out on what's at play at the electroweak scale
- crucially need a more fine-grained picture of Higgs boson interactions
 - CP-sensitivity of Higgs interactions within reach of the LHC, optimisation can gain up to factors of 2-10
 - geometric view on the symmetry-breaking sector
 - entirely new (effective) perspective on the nature of the TeV scale
 - relevance for Higgs boson CP

- sad but true: jury is still out on what's at play at the electroweak scale
- crucially need a more fine-grained picture of Higgs boson interactions
 - CP-sensitivity of Higgs interactions within reach of the LHC, optimisation can gain up to factors of 2-10
 - geometric view on the symmetry-breaking sector
 - entirely new (effective) perspective on the nature of the TeV scale
 - relevance for Higgs boson CP
 - testable at the LHC!