New Physics in Top Operators

David Marzocca

DISCRETE 2024 - 02/12/2024

1) Introduction: the New Physics flavour problem & EFT approach

2) How much aligned to the third generation should New Physics couplings be?

- Take the $B \rightarrow Kvv$ excess as a guide to set an overall scale of New Physics
- Consider a **specific flavour structure** that allows to deviate arbitrarily from the third generation, while keeping only a few parameters (unlike a general SMEFT approach).
- Evaluate **quantitatively** the **allowed misalignment** from third generation. _

3) What are the constraints on heavy New Physics coupled to the top quark?

Outline

Indirect (Flavour + EW) vs. **Direct** (LHC)

Flavour in the **SM has a rigid structure**: accidental symmetries and suppression (**FCNC**, **CP violation**, **LFV**, etc).

Flavour in the SM has a rigid structure: accidental symmetries and suppression (FCNC, CP violation, LFV, etc).

Generic heavy new physics, parametrised in SMEFT:

Flavour in the SM has a rigid structure: accidental symmetries and suppression (FCNC, CP violation, LFV, etc).

Generic heavy new physics, parametrised in SMEFT:

SMEFT

MEW

We can expect large effects in rare or forbidden processes!

Precision tests of forbidden or suppressed processes in the SM are powerful probes of physics Beyond the Standard Model. >> Flavour Physics ! <<

Precision tests push Λ to be very high

Bounds on Λ (taking $c_i^{(6)} = 1$) from various processes

If $c_{FV}^{(6)} = 1$: $\Lambda_{FV} \gtrsim 10^6 \text{ TeV}$

 $\sum_{sheft}^{\lfloor d=6 \end{pmatrix}} = \sum_{i} \frac{C_{i}^{(6)}}{N^{2}} O_{i}^{(6)} \left[q_{sh} \right]$

Precision tests push Λ to be very high

Bounds on Λ (taking $c_i^{(6)} = 1$) from various processes

If $c_{FV}^{(6)} = 1$: $\Lambda_{FV} \gtrsim 10^6 \text{ TeV}$

$$\sum_{i=1}^{|d=6|} \sum_{i=1}^{|d=6|} \sum_{i=1}^{|d=6|} \frac{C_{i}^{(6)}}{N^{2}} O_{i}^{(6)} [q_{sh}]$$

Smaller values of the NP scale are instead motivated

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies
- $\Lambda_{\rm NP} \sim 1 10 {\rm ~TeV}$

olem ers

Cij ~

Precision tests push Λ to be very high

Bounds on Λ (taking $c_i^{(6)} = 1$) from various processes

If $c_{FV}^{(6)} = 1$: $\Lambda_{FV} \gtrsim 10^{6} \text{ TeV}$

$$\sum_{i=1}^{|d=6|} \sum_{i=1}^{|d=6|} \sum_{i=1}^{|d=6|} \frac{C_{i}^{(6)}}{N^{2}} O_{i}^{(6)} [q_{sh}]$$

Smaller values of the NP scale are instead motivated

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies

Need some Flavour Protection

E.g. CKM-like suppression of FCNC

$$\begin{pmatrix} \mathcal{E}_{1} & \lambda^{5} & \lambda^{3} \\ \lambda^{5} & \mathcal{E}_{2} & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix} \lambda \sim \sin \theta_{c}$$

New physics likes the Top

- $M_{\tilde{q}_{(1,2)}} \gtrsim 2 \text{ TeV}$ E.g. squark:
- $M_{LQ(\mu,e)} \gtrsim 1.8 \text{ TeV}$ E.g. Scalar LQ:

- (1)
- Bounds from direct searches @ LHC are stronger for light fermions than for third generation ones.

$M_{\tilde{t},\tilde{b}} \gtrsim 1.4 \text{ TeV}$ $M_{LQ(\tau)} \gtrsim 1.1 \text{ TeV}$

New physics likes the Top (1)

Bounds from direct searches @ LHC are stronger for light fermions than for third generation ones.

- E.g. squark: $M_{\tilde{q}_{(1,2)}} \gtrsim 2 \text{ TeV}$
- $M_{LQ(\mu,e)} \gtrsim 1.8 \text{ TeV}$ E.g. Scalar LQ:

New Physics coupled to the top should be lighter in order to address the Higgs hierarchy problem, could also be related to the SM flavour puzzle (lighter NP gives larger Yukawas in some models).

$M_{\tilde{t}.\tilde{b}} \gtrsim 1.4 \text{ TeV}$ $M_{LQ(\tau)} \gtrsim 1.1 \text{ TeV}$

(2)

New physics likes the Top

- E.g. squark: $M_{\tilde{q}_{(1,2)}} \gtrsim 2 \text{ TeV}$
- $M_{LQ(\mu,e)} \gtrsim 1.8 \text{ TeV}$ E.g. Scalar LQ:

New Physics coupled to the top should be lighter in order to address the Higgs hierarchy problem, could also be related to the SM flavour puzzle (lighter NP gives larger Yukawas in some models).

X Non-universal couplings preferred **U(2)**-like: $\xi_{1,2} \ll 1$

- (1)
- Bounds from direct searches @ LHC are stronger for light fermions than for third generation ones.

$M_{\tilde{t}.\tilde{b}} \gtrsim 1.4 \text{ TeV}$ $M_{LQ(\tau)} \gtrsim 1.1 \text{ TeV}$

(2)

Flavour alignment

We consider now a specific example:

- We assume a Rank-One flavour structure

u

How much should New Physics be aligned to the third generation?

Overall New Physics scale set by the Belle-II excess in B-Kvv

Golden channel decay $\mathbf{B} \rightarrow \mathbf{K}^{(*)} \vee \bar{\mathbf{v}}$ $h \rightarrow s v \overline{v}$

Precise SM predictions possible due to absence of long-distance QCD effects: neutrinos do not couple to the electromagnetic current. $e, \mu, \tau \qquad u, c, t \qquad W^{u, c, t} \qquad W^{u, c,$ $\mathbf{u}, \mathbf{c}, \mathbf{t}$ see 1409.4557, 1503.02693, 2109.11032, 2301.06990, ...

 $BR(B^+ \to K^+ \nu \overline{\nu})_{SM} = (0.444 \pm 0.030) \times 10^{-5}$

Becirevic et al. 2301.06990

Belle-ll₂₀₂₃: BR($B^+ \rightarrow K^+ \nu \overline{\nu}$) = (2.3 ± 0.6) × 10⁻⁵ Combination: BR($B^+ \rightarrow K^+ \nu \overline{\nu}$) = $(1.3 \pm 0.4) \times 10^{-5}$ $BR(B^0 \to K^{*0} \nu \overline{\nu})_{SM} = (9.05 \pm 1.4) \times 10^{-6}$

Belle₂₀₁₇: BR($B \rightarrow K^* v \overline{v}$) < 2.7 × 10-5 (a) 90%CL

Golden channel decay $\mathbf{B} \rightarrow \mathbf{K}^{(*)} \vee \bar{\mathbf{v}}$ $b \rightarrow s v \overline{v}$

Precise SM predictions possible due to absence of long-distance QCD effects: neutrinos do not couple to the electromagnetic current. $e, \mu, \tau \qquad u, c, t \qquad W^{u, c, t} \qquad W^{u, c,$ $\mathbf{u}, \mathbf{c}, \mathbf{t}$ see 1409.4557, 1503.02693, 2109.11032, 2301.06990, ...

 $BR(B^+ \rightarrow K^+ v \overline{v})_{SM} = (0.444 \pm 0.030) \times 10^{-5}$

Becirevic et al. 2301.06990

Belle-ll₂₀₂₃: BR($B^+ \rightarrow K^+ \nu \overline{\nu}$) = (2.3 ± 0.6) × 10⁻⁵ Combination: BR($B^+ \rightarrow K^+ \nu \overline{\nu}$) = $(1.3 \pm 0.4) \times 10^{-5}$

$$R_{K}^{v} = \frac{BR(B - Kvv)}{BR(B - Kvv)^{sm}} = 2,93 \pm 0,90$$

 $BR(B^0 \to K^{*0} \nu \overline{\nu})_{SM} = (9.05 \pm 1.4) \times 10^{-6}$

Belle₂₀₁₇: BR($B \rightarrow K^* v \overline{v}$) < 2.7 × 10-5 (a) 90%CL

$$R_{K^{*}}^{v} = \frac{BR(B \rightarrow K^{*}vv)}{BR(B \rightarrow K^{*}vv)^{sm}} < 3.2 \text{ @95\%CL}$$

Golden channel decay $\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{v} \, \bar{\mathbf{v}}$ $\mathcal{J}_{EFT} > \left[\begin{array}{c} i_{j} \mathcal{L}_{\mathcal{R}} \\ \mathcal{L}_{\mathcal{R}} \end{array} \right] \left(\overline{\mathcal{J}}_{i_{\mathcal{L},\mathcal{R}}} \mathcal{J}_{\mu} \mathcal{J}_{j_{\mathcal{L},\mathcal{R}}} \right) \left(\overline{\mathcal{V}}_{\tau} \mathcal{J}^{\mu} \mathcal{V}_{\tau} \right)$ (see paper for other cases)

Assuming only NP in tau

 $L_{V,A}^{sb\alpha\beta} \equiv L_R^{sb\alpha\beta} \pm L_L^{sb\alpha\beta}$

They probe scales of about 8 TeV, with a slight excess from the SM preferring either a RH or vector-like quark current. Future Belle II results (in particular from the K* mode) will help to clarify the situation.

