DISCRETE 2024 - 02/12/2024

David Marzocca

1

New Physics in Top Operators

Outline

3) What are the constraints on heavy New Physics coupled to the top quark?

Indirect (Flavour + EW) vs. *Direct* (LHC)

1) Introduction: the New Physics flavour problem & EFT approach

2) How much aligned to the third generation should New Physics couplings be?

- Take the $B \to K\nu\nu$ excess as a guide to set an overall scale of New Physics
- Consider a **specific flavour structure** that allows to deviate arbitrarily from the third generation, while keeping only a few parameters (unlike a general SMEFT approach). t idit discussion to the theories the α upon the three coecients *CS,T,R*. As the constraints on ˆ*n* depend on the ratios *C^S* : *C^T* : *CR*.
- Evaluate **quantitatively** the **allowed misalignment** from third generation. mediators.

$\sqrt{6}$ for $\frac{1}{2}$ couples only to left-handed fermions. We begin by using the set of $\sqrt{2}$ e↵ective description in eq. (3). For *C^R* = 0, the coecient *C^L* = *C^S* + *C^T* is fixed directly by

Flavour in the **SM has a rigid structure**: accidental symmetries and suppression (**FCNC**, **CP violation**, **LFV**, etc).

Flavour in the **SM has a rigid structure**: accidental symmetries and suppression (**FCNC**, **CP violation**, **LFV**, etc).

E

Generic **heavy new physics**, parametrised in SMEFT:

Flavour in the **SM has a rigid structure**: accidental symmetries and suppression (**FCNC**, **CP violation**, **LFV**, etc).

We can expect large effects in rare or forbidden processes!

Precision tests of forbidden or suppressed processes in the SM **are powerful probes of physics Beyond the Standard Model. >> Flavour Physics ! <<**

Generic **heavy new physics**, parametrised in SMEFT:

Precision tests push Λ to be very high

Bounds on Λ (taking c_i ⁽⁶⁾ = 1) from various processes

 I **f** c F V ⁽⁶⁾ = 1: Λ F V \geq 10⁶ TeV

 $\sum_{i}^{\lfloor d-\epsilon \rfloor} \mathfrak{g}_{i} = \sum_{i} \frac{C_{i}^{(\epsilon)}}{\Lambda^{2}} \mathcal{O}_{i}^{(\epsilon)}[\varphi_{\text{SH}}]$

Precision tests push Λ to be very high

Bounds on Λ (taking c_i ⁽⁶⁾ = 1) from various processes

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies
- **ΛNP ~ 1 10 TeV**

I **f** c *FV*⁽⁶⁾ = 1: Λ FV \geq 10⁶ TeV

$$
\mathcal{L}_{\text{MCFT}}^{[d=6]} = \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}[\varphi_{\text{SH}}]
$$

Smaller values of the NP scale are instead **motivated**

 C_{i_j} ~

Precision tests push Λ to be very high

Bounds on Λ (taking c_i ⁽⁶⁾ = 1) from various processes

 I **f** c_{FV} ⁽⁶⁾ = 1: $\Lambda_{FV} \ge 10^6$ TeV

$$
\mathcal{L}_{\text{MFFT}}^{[d=6]} = \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}[\varphi_{\text{SH}}]
$$

Smaller values of the NP scale are instead **motivated**

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies

Need some Flavour Protection

E.g. CKM-like suppression of FCNC

$$
\left(\begin{array}{cc} \mathcal{E}_{1} & \lambda^{5} & \lambda^{3} \\ \lambda^{5} & \mathcal{E}_{2} & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{array}\right)_{\lambda} \sim \sin \theta_{c}
$$

New physics likes the Top

- **E.g.** squark: **̃** $M_{\tilde{q}_{(1,2)}} \geq 2 \text{ TeV}$
-
- **(1)**
- **Bounds from direct searches** @ LHC are **stronger for light fermions than for third generation** ones.