DM, M. Nardecchia, A. Stanzione, C. Toni [2404.06533]

NA62 (CERN)

$BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})_{SM} = (8.09 \pm 0.63) \times 10^{-11}$

Allwicher et al. [2410.21444] (see also Buras et al. 1503.02693, 2109.11032, etc..)

NA62₂₀₂₄: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.6 \, (^{+3.0}_{-2.7})_{\text{stat}} (^{+1.3}_{-1.2})_{\text{syst}}) \times 10^{-11}$

Derived by combining exclusive and inclusive determinations. [2310.20324, 2406.10074]

KOTO (JPARC)

BR $(K_L \rightarrow \pi^0 v \overline{v})_{SM} = (2.58 \pm 0.30) \times 10^{-11}$ Allwicher et al. [2410.21444] KOTO₂₀₂₁: $BR(K_L \rightarrow \pi^0 \ v \ \overline{v}) < 4.9 \times 10^{-9} \quad @90\%CL$

NA62 (CERN)

$BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})_{SM} = (8.09 \pm 0.63) \times 10^{-11}$

Allwicher et al. [2410.21444] (see also Buras et al. 1503.02693, 2109.11032, etc..)

NA62₂₀₂₄: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.6 \, (^{+3.0}_{-2.7})_{\text{stat}} (^{+1.3}_{-1.2})_{\text{syst}}) \times 10^{-11}$

KOTO (JPARC)

BR $(K_L \rightarrow \pi^0 v \overline{v})_{SM} = (2.58 \pm 0.30) \times 10^{-11}$ Allwicher et al. [2410.21444]

KOTO₂₀₂₁:

 $BR(K_L \rightarrow \pi^0 \ v \ \overline{v}) < 4.9 \times 10^{-9} \quad @90\%CL$

Gherardi, DM, Nardecchia, Romanino <u>1903.10954</u> DM, Nardecchia, Stanzione, Toni <u>2404.06533</u>

Consider the vector space spanned by the **3 generations of down quarks,** $SU(3)_q$:

$$\hat{d} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{s} \sim \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{b} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Gherardi, DM, Nardecchia, Romanino <u>1903.10954</u> DM, Nardecchia, Stanzione, Toni <u>2404.06533</u>

Consider the vector space spanned by the **3 generations of down quarks,** $SU(3)_q$:

$$\hat{d} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{s} \sim \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{b} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

We can parametrise a generic directions as:

$$\hat{n} = \begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}} \\ \sin\theta\sin\phi e^{i\alpha_{bs}} \\ \cos\theta \end{pmatrix}$$

neglecting phases, it is a unit-vector on a semi-sphere

 $\theta \in \left[0, \frac{\pi}{2}\right], \quad \phi \in \left[0, 2\pi\right), \quad \alpha_{bd} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad \alpha_{bs} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ The overall phase is unphysical: $U(1)_{B}$

Gherardi, DM, Nardecchia, Romanino <u>1903.10954</u> DM, Nardecchia, Stanzione, Toni <u>2404.06533</u>

Consider the vector space spanned by the **3 generations of down quarks,** $SU(3)_q$:

$$\hat{d} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{s} \sim \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{b} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

We can parametrise a generic directions as:

$$\hat{n} = \begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}} \\ \sin\theta\sin\phi e^{i\alpha_{bs}} \\ \cos\theta \end{pmatrix}$$

neglecting phases, it is a unit-vector on a semi-sphere

 $\theta \in \left[0, \frac{\pi}{2}\right], \quad \phi \in \left[0, 2\pi\right), \quad \alpha_{bd} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad \alpha_{bs} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ The overall phase is unphysical: $U(1)_{B}$

We show also up quarks using:

$$q_L^i = \left(\begin{array}{c} V_{ji}^* u_L^i \\ d_L^i \end{array}\right)$$

Gherardi, DM, Nardecchia, Romanino 1903.10954 DM, Nardecchia, Stanzione, Toni 2404.06533

 $\mathcal{L}_{\text{LEFT}}^{\text{NP}} = \sum \left[L_L^{ij\alpha\beta} (\bar{d}_L^i \gamma_\mu d_L^j) (\bar{\nu}_L^\alpha \gamma^\mu \nu_L^\beta) + L_R^{ij\alpha\beta} (\bar{d}_R^i \gamma_\mu d_R^j) (\bar{\nu}_L^\alpha \gamma^\mu \nu_L^\beta) \right]$

- We assume that New Physics is aligned to a specific direction \hat{n} .
- > the EFT coefficients are given by an overall scale times the projection of \hat{n} on the specific flavour direction

 $\int_{-\infty}^{-\infty} i \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{$

 $\hat{n} = \begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}} \\ \sin\theta\sin\phi e^{i\alpha_{bs}} \\ \cos\theta \end{pmatrix}$

11

Gherardi, DM, Nardecchia, Romanino 1903.10954 DM, Nardecchia, Stanzione, Toni <u>2404.06533</u>

 $\mathcal{L} \supset \lambda_i \bar{q}^i \mathcal{O}_{NP} + h.c.$ e.g.

 $\mathcal{L}_{\rm LEFT}^{\rm NP} = \sum \left[L_L^{ij\alpha\beta} (\bar{d}_L^i \gamma_\mu d_L^j) (\bar{\nu}_L^\alpha \gamma^\mu \nu_L^\beta) + L_R^{ij\alpha\beta} (\bar{d}_R^i \gamma_\mu d_R^j) (\bar{\nu}_L^\alpha \gamma^\mu \nu_L^\beta) \right]$

- We assume that New Physics is aligned to a specific direction \hat{n} .
- > the EFT coefficients are given by an overall scale times the projection of \hat{n} on the specific flavour direction

$$\frac{\nu v}{=} C \hat{n}_i \hat{n}_j^*$$

$$= \begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}} \\ \sin\theta\sin\phi e^{i\alpha_{bs}} \\ \cos\theta \end{pmatrix}$$

 \hat{n}

- This structure is automatic if New Physics couples linearly to a single combination of quarks:
 - leptoquarks coupled mainly to 1 lepton family - Vector coupled via the mixing of a single vector-like quark

11

Gherardi, DM, Nardecchia, Romanino 1903.10954 DM, Nardecchia, Stanzione, Toni 2404.06533

At any value of (φ, θ) we can fix the overall scale C by imposing the **best-fit of** $B \rightarrow K^{(*)} vv$.

For the best-fit of R_{K}^{v} and for simplicity we fix:

$$d_{55} = d_{6d} = 0$$

 $\mathcal{L}_{\rm LEFT}^{\rm NP} = \sum \left[L_L^{ij\alpha\beta} (\bar{d}_L^i \gamma_\mu d_L^j) (\bar{\nu}_L^\alpha \gamma^\mu \nu_L^\beta) + L_R^{ij\alpha\beta} (\bar{d}_R^i \gamma_\mu d_R^j) (\bar{\nu}_L^\alpha \gamma^\mu \nu_L^\beta) \right]$

- We assume that New Physics is aligned to a specific direction \hat{n} .
- > the **EFT coefficients** are given by an overall scale times the projection of \hat{n} on the specific flavour direction

 $\hat{n} = \begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}} \\ \sin\theta\sin\phi e^{i\alpha_{bs}} \\ \cos\theta \end{pmatrix}$ $\int_{-\infty}^{-\infty} = C \hat{n}_i \hat{n}_j^*$ SPAN $= (\cos \theta \sin \theta \sin \phi = (8 TeV)$

(fit in backup slides)

$\int_{-\infty}^{ij\nu\nu} = C \hat{n}_i \hat{n}_j^*$ sbur

Once C is fixed as function of (θ, ϕ) , all parameters are set and we can check the

constraints from other observables

2404.06533

$$C \cos \theta \sin \theta \sin \varphi = (8 TeV)^{-2}$$

 $ijvv = C \hat{n}_i \hat{n}_j^*$ sbur

Once C is fixed as function of (θ, ϕ) , all parameters are set and we can check the

constraints from other observables

2404.06533

$$\cos \theta \sin \theta \sin \phi = (8 TeV)^{-2}$$

The allowed region (white) is close to the third generation, with a misalignment of O(CKM).