$M_{\tilde{t},\tilde{b}} \ge 1.4$ TeV **E.g.** Scalar LQ: $M_{LQ(\mu,e)} \ge 1.8$ TeV $M_{LQ(\tau)} \ge 1.1$ TeV

New physics likes the Top (1)

- $\mathbf{E}.\mathbf{g}$. **squark:** $\mathbf{M}_{\tilde{\mathbf{q}}^{(1,2)}} \geq 2 \text{ TeV}$ $\mathbf{M}_{\tilde{\mathbf{t}},\tilde{\mathbf{b}}}$ **̃**
-

Bounds from direct searches @ LHC are **stronger for light fermions than for third generation** ones.

(2)

New Physics coupled to the top should be **lighter** in order to address the **Higgs hierarchy problem**, could also be related to the SM flavour puzzle (lighter NP gives larger Yukawas in some models).

$M_{\tilde{t},\tilde{b}} \ge 1.4$ TeV **E.g.** Scalar LQ: $M_{LQ(\mu,e)} \ge 1.8$ TeV $M_{LQ(\tau)} \ge 1.1$ TeV

New physics likes the Top

Non-universal couplings preferred $U(2)$ -like: $\sum_{1,2}$ \ll 1

- $\mathbf{E}.\mathbf{g}$. **squark:** $\mathbf{M}_{\tilde{\mathbf{q}}^{(1,2)}} \geq 2 \text{ TeV}$ $\mathbf{M}_{\tilde{\mathbf{t}},\tilde{\mathbf{b}}}$ **̃**
-
- **(1)**
- **Bounds from direct searches** @ LHC are **stronger for light fermions than for third generation** ones.

$M_{\tilde{t} \cdot \tilde{b}} \geq 1.4$ TeV **E.g. Scalar LQ:** $M_{LQ(\mu,e)} \ge 1.8$ TeV $M_{LQ(\tau)} \ge 1.1$ TeV

(2)

New Physics coupled to the top should be **lighter** in order to address the **Higgs hierarchy problem**, could also be related to the SM flavour puzzle (lighter NP gives larger Yukawas in some models).

6

Flavour alignment

How much should New Physics be aligned to the third generation?

We consider now a *specific* example:

- Overall **New Physics scale set by the Belle-II excess in B**→**Kνν**

- We assume a **Rank-One** flavour structure

 $\mathbf u$

Golden channel decay B → **K(*) ν ν** $h \rightarrow s \nu \overline{\nu}$

Precise SM predictions possible due to absence of long-distance QCD effects: $\sqrt{\sum_{e,\mu,\tau}^{\nu} \sum_{\mathbf{u},\mathbf{c},\mathbf{t}}^{\nu} \sum_{\mathbf{u},\mathbf{c},\mathbf{t}}^{\nu} \sum_{\mathbf{u},\mathbf{c},\mathbf{t}}^{\mathbf{u},\mathbf{c},\mathbf{t}} \sum_{\mathbf{v} \in \mathcal{H}_{\text{MMS}} \setminus \mathbf{W}_{\text{MMS}}}^{\mathbf{u},\mathbf{c},\mathbf{t}}$ neutrinos do not couple to the electromagnetic current. $\vert u, \mathbf{c}, \mathbf{t} \vert$ see 1409.4557, 1503.02693, 2109.11032, 2301.06990, …

 $BR(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (0.444 \pm 0.030) \times 10^{-5}$

Becirevic et al. 2301.06990

Belle-I₂₀₂₃: BR($B^+ \to K^+ \nu \bar{\nu}$) = (2.3 ± 0.6) × 10-5

Combination: $BR(B^+ \rightarrow K^+ \nu \bar{\nu}) = (1.3 \pm 0.4) \times 10^{-5}$

 $BR(B^0 \to K^{*0} \nu \bar{\nu})_{\rm SM} = (9.05 \pm 1.4) \times 10^{-6}$

 $B = \text{B} \text{B} \text{B} \text{C}$ B $\text{B} \text{C}$ B \rightarrow K* $\nu \bar{\nu}$ $> 2.7 \times 10^{-5}$ @ 90%CL