Top-philic New Physics

We just saw how the **preferred region** to address the Belle-II excess compatibly with other constraints is close to the third generation quarks (up to O(CKM) deviations).

This trend is expected and well known, can be generalised:

[e.g. review by Franceschini 2301.04407]

If, in the quark sector, **New Physics couples indeed mostly to the top quark:**

What are the strongest constraints we can put?

Where do they come from?

[Garosi, DM, Rodriguez-Sanchez, Stanzione 2310.00047]

Both experimental and theory arguments motivate having TeV-scale New Physics coupled mostly to the top quark.

How do indirect bounds compare with direct ones from LHC?

[see also these, on similar spirit: 0704.1482, 0802.1413, 1109.2357, 1408.0792, 1909.13632, 2012.10456]

14

Let us assume heavy NP couples, among quarks, mostly to the top.

We leave arbitrary lepton flavour and gauge structures

These are the **SMEFT dim-6** operators satisfying these conditions:

Since we are assuming that the top quark is somehow "special" from the UV point of view, we work in the up quark mass basis:

$$q^i = (u_L^i, V_{ij}d_L^j)$$

[see Isidori et al. 2024 for an analysis varying continuously from up to down basis]

Top SMEFT

		Semi-leptonic		Four quarks
$\mathcal{O}_{lq}^{(1),}$	$, \alpha \beta$	$(ar{\ell}^a\gamma_\mu\ell^eta)(ar{q}^3\gamma^\mu q^3)$	$\mathcal{O}_{qq}^{(1)}$	$(ar q^3\gamma^\mu q^3)(ar q^3\gamma_\mu q^3)$
$\mathcal{O}_{lq}^{(3),}$	$, \alpha \beta$	$(ar{\ell}^a\gamma_\mu au^a\ell^eta)(ar{q}^3\gamma^\mu au^aq^3)$	${\cal O}_{qq}^{(3)}$	$(ar{q}^3\gamma^\mu au^aq^3)(ar{q}^3\gamma_\mu au^aq^3)$
\mathcal{O}_{lu}^{lpha}	$_{\iota}^{eta}$	$(ar{\ell}^lpha\gamma^\mu\ell^eta)(ar{u}^3\gamma_\mu u^3)$	${\cal O}_{uu}$	$(ar{u}^3\gamma^\mu u^3)(ar{u}^3\gamma_\mu u^3)$
\mathcal{O}_{qe}^{lpha}	$_{e}^{eta}$	$(ar{q}^3\gamma^\mu q^3)(ar{e}^lpha\gamma_\mu e^eta)$	$\mathcal{O}_{qu}^{(1)}$	$(ar{q}^3\gamma^\mu q^3)(ar{u}^3\gamma_\mu u^3)$
\mathcal{O}_{ei}^{lpha}	$a_{\mu}^{oldsymbol{eta}}$	$(ar{e}^lpha\gamma^\mu e^eta)(ar{u}^3\gamma_\mu u^3)$	$\mathcal{O}_{qu}^{(8)}$	$(ar{q}^3\gamma^\mu T^A q^3)(ar{u}^3\gamma_\mu T^A u^3)$
$\mathcal{O}_{lequ}^{(1),}$	$, \alpha \beta$	$(ar{\ell}^lpha e^eta)\epsilon(ar{q}^3 u^3)$		Higgs-Top
$\mathcal{O}_{lequ}^{(3),}$	$, \alpha eta u$	$(ar{\ell}^lpha\sigma_{\mu u}e^eta)\epsilon(ar{q}^3\sigma^{\mu u}u^3)$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i \overleftrightarrow{\mathcal{D}_{\mu}} H)(\bar{q}^{3} \gamma^{\mu} q^{3})$
		Dipoles	${\cal O}_{Hq}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{\mathcal{D}}{}^{a}_{\mu} H) (ar{q}^{3} \gamma^{\mu} au^{a} q^{3})$
\mathcal{O}_{u0}	G	$(\bar{q}^3 \sigma^{\mu\nu} T^A u^3) \tilde{H} G^A_{\mu\nu}$	\mathcal{O}_{Hu}	$(H^{\dagger}i \overset{\leftrightarrow}{\mathcal{D}_{\mu}} H) (ar{u}^{3} \gamma^{\mu} u^{3})$
\mathcal{O}_{ul}	W	$(ar{q}^3 \sigma^{\mu u} u^3) au^a ilde{H} W^a_{\mu u}$	\mathcal{O}_{uH}	$(H^\dagger H)(ar{q}^3 u^3 ilde{H})$
\mathcal{O}_{u}	В	$(ar{q}^3 \sigma^{\mu u} u^3) ilde{H} B_{\mu u}$		

[Garosi, DM, Rodriguez-Sanchez, Stanzione 2310.00047]

[Jenkins, Manohar and Trott 2013; Dekens and Stoffer [1908.05295]; Jenkins, Manohar and Stoffer [1711.05270], DSixTools ... Flavour bounds

RG evolution to low scales induce effects in a wide range of observables

Indirect constraints

Observables included

B physics

Kaon

physics

orimontal value
ermental value
$(0.19) \times 10^{-4} $ [38]
± 0.90 [35, 36]
$3.21 \ [35, \ 37]$
49 ± 0.047 [34]
27 ± 0.077 [34]
1.5×10^{-8} [39]
3.6×10^{-5} [40]
4.5×10^{-5} [41]

Observable	Experimental value
$\mathcal{B}(B_s \to ee)$	$< 11.2 \times 10^{-9}$ [42]
$\mathcal{B}(B_s \to \mu \mu)$	$(3.01 \pm 0.35) \times 10^{-9}$ [43]
$\mathcal{B}(B_s \to \tau \tau)$	$< 6.8 imes 10^{-3}$ [44]
$\mathcal{B}(B_s \to e\mu)$	$< 6.3 imes 10^{-9}$ [45]
$\mathcal{B}(B_s \to \mu \tau)$	$< 4.2 imes 10^{-5}$ [46]
$\mathcal{B}(B_d \to ee)$	$< 3.0 \times 10^{-9}$ [42]
$\mathcal{B}(B_d \to \mu \mu)$	$< 2.6 imes 10^{-10}$ [43]
$\mathcal{B}(B_d \to \tau \tau)$	$< 2.1 imes 10^{-3}$ [44]
$\mathcal{B}(B_d \to e\mu)$	$< 1.3 imes 10^{-9}$ [45]
$\mathcal{B}(B_d \to \mu \tau)$	$< 1.4 \times 10^{-5}$ [46]

Experimental value
$(1.14^{+0.4}_{-0.33}) \times 10^{-10} \ [47] \ [48]$
$< 3.6 imes 10^{-9}$ [49]
$< 2.5 imes 10^{-10}$ [50]
$< 2.5 imes 10^{-9}$ [51]
$< 5.6 \times 10^{-12}$ [52]
$< 4.5 \times 10^{-10}$ [53]
$< 3.3 imes 10^{-10}$ [54]
$< 9.1 \times 10^{-11}$ [55]
$< 7.9 \times 10^{-11}$ [56]

Cabibbo angle-related

Global analysis of Cabibbo-related observables by [Cirigliano et al. 2112.02087]

Δ	F	=	2
	_		

Observable	Experimental value	SM prediction
ϵ_K	$(2.228 \pm 0.011) \times 10^{-3}$	$(2.14 \pm 0.12) \times 10^{-3}$
ΔM_s	$(17.765\pm0.006){ m ps}^{-1}$	$(17.35\pm0.94){ m ps}^{-1}$
ΔM_d	$(0.5065\pm0.0019){ m ps}^{-1}$	$(0.502 \pm 0.031) { m ps}^{-1}$

Observable	Experimental value			
Observable	$\ell = e$	$\ell=\mu$		
Δa_ℓ	$(2.8\pm7.4) imes10^{-13}$	$(20.0 \pm 8.4) \times 10^{-10}$		
$g_{ au}/g_{\ell}-1$	$(2.7 \pm 1.4) \times 10^{-3}$	$(0.9 \pm 1.4) \times 10^{-3}$		

-

Leptonic

LFV

Observable	Experimental limit
${\cal B}(\mu o e \gamma)$	$5.0 imes 10^{-13} \ [102]$
${\cal B}(\mu o 3e)$	$1.2 imes 10^{-12} \ [103]$
$\mathcal{B}(\mu \operatorname{Au} ightarrow e \operatorname{Au})$	$8.3 imes 10^{-13} \ [104]$
$\mathcal{B}(au o e \gamma)$	$3.9 imes 10^{-8} \ [105]$
$\mathcal{B}(au ightarrow 3e)$	$3.2 imes 10^{-8} \ [106]$
$\mathcal{B}(au o e ar{\mu} \mu)$	$3.2 imes 10^{-8} \ [106]$
$\mathcal{B}(\tau \to e\pi^0)$	$9.5 imes 10^{-8} \ [107]$
$\mathcal{B}(au o e\eta)$	$1.1 imes 10^{-7} \ [107]$
$\mathcal{B}(au o e\eta')$	$1.9 imes 10^{-7} \ [107]$

Observable	Experimental lim
$\mathcal{B}(au o e \pi^+ \pi^-)$	$2.7 imes 10^{-8}$ [108]
${\cal B}(au o e K^+ K^-)$	4.1×10^{-8} [108]
$\mathcal{B}(au o \mu \gamma)$	$5.0 imes 10^{-8}$ [109]
$\mathcal{B}(au o 3\mu)$	2.5×10^{-8} [106]
$\mathcal{B}(au o \mu \bar{e} e)$	$2.1 imes 10^{-8}$ [106]
$\mathcal{B}(au o \mu \pi^0)$	1.3×10^{-7} [110]
$\mathcal{B}(au o \mu \eta)$	$7.7 imes 10^{-8}$ [107]
$\mathcal{B}(au o \mu \eta')$	$1.5 imes 10^{-7}~[107]$
$\mathcal{B}(\tau \to \mu \pi^+ \pi^-)$	2.5×10^{-8} [108]
$\mathcal{B}(\tau \to \mu K^+ K^-)$	5.2×10^{-8} [108]

EW precision obs. + Higgs

[Falkowski et al. [1503.07872, 1911.07866]

One-parameter fits

What scale are we probing with indirect probes?

One-parameter fits from our global analysis of indirect constraints on top quark operators. In the third column we report the observable giving the dominant constraint in each case.

Wilson	Global fit $[\text{TeV}^{-2}]$	Dominant	Wilson	Global fit $[\text{TeV}^{-2}]$	Dominant	Wilson	Global fit $[\text{TeV}^{-2}]$	Dominant
$C_{qq}^{(+)}$	$(-1.9 \pm 2.3) \times 10^{-3}$	ΔM_s	$C_{lq}^{(+),11}$	$(2.4 \pm 3.5) \times 10^{-3}$	R_K	C^{11}_{eu}	$(5.0\pm 8.1) imes 10^{-2}$	$\Delta g^{Ze}_R{}_{11}$
$C_{qq}^{(-)}$	$(-2.0 \pm 1.0) \times 10^{-1}$	$B_s ightarrow \mu \mu$	$C_{lq}^{(+),22}$	$(-4.0 \pm 3.4) \times 10^{-3}$	R_K	C^{22}_{eu}	$(4.8 \pm 2.1) imes 10^{-1}$	$\Delta g^{Ze}_R{}_{22}$
$C_{qu}^{(1)}$	$(1.3\pm1.0) imes10^{-1}$	ΔM_s	$C_{lq}^{(+),33}$	$(7.2 \pm 4.4) \times 10^{-1}$	$g_{ au}/g_i$	C^{33}_{eu}	$(-2.3\pm2.5) imes10^{-1}$	$\Delta g^{Ze}_R{}_{33}$
$C_{qu}^{(8)}$	$(-1.7 \pm 4.4) \times 10^{-1}$	ΔM_s	$C_{lq}^{(-),11}$	$(10.9 \pm 7.6) \times 10^{-2}$	$R^{ u}_{K^{(*)}}$	$C_{lequ}^{(1),11}$	$(0.4 \pm 1.0) \times 10^{-2}$	$(g-2)_e$
C_{uu}	$(-3.0 \pm 1.7) imes 10^{-1}$	$\delta g^{Ze}_{L,11}$	$C_{lq}^{(-),22}$	$(-6.0 \pm 7.0) \times 10^{-2}$	$R^{ u}_{K^{(st)}}$	$C_{lequ}^{(1),22}$	$(1.8 \pm 1.6) \times 10^{-2}$	C_{eH22}
$C_{Hq}^{(+)}$	$(18.7 \pm 8.8) imes 10^{-3}$	$B_s o \mu \mu$	$C_{lq}^{(-),33}$	$(-1.8 \pm 1.0) \times 10^{-1}$	$R^{ u}_{K^{(st)}}$	$C_{lequ}^{(1),33}$	$(8.0 \pm 9.1) imes 10^{-2}$	C_{eH33}
$C_{Hq}^{(-)}$	$(5.8 \pm 4.5) \times 10^{-2}$	$\delta g^{Ze}_{L,11}$	C^{11}_{lu}	$(-1.7 \pm 7.0) \times 10^{-2}$	$\delta g^{Ze}_{L,11}$	$C_{lequ}^{(3),11}$	$(-0.6 \pm 1.5) \times 10^{-5}$	$(g-2)_e$
C_{Hu}	$(-4.3\pm2.3) imes10^{-2}$	$\delta g^{Ze}_{L,11}$	C_{lu}^{22}	$(-4.3 \pm 1.8) \times 10^{-1}$	$\delta g^{Ze}_{L,22},R_K$	$C_{lequ}^{(3),22}$	$(-19.3 \pm 8.1) \times 10^{-5}$	$(g-2)_{\mu}$
C_{uB}	$(-0.6 \pm 2.0) \times 10^{-2}$	$c_{\gamma\gamma}$	C_{lu}^{33}	$(0.5 \pm 2.4) \times 10^{-1}$	$\Delta g^{Ze}_{L,33}$	$C_{lequ}^{(3),33}$	$(-7.0\pm7.8) imes10^{-1}$	C_{eH33}
C_{uG}	$(-0.1 \pm 2.0) \times 10^{-2}$	c_{gg}	C_{qe}^{11}	$(-0.7\pm3.9) imes10^{-2}$	R_{K^*}			
C_{uH}	$(-0.3\pm 5.2) imes 10^{-1}$	$C_{uH,33}$	C_{qe}^{22}	$(12.1 \pm 9.2) \times 10^{-3}$	$B_s \to \mu \mu$			
C_{uW}	$(-0.1 \pm 3.1) \times 10^{-2}$	$c_{\gamma\gamma}$	C_{qe}^{33}	$(2.2 \pm 2.4) \times 10^{-1}$	$\delta g^{Ze}_{R,33}$			

One-parameter fits

What **scale** are we probing with **indirect** probes?

One-parameter fits from our global analysis of indirect constraints on top quark operators. In the third column we report the observable giving the dominant constraint in each case.

Wilson	Global fit $[\text{TeV}^{-2}]$	Dominant	Wilson	Global fit $[\text{TeV}^{-2}]$	Dominant	Wilson	Global fit $[\text{TeV}^{-2}]$	Dominant
$C_{qq}^{(+)}$	$(-1.9 \pm 2.3) \times 10^{-3}$	ΔM_s	$C_{lq}^{(+),11}$	$(2.4 \pm 3.5) \times 10^{-3}$	R_K	C_{eu}^{11}	$(5.0\pm 8.1) imes 10^{-2}$	$\Delta g_R^{Ze}{}_{11}$
$C_{qq}^{(-)}$	$(-2.0 \pm 1.0) \times 10^{-1}$	$B_s \rightarrow \mu \mu$	$C_{lq}^{(+),22}$	$(-4.0 \pm 3.4) imes 10^{-3}$	R_K	C^{22}_{eu}	$(4.8 \pm 2.1) imes 10^{-1}$	$\Delta g^{Ze}_{R}{}_{22}$
$C_{qu}^{(1)}$	$(1.3\pm1.0) imes10^{-1}$	ΔM_s	$C_{lq}^{(+),33}$	$(7.2 \pm 4.4) \times 10^{-1}$	$g_ au/g_i$	C^{33}_{eu}	$(-2.3\pm2.5) imes10^{-1}$	$\Delta g^{Ze}_R{}_{33}$
$C_{qu}^{(8)}$	$(-1.7 \pm 4.4) \times 10^{-1}$	ΔM_s	$C_{lq}^{(-),11}$	$(10.9 \pm 7.6) \times 10^{-2}$	$R^{ u}_{K^{(*)}}$	$C_{lequ}^{(1),11}$	$(0.4 \pm 1.0) \times 10^{-2}$	$(g-2)_e$
C_{uu}	$(-3.0 \pm 1.7) imes 10^{-1}$	$\delta g^{Ze}_{L,11}$	$C_{lq}^{(-),22}$	$(-6.0 \pm 7.0) \times 10^{-2}$	$R^{ u}_{K^{(*)}}$	$C_{lequ}^{(1),22}$	$(1.8 \pm 1.6) \times 10^{-2}$	C_{eH22}
$C_{Hq}^{(+)}$	$(18.7 \pm 8.8) imes 10^{-3}$	$B_s o \mu \mu$	$C_{lq}^{(-),33}$	$(-1.8 \pm 1.0) \times 10^{-1}$	$R^{ u}_{K^{(*)}}$	$C_{lequ}^{(1),33}$	$(8.0 \pm 9.1) imes 10^{-2}$	C_{eH33}
$C_{Hq}^{(-)}$	$(5.8 \pm 4.5) \times 10^{-2}$	$\delta g^{Ze}_{L,11}$	C_{lu}^{11}	$(-1.7 \pm 7.0) \times 10^{-2}$	$\delta g^{Ze}_{L,11}$	$C_{lequ}^{(3),11}$	$(-0.6 \pm 1.5) \times 10^{-5}$	$(g-2)_e$
C_{Hu}	$(-4.3\pm2.3) imes10^{-2}$	$\delta g^{Ze}_{L,11}$	C_{lu}^{22}	$(-4.3 \pm 1.8) \times 10^{-1}$	$\delta g^{Ze}_{L,22},R_K$	$C_{lequ}^{(3),22}$	$(-19.3 \pm 8.1) \times 10^{-5}$	$(g-2)_{\mu}$
C_{uB}	$(-0.6 \pm 2.0) imes 10^{-2}$	$c_{\gamma\gamma}$	C_{lu}^{33}	$(0.5 \pm 2.4) \times 10^{-1}$	$\Delta g^{Ze}_{L,33}$	$C_{lequ}^{(3),33}$	$(-7.0 \pm 7.8) imes 10^{-1}$	C_{eH33}
C_{uG}	$(-0.1 \pm 2.0) \times 10^{-2}$	c_{gg}	C_{qe}^{11}	$(-0.7\pm 3.9) imes 10^{-2}$	R_{K^*}			
C_{uH}	$(-0.3\pm 5.2) imes 10^{-1}$	$C_{uH,33}$	C_{qe}^{22}	$(12.1 \pm 9.2) \times 10^{-3}$	$B_s o \mu \mu$	Indired	ct bounds are in	the few T
C_{uW}	$(-0.1 \pm 3.1) \times 10^{-2}$	$c_{\gamma\gamma}$	C_{qe}^{33}	$(2.2 \pm 2.4) \times 10^{-1}$	$\delta g^{Ze}_{R,33}$	Excepti	on for tree-level cont	ributions to E

<u>eV</u> range.

3s-mixing, **R_K, Bs** \rightarrow µµ, and top-loop from dipoles to (g-2)_{e,µ}. **Λ** ≈ **10 TeV** Λ ≈ 180 - 80 TeV

Example

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

C_{uu} $(-3.0 \pm 1.7) imes 10^{-1}$ $\delta g_{L,11}^{Ze}$
--

How does it generate a contribution?

 $\mathcal{X}_{\text{SMEFT}} = C_{VV} \left(\overline{t}_{R} \mathcal{X}_{r} t_{R} \right) \left(\overline{t}_{R} \mathcal{X}^{r} t_{R} \right)$

Example

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

How does it generate a contribution?

 $\begin{aligned} \mathcal{L}_{SMEFT} &= \left(\bigcup_{i \in \mathbb{N}} \left(\overline{t}_{R} \mathcal{N}_{r} t_{R} \right) \left| \overline{t}_{R} \mathcal{N}^{r} t_{R} \right) \right. \\ & 1 \text{-loop} \quad \mathbf{V} \\ \left(\bigcup_{i \in \mathbb{N}} \left(\frac{N_{c} \mathcal{Y}_{t}^{2}}{(4 \Pi)^{2}} \log \frac{\Lambda^{2}}{M_{t}^{2}} \right) \left(\overline{t}_{R} \mathcal{N}_{r} t_{R} \right) \left(H^{\dagger} \widetilde{D}^{r} H \right) \end{aligned}$

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

C_{uu} $(-3.0 \pm 1.7) imes 10^{-1}$ $\delta g_{L,11}^{Ze}$
--

How does it generate a contribution?

This is the operator contributing to the **EW T-parameter** (Z-mass). In the fit we used it shows up as a Z-coupling contribution. [1911.07866]

Example

$$\begin{aligned} \mathcal{L}_{SMEFT} &= C_{VV} \left(\bar{t}_{R} \mathcal{X}_{r} t_{R} \right) \left(\bar{t}_{R} \mathcal{X}^{r} t_{R} \right) \\ & 1 \text{-loop} \quad \downarrow \\ C_{VV} \frac{N_{c} \mathcal{Y}_{t}^{2}}{(4 ff)^{2}} \log \frac{\Lambda^{2}}{W_{t}^{2}} \left(\bar{t}_{R} \mathcal{X}_{r} t_{R} \right) \left(\mathcal{H}^{\dagger} \vec{D}^{\mu} \mathcal{H} \right) \\ 2 \text{-loop} (\text{Leading Log}) \quad \downarrow \\ C_{VV} \left(\frac{N_{c} \mathcal{Y}_{t}^{2}}{(4 ff)^{2}} \log \frac{\Lambda^{2}}{W_{t}^{2}} \right)^{2} \left(\mathcal{H}^{\dagger} \vec{D}^{\mu} \mathcal{H} \right)^{2} \end{aligned}$$

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

	C_{uu}	$(-3.0\pm1.7) imes10^{-1}$	$\delta g^{Ze}_{L,11}$
--	----------	----------------------------	------------------------

How does it generate a contribution?

This is the operator contributing to the **EW T-parameter** (Z-mass). In the fit we used it shows up as a Z-coupling contribution. [1911.07866]

Example

$$\begin{aligned} \mathcal{L}_{SMEFT} &= C_{vv} \left(\bar{t}_{R} \mathcal{X}_{r} t_{R} \right) \left(\bar{t}_{R} \mathcal{X}^{r} t_{R} \right) \\ & 1 \text{-loop} \quad \downarrow \\ C_{vv} \frac{N_{c} \mathcal{Y}_{t}^{2}}{(4 ff)^{2}} \log \frac{\Lambda^{2}}{W_{t}^{2}} \left(\bar{t}_{R} \mathcal{X}_{r} t_{R} \right) \left(\mathcal{H}^{\dagger} \vec{D}^{\nu} \mathcal{H} \right) \\ 2 \text{-loop} (\text{Leading Log}) \quad \downarrow \\ C_{vv} \left(\frac{N_{c} \mathcal{Y}_{t}^{2}}{(4 ff)^{2}} \log \frac{\Lambda^{2}}{W_{t}^{2}} \right)^{2} \left(\mathcal{H}^{\dagger} \vec{D}^{\nu} \mathcal{H} \right)^{2} \end{aligned}$$

Direct constraints from LHC

pp->tt $PP \rightarrow t\bar{t}t\bar{t}$ PP-D ttbb

- Top operators can be constrained directly from LHC measurements of top quark processes: **SMEFiT 2105.00006**
 - pp->tt z PP → tłW PP->ttH
 - Higgs physics ggF, VBF, Vh, etc..
- pp->t+X pp - tt + X pp -> tW + X PP->tH+X

21

Indirect vs. Direct

How direct bounds compare with indirect ones? Indirect are typically much stronger.

[Garosi, DM, Rodriguez-Sanchez, Stanzione 2310.00047]

2D fits

Combining bounds from different datasets allows to derive **much** stronger constraints.

Conclusions

If **New Physics** is present at a scale reachable by present or (~near) future colliders, then it must enjoy some **non-trivial flavour structure** that suppresses large FCNC effects.

Typically this tends to align it close it to the 3rd generation.

With a **Rank-One Flavour Violation** setup we show how close to the top direction this should be, in the case of fitting the B \rightarrow Kvv excess: only deviations of \leq O(CKM) are allowed.

Correlations between different observables are crucial to identify the flavour structure.

Assuming New Physics couples mostly to the top quark, we show that indirect bounds provide almost always stronger constraints than direct bounds from LHC: also here it is crucial to combine different datasets.

Conclusions

If **New Physics** is present at a scale reachable by present or (~near) future colliders, then it must enjoy some **non-trivial flavour structure** that suppresses large FCNC effects.

Typically this tends to align it close it to the 3rd generation.

With a **Rank-One Flavour Violation** setup we show how close to the top direction this should be, in the case of fitting the B \rightarrow Kvv excess: only deviations of \leq O(CKM) are allowed.

Correlations between different observables are crucial to identify the flavour structure.

Assuming New Physics couples mostly to the top quark, we show that indirect bounds provide almost always stronger constraints than direct bounds from LHC: also here it is crucial to combine different datasets.

Thank you!

Backup

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	Si	ignature) _	<i>L d t</i> [fb ⁻	1]	Mass limit					Reference
6	$\tilde{q}\tilde{q}, \ \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e,μ mono-iet	2-6 jets 1-3 jets	E_{τ}^{miss} E_{τ}^{miss}	140 140			1.0 0.9		1.85	$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{a}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	2010.14293 2102.10874
Inche	$\tilde{g}\tilde{g}$, $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 e.µ	2-6 jets	$E_T^{\rm miss}$	140	ĝ ĝ		Forbidden		2.3 1.15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293
e Sea	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(f)\tilde{\chi}_{1}^{0}$	1 e,μ ee, μμ	2-6 jets 2 jets	E_{τ}^{miss}	140 140	ĝ ĝ				2.2	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 700 \text{ GeV}$	2101.01629 2204.13072
lusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	$E_T^{\rm miss}$	140 140	ĩg ĩg		1	.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	2008.06032 2307.01094
e e	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	140 140	êg ig			1.25	2.45	$m(\tilde{\chi}_{1}^{0}) < 500 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	2211.08028 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	0 e,µ	2 b	$E_T^{\rm miss}$	140	${ar b_1\ ar b_1}$		0.68	1.255		$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 10 GeV $< \Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 20 \text{ GeV}$	2101.12527 2101.12527
arks ction	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}^0_2 {\rightarrow} b h \tilde{\chi}^0_1$	0 e.μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_{T}^{ m miss}$ $E_{T}^{ m miss}$	140 140	$egin{array}{ccc} & & & & & & & & & & & & & & & & & &$		0. 0.13-0.85	.23-1.35	$\Delta m(\tilde{\ell}^0_2, J \Delta m(\tilde{\ell}^0_2, \tilde{\ell}))$	$\tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=100 GeV $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=0 GeV	1908.03122 2103.08189
nbs	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ	≥ l jet	E_T^{miss}	140	Ĩ1			1.25		m($\tilde{\chi}_{1}^{0}$)=1 GeV	2004.14050, 2012.03799
en.	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}'_1$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_2$ by $\tilde{\tau}_1 \rightarrow \tau \tilde{C}$	1 e,μ 1-2 τ	3 jets/1 b 2 jets/1 b	E_T^{miss} E^{miss}	140 140	t_1 \tilde{t}_2	Forbidden	1.05	5 1.4		m(𝑋'')=500 GeV m(𝑋)=800 GeV	2012.03799, 2401.13430
3 rd g	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 0 e,μ	2 c mono-jet	E_T^{miss} E_T^{miss} E_T^{miss}	36.1 140	\tilde{c} \tilde{t}_1	0.55	0.85			$m(\tilde{t}_1)=0 \text{ GeV}$ $m(\tilde{t}_1^0)=0 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c}]-m(\tilde{t}_1^0)=5 \text{ GeV}$	1805.01649 2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 <i>e</i> ,μ	1-4 b	E_T^{miss}	140	Ĩ1		0.067-1	1.18	.~0	m(X ⁰ ₂)=500 GeV	2006.05880
	$t_2 t_2, t_2 \rightarrow t_1 + Z$	3 e,µ	16	E_T^{mas}	140	<i>t</i> ₂	Forbidden	0.86		m(X ₁)=3	$60 \text{ GeV}, m(\tilde{i}_1) - m(\chi''_1) = 40 \text{ GeV}$	2006.05880
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	Multiple <i>ἶ</i> /jets <i>ee</i> , μμ	≥ljet	E_T^{miss} E_T^{miss}	140 140			0.96		п	$m(\tilde{\chi}_1^0)=0$, wino-bino $\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2103.07586 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via WW	2 e,μ Multiple β/inte		E_T^{miss}	140	$\tilde{\chi}_1^{\pm}$	0.42				$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\chi_1^- \chi_2^-$ via Wh $\tilde{v}^{\pm} \tilde{v}^{\pm}$ via $\tilde{\ell}_{\pm} / \tilde{v}$	viuitipie (/jets	5	E_T^{miss}	140	$\chi_1^- \chi_2^-$ Forbidden \tilde{v}^{\pm}		1.00	Б		$m(\tilde{\chi}_1)=70 \text{ GeV}, \text{ wino-bino}$ $m(\tilde{\chi}_1)=70 \text{ GeV}, wino-bino}$	2004.10894, 2103.07586
SC <	$\chi_1 \chi_1 \forall a \ t_L / v$ $\tilde{\tau} \tilde{\tau} \tilde{\tau} \longrightarrow \tau \tilde{k}_1^0$	2τ.		E_T^T E_T^{miss}	140	$\tilde{\tau} [\tilde{\tau}_R \tilde{\tau}_R]$	0.35 0.5	1.0			$m(t, v)=0.5(m(t_1)+m(t_1))$ $m(\tilde{\chi}_1^0)=0$	2402.00603
die	$\tilde{\ell}_{L,\mathbf{R}}\tilde{\ell}_{L,\mathbf{R}}, \ \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, μ ee, μμ	0 jets ≥ 1 jet	E_T^{miss} E_T^{miss}	140 140	ĩ ĩ 0.2	26	0.7			$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\ell})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$	1908.08215 1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	E_{T}^{miss} E_{T}^{miss}	140 140	Ĩ Ĥ	0.55	0.94			$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	2401.14922 2103.11684
		2 e,µ	≥ 2 jets	E_T^{miss}	140	П Й		0.77		BR	$\tilde{\chi}_1^0 \rightarrow Z\tilde{G}$)=BR $(\tilde{\chi}_1^0 \rightarrow h\tilde{G})$ =0.5	2204.13072
7	$Direct\tilde{\mathcal{X}}_1^+\tilde{\mathcal{X}}_1^-$ prod., long-lived $\tilde{\mathcal{X}}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	140	$ \tilde{\chi}_{1}^{\pm} $ 0.21		0.66			Pure Wino Pure higgsino	2201.02472 2201.02472
ive(Stable § R-hadron	pixel dE/dx		E_T^{miss}	140	ĝ				2.05		2205.06013
l-la	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx		E_T^{miss}	140	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}]$				2.2	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	2205.06013
pa	$\ell\ell, \ell \rightarrow \ell G$	Displ. lep		$E_T^{\rm miss}$	140	$\tilde{e}, \tilde{\mu}$ $\tilde{\tau}$	0.36	0.74			$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	ATLAS-CONF-2024-011 ATLAS-CONF-2024-011
		pixel dE/dx		$E_T^{\rm miss}$	140	Ť	0.36				$\tau(\tilde{\ell}) = 10 \text{ ns}$	2205.06013
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} / \tilde{\chi}_1^{0}$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ		-mice	140	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=	1] 0.6	25 1.05	5		Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 c, µ	0 jets	$E_T^{\rm miss}$	140	$\tilde{\chi}_1^x/\tilde{\chi}_2^y [\lambda_{i33} \neq 0, \lambda_{12i} \neq 0]$		0.95	1	.55	m($\tilde{\mathcal{X}}_{1}^{0}$)=200 GeV	2103.11684
~	gg, $g \to qq\chi_1, \chi_1 \to qqq$ $\tilde{t}_1 \tilde{t} \to t\tilde{k}_1^0 \tilde{k}_2^0 \to tbs$		Multiple		36.1	$\tilde{t} = [\mathcal{X}'_{11}] = 50 \text{ GeV}, 1250 \text{ GeV}$ $\tilde{t} = [\mathcal{X}'_{112}] = 2e-4, 1e-2]$	0.55	1.05	5	1.0 2.34	$m(\tilde{x}_1^0) = 200 \text{ GeV, bino-like}$	ATLAS-CONF-2018-003
ď.	$\tilde{i}, \tilde{i} \rightarrow b \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow b b s$		$\geq 4b$		140	ĩ - 323	Forbiddən	0.95			m($\tilde{\chi}_{1}^{\pm}$)=500 GeV	2010.01015
щ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 b		36.7	$\tilde{t}_1 = [qq, bs]$	0.42 0.0	61				1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e.μ 1 μ	2 b DV		140 136	\tilde{t}_1 \tilde{t}_1 [1e-10< λ' <1e-8, 3e-	10< X <3e-91	1.0		0.4-1.85	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ BB($\tilde{t}_1 \rightarrow a\mu$)=100% cos(i=1)	2406.18367 2003.11956
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}$, $\tilde{\nu}_{1}^{0}$, $\rightarrow ths$, $\tilde{\chi}_{1}^{+}$, $\rightarrow bhs$	1-2 e.u	>6 iets		140	$\tilde{\chi}^0$	0.2-0.32	1.0			Pure higgsing	2106.09609
	AT // 2/// 1/ X 1,2 -403, A 1 -4003	, <u>ε</u> ε, μ	-01013		140	21					r uro nggano	2100.00000
						l .						

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

 10^{-1}

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

Mass scale [TeV]

1

Gherardi, DM, Nardecchia, Romanino <u>1903.10954</u> DM, Nardecchia, Stanzione, Toni <u>2404.06533</u>

	$\sin\theta$
$\hat{n} =$	$\sin \theta$

quark	\hat{n}	ϕ	heta	$lpha_{bd}$	$lpha_{bs}$
down	(1,0,0)	0	$\pi/2$	0	0
strange	(0,1,0)	$\pi/2$	$\pi/2$	0	0
bottom	(0,0,1)	0	0	0	0
up	$e^{i \arg(V_{ub})}(V_{ud}^*, V_{us}^*, V_{ub}^*)$	0.23	1.57	-1.17	-1.17
charm	$e^{i \arg(V_{cb})}(V_{cd}^*, V_{cs}^*, V_{cb}^*)$	1.80	1.53	-6.2×10^{-4}	-3.3×10
top	$e^{i \arg(V_{tb})}(V_{td}^*, V_{ts}^*, V_{tb}^*)$	4.92	0.042	-0.018	0.39

The misalignment between down- and up-quarks is described by the CKM matrix.

 $\phi \cos \phi e^{i\alpha_{bd}}$ $\sin \phi e^{i\alpha_{bs}}$ $\cos \theta$

$\theta \in \left[0, \frac{\pi}{2}\right] \;,$	$\phi \in [0, 2\pi) \ ,$	$\alpha_{bd} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] ,$	$\alpha_{bs} \in \left[-\right]$
		$q_L^i =$	$\left(\begin{array}{c} V_{ji}^* u \\ d_L^i \end{array} \right)$

SMEFT

Possible tree-level contributions from the following SMEFT dim-6 operators:

$$\begin{split} \mathcal{O}_{lq}^{(1)\alpha\beta ij} &= \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}\right) \left(\bar{q}_{L}^{i}\gamma^{\mu}q_{L}^{j}\right) \ , \qquad \mathcal{O}_{Hq}^{(1)ij} = \left(H^{\dagger}\overleftarrow{D}_{\mu}H\right) \left(\bar{q}_{L}^{i}\gamma^{\mu}q_{L}^{j}\right) \ , \\ \mathcal{O}_{lq}^{(3)\alpha\beta ij} &= \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}\sigma_{a}l_{L}^{\beta}\right) \left(\bar{q}_{L}^{i}\gamma^{\mu}\sigma_{a}q_{L}^{j}\right) \ , \qquad \mathcal{O}_{Hq}^{(3)ij} = \left(H^{\dagger}\sigma_{a}\overleftarrow{D}_{\mu}H\right) \left(\bar{q}_{L}^{i}\gamma^{\mu}\sigma_{a}q_{L}^{j}\right) \ , \\ \mathcal{O}_{ld}^{\alpha\beta ij} &= \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}\right) \left(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{j}\right) \ , \qquad \mathcal{O}_{Hd}^{ij} = \left(H^{\dagger}\overleftarrow{D}_{\mu}H\right) \left(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{j}\right) \ . \end{split}$$

RG $C_{SMEFT}(1 \text{TeV})$ dilepton constraints

SMEFT: which combinations of coefficients to study?

- Since the scale of New Physics is ~TeV, the contribution could come from heavy New Physics: SMEFT.

$$egin{aligned} L_L^{ijlphaeta} &= C_{lq}^{(1)lphaeta ij} - C_{lq}^{(3)lphaeta ij} + C_{Hq}^{(1)ij}\delta_{lphaeta} + C_{Hq}^{(3)ij}\ L_R^{ijlphaeta} &= C_{ld}^{lphaeta ij} + C_{Hd}^{ij}\delta_{lphaeta}\,. \end{aligned}$$

- We assume they are induce by specific heavy UV states and study those simplified models instead.

$$\begin{aligned} \mathcal{O}_{lq}^{(1)\alpha\beta ij} &= \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}\right)\left(\bar{q}_{L}^{i}\gamma^{\mu}q_{L}^{j}\right) \\ \mathcal{O}_{lq}^{(3)\alpha\beta ij} &= \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}\sigma_{a}l_{L}^{\beta}\right)\left(\bar{q}_{L}^{i}\gamma^{\mu}\sigma_{a}q_{L}^{j}\right) \\ \mathcal{O}_{ld}^{\alpha\beta ij} &= \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}\right)\left(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{j}\right) \end{aligned}$$

Colorless vectors & Leptoquarks

	\mathbf{Spin}	$G_{ m SM}$	Interaction term	SMEFT coeff.
V'	1	(1 , 3 , 0)	$\left[g_q^{ij}(\bar{q}_L^i\gamma^\mu\sigma_a q_L^j) ~+~ g_\ell^{\alpha\beta}(\bar{l}_L^\alpha\gamma^\mu\sigma_a l_L^\beta)\right]V_{a\mu}'$	$C_{lq}^{(3)}$
Z_L'	1	(1, 1, 0)	$\left[g^{ij}_q(ar q^i_L\gamma^\mu q^j_L)~+~g^{lphaeta}_\ell(ar l^lpha_L\gamma^\mu\sigma_a l^eta_L) ight]Z'_{L\mu}$	$C_{lq}^{(1)}$
Z_R'	1	(1, 1, 0) $ $	$\left[g_q^{ij}(ar{d}_R^i\gamma^\mu d_R^j) ~+~ g_\ell^{lphaeta}(ar{l}_L^lpha\gamma^\mu\sigma_a l_L^eta) ight]Z'_{R\mu}$	C_{ld}
S_1	0	$\left \ (ar{3},1,1/3) \ \right $	$\lambda_{ilpha}^{*}(\overline{q_{L}^{i,c}}\epsilon l_{L}^{lpha})S_{1}$	$C_{lq}^{(1)} = -C_{lq}^{(3)}$
S_3	0	$(\bar{\bf 3},{\bf 3},1/3)$	$\lambda_{ilpha}^*(\overline{q_L^{i,c}}\epsilon\sigma_a l_L^lpha)(S_3)_a$	$C_{lq}^{(1)} = 3C_{lq}^{(3)}$
U_3	1	(3, 3, 2/3)	$\lambda_{ilpha}(\overline{q_L^i}\gamma_\mu\sigma_a l_L^lpha)(U_3^\mu)_a$	$C_{lq}^{(1)} = -3C_{lq}^{(3)}$
$ ilde{R}_2$	0	(3, 2, 1/6)	$\lambda_{ilpha}\overline{d^i_R}(l^lpha_L\epsilon ilde R_2)$	C_{ld}
V_2	1	$(ar{3},2,5/6)$	$\lambda_{ilpha}^{*}\overline{d_{R}^{i,c}}\gamma_{\mu}(l_{L}^{lpha}\epsilon V_{2}^{\mu})$	C_{ld}

U₁ LQ does not contribute to bsvv: we don't consider it

SMEFT

$$\begin{split} \mathcal{O}_{Hq}^{(1)ij} &= \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j} \right) \;, \\ \mathcal{O}_{Hq}^{(3)ij} &= \left(H^{\dagger} \sigma_{a} \overleftrightarrow{D}_{\mu} H \right) \left(\bar{q}_{L}^{i} \gamma^{\mu} \sigma_{a} q_{L}^{j} \right) \;, \\ \mathcal{O}_{Hd}^{ij} &= \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \left(\bar{d}_{R}^{i} \gamma^{\mu} d_{R}^{j} \right) \;. \end{split}$$

vectorlike quarks

Simplified model	\mathbf{Spin}	SM irrep	SMEFT couplings
D	1/2	(3, 1, -1/3)	$C_{Hq}^{(1)} = C_{Hq}^{(3)}$
T_1	1/2	(3, 3, -1/3)	$\Big \qquad C_{Hq}^{(1)} = -3C_{Hq}^{(3)}$
T_2	1/2	$({\bf 3},{\bf 3},2/6)$	$C_{Hq}^{(1)} = 3C_{Hq}^{(3)}$
Q_1	1/2	(3, 2, 1/6)	$ $ C_{Hd}
Q_5	1/2	$({f 3},{f 2},-5/6)$	C_{Hd}

These give too large contributions to B_s mixing and $B_s \rightarrow \mu \mu$:

A good fit of the R^{ν_K} excess is never allowed. (see backup slide)

L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz and O. Sumensari [2309.02246]

UV mediators - R₂ leptoquark

$\mathbf{L}\mathbf{Q}$	Spin	$G_{\rm SM}$	Interaction term	SMEFT coeff.
$ ilde{R}_2$	0	(3 , 2 , 1/6)	$\Big \lambda_{i au} \overline{d^i_R} (l^ au_L \epsilon ilde R_2)$	$ $ C_{ld}

(similar for S_1)

We fix the LQ mass at 2 TeV to avoid direct-searches bounds.

At each parameter space point we fix the best-fit:

$$C_{ld}^{\tau\tau sb}\Big|_{\tilde{R}_2,\text{best-fit}} \approx (7.5\,\text{TeV})^{-2}$$

Show regions excluded by:

UV mediators - R₂ leptoquark

Favoured region from the global fit of all observables, marginalising over $|\lambda|$.

(similar for S_1)

Correlation between *BKvv* and *K***\pi vv** for the points within 1σ region.

Diators - Z'
$$\sum_{ij} g_R^{ij} (\bar{d}_R^i \gamma^\mu d_R^j) + \sum_{\alpha\beta} g_\ell^{\alpha\beta} \bar{l}_L^\alpha \gamma^\mu l_L^\beta \bigg] Z'_\mu$$

(similar for a coupling to LH quarks or for a SU(2) triplet V')

$$C_{ld}^{\tau\tau sb}\Big|_{Z_R, \text{best-fit}} \approx (7.7 \,\text{TeV})^{-2}$$

Meson mixing puts an upper bound on $|g_q/g_l|$. Combined with the **perturbative unitarity** constraint $g_{\ell} < 2.3$ we get an **upper limit on the vector mass** for each point in the plane, when imposing a fit to the anomaly:

$$M_{V'} \lesssim 1391 \text{ GeV} \left(\frac{|g_q/g_\ell|^{\max}}{0.05} \right)^{1/2} |\sin \theta \cos \theta \sin \phi|^{\frac{1}{2}}$$

 $\approx 762 \text{ GeV} \left(\frac{|g_q/g_\ell|^{\max}}{0.05} \right)^{1/2} \left| \frac{\theta}{0.3} \right|^{1/2} , \text{ (for } \theta \ll 1 \text{ and } \phi \sim \pi/2)$

The **vector must be rather light** in the allowed region! Need to check di-tau bounds without assuming EFT.

$$\mathcal{L} \supset \left[\sum_{ij} g_L^{ij} (\bar{q}_L^i \gamma^\mu q_L^j) + \sum_{ij} g_L^i (\bar{q}_L^i \gamma^\mu q_L^j) + \sum_{ij} g_$$

Since g_{ℓ} is large, the Z' decays mostly to $\tau\tau$ or vv, with $Br \sim 1/2$.

$$\sigma(pp \to V^{\prime 0} \to \tau^+ \tau^-) \approx \frac{4\pi^2}{3} \mathcal{B}(V^{\prime 0} \to \tau^+ \tau^-) \sum_{i,j=u,d,s,c,b} \frac{\Gamma(V^{\prime 0} - \tau^+ \tau^-)}{M} = 0$$

 $\frac{\rightarrow q^i \bar{q}^j)}{I_{V'}} \frac{2}{s_0} \mathcal{L}_{q^i \bar{q}^j}(M_{V'})$

 $\Gamma_{\rm tot}/M_{V'} \approx 14\%$

$$\Gamma(V'^0 \to q^i \bar{q}^j) = \frac{M_{V'} N_c}{24\pi} |g_q^{ij}|^2$$

 $M_{Z_{R}^{\prime}}^{max} [GeV]$

Outside the white dashed line is excluded by Flavour + EW

(this is a rough constraint, we neglect effect of different acceptances between scalar and vector resonances)

Fits of the s-b couplings - LEFT & vectors

Fits of the s-b couplings - LQ

Fits of the s-b couplings - VLQ

Given the multiple possible combinations of coefficients, we assume they are induce by specific heavy UV states.

In this case: vector-like quarks:

Simplified model	Spin	SM irrep	SMEFT couplings
D	1/2	(3, 1, -1/3)	$C^{(1)}_{Hq} = C^{(3)}_{Hq}$
T_1	1/2	(3,3,-1/3)	$C_{Hq}^{(1)} = -3C_{Hq}^{(3)}$
T_2	1/2	(3, 3, 2/6)	$C_{Hq}^{(1)} = 3C_{Hq}^{(3)}$
Q_1	1/2	(3, 2, 1/6)	C_{Hd}
Q_5	1/2	(3, 2, -5/6)	C_{Hd}

A good fit of the R^{ν_K} excess is never allowed.

L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz and O. Sumensari [2309.02246]

Observables included

Cabibbo angle

	Tree level matching	RG and 1-loop
$R^{ u}_{K^{(st)}}$	$C^{(1,3)}$ $C^{(1,3),\alpha\beta}$	$C_{Hu}, \ C_{qq}^{(1,3)}, \ C_{qq}^{(1,3)}$
${\cal K} o \pi u ar u$	C_{Hq} , C_{Iq}	$C_{qu}^{(1,8)}, \ C_{uu},$
$B o K^{(*)} \ell_lpha \ell_eta$		
$B_{s,d} o \ell_{lpha} \ell_{eta}$	$C_{H\alpha}^{(1,3)}, C_{I\alpha}^{(1,3),\alpha\beta}, C_{\alpha\beta}^{\alpha\beta}$	$C_{aa}^{(1,3)}, C_{ba}^{lphaeta}$
$K o \pi \ell_{\alpha} \ell_{\beta}$	714 - 14 - 4C	44 2 10
$K ightarrow \ell_lpha \ell_eta$		
$R_{K^{(*)}}$	$C_{lq}^{(1,3),\ell\ell}, \ C_{qe}^{\ell\ell}$	$C_{lu}^{\ell\ell}$
$B \to X_s \gamma$		$C_{Hq}^{(1,3)}, C_{uB}, C_{uB}$

With electrons and muons: **EW bounds** do **not allow** a combined explanations of Cabibbo anomaly and $B \rightarrow Kvv$

2D fits

Gaussian Fit ex. semileptonics

$$\vec{C} = (C_{qq}^{(+)}, C_{qq}^{(-)}, C_{uu}, C_{qu}^{(1)}, C_{qu}^{(8)})$$

 $\Delta \chi^2 \equiv \chi^2_{\rm SM} - \chi^2_{\rm best-fit} \approx 10.9$

Due to flat directions, we report the result in terms of the eigenvectors of the Hessian matrix around the minimum

$$\chi^{2} = \chi^{2}_{\text{best-fit}} + (C_{i} - \mu_{C_{i}})(\sigma^{2})^{-1}_{ij}(C_{j} - \mu_{C_{j}}) = \chi^{2}_{\text{best-fit}} + \frac{(K_{i} - \mu_{K_{i}})^{2}}{\sigma^{2}_{K_{i}}} \qquad \vec{K} = U_{KC}\vec{C}$$

Coefficient	Gaussian fit $[\text{TeV}^{-2}]$	Coefficient	Gaussian
K_1	0.0019 ± 0.0023	K_7	0.54 :
K_2	0.0179 ± 0.0083	K_8	0.74 :
K_3	-0.002 ± 0.015	K_9	-0.8
K_4	-0.016 ± 0.021	K_{10}	-0.7
K_5	0.044 ± 0.029	K_{11}	12 :
K_6	-0.30 ± 0.38	K_{12}	-11

 $(C_{Hq}^{(+)}, C_{Hq}^{(-)}, C_{Hu}, C_{uH}, C_{uG}, C_{uW}, C_{uB}))$

(only mild improvements in several observables, not a single "anomaly")

fit $[\text{TeV}^{-2}]$ ± 0.79 ± 0.88 ± 1.3 ± 1.8 ± 13 ± 16

Flat directions: $K_{11} \approx -0.80C_{qq}^{(-)} + 0.45C_{uu} - 0.36C_{qu}^{(1)} - 0.12C_{Hu} + \dots$ $K_{12} \approx +0.40C_{qq}^{(-)} + 0.88C_{uu} + 0.24C_{qu}^{(1)} - 0.09C_{Hu} + \dots$