Golden channel decay B → **K(*) ν ν** $b \rightarrow s \vee v$

Precise SM predictions possible due to absence of long-distance QCD effects: $\sqrt{\sum_{e,\mu,\tau}^{\nu} \sum_{u,c,t}^{u,c,t} \sum_{\chi \in \mathcal{L}}^{\chi} \sum_{u,c,t}^{u,c,t} \sum_{\chi \in \mathcal{L}}^{\chi} \sum_{\chi \in \mathcal{L}}^{\chi} \sum_{\chi \in \mathcal{L}}^{\chi} \sum_{\chi \in \mathcal{L}}^{\chi}}$ neutrinos do not couple to the electromagnetic current. $\vert u, \mathbf{c}, \mathbf{t} \vert$ see 1409.4557, 1503.02693, 2109.11032, 2301.06990, ...

 $BR(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (0.444 \pm 0.030) \times 10^{-5}$ Becirevic et al. 2301.06990

Belle-I₂₀₂₃: BR($B^+ \to K^+ \nu \bar{\nu}$) = (2.3 ± 0.6) × 10-5 **Combination:** $BR(B^+ \rightarrow K^+ \nu \bar{\nu}) = (1.3 \pm 0.4) \times 10^{-5}$

$$
R_x^{\nu} = \frac{\beta R (B - k v v)}{B R (B - k v v)^{s_H}} = 2.93 \pm 0.9c
$$

 $BR(B^0 \to K^{*0} \nu \bar{\nu})_{\rm SM} = (9.05 \pm 1.4) \times 10^{-6}$

 $B = \text{B} \text{B} \text{B} \text{C}$ B $\text{B} \text{C}$ B \rightarrow K* $\nu \bar{\nu}$ $> 2.7 \times 10^{-5}$ @ 90%CL

$$
R_{\kappa^{\star}}^{\mathsf{v}} = \frac{\mathsf{Br}(B - \kappa^{\kappa} \mathsf{v}_{\nu})}{\mathsf{Br}(B - \kappa^{\kappa} \mathsf{v}_{\nu})^{s_{\mathsf{H}}} } < 3.2 \text{ e} \mathsf{S}^{s_{\kappa} \mathsf{C} \mathsf{L}}
$$

with a slight excess from the SM preferring either a RH or vector-like quark current. Future Belle II results (in particular from the K^{*} mode) will help to clarify the situation.

They probe scales of about 8 TeV,

DM, M. Nardecchia, A. Stanzione, C. Toni [2404.06533]

Assuming **only NP in tau**

 $L_{VA}^{sb\alpha\beta} \equiv L_{R}^{sb\alpha\beta} \pm L_{L}^{sb\alpha\beta}$

 $\frac{5600}{(8\text{TeV})^2}$

Golden channel decay B → **K(*) ν ν** \sum_{EFT} (see paper for other cases)

$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.09 \pm 0.63) \times 10^{-11}$

Allwicher et al. [2410.21444] (see also Buras et al. 1503.02693, 2109.11032, etc..)

NA62₂₀₂₄: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.6 \, (\frac{+3.0}{-2.7})_{\text{stat}} (\frac{+1.3}{-1.2})_{\text{syst}}) \times 10^{-11}$

NA62 (CERN) KOTO (JPARC)

KOTO2021: $BR(K_L \to \pi^0 \nu \bar{\nu}) \leq 4.9 \times 10^{-9}$ *@* 90%CL $BR(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (2.58 \pm 0.30) \times 10^{-11}$ Allwicher et al. [2410.21444]

Derived by combining exclusive and inclusive determinations. [2310.20324, 2406.10074]

$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.09 \pm 0.63) \times 10^{-11}$

Allwicher et al. [2410.21444] (see also Buras et al. 1503.02693, 2109.11032, etc..)

NA62₂₀₂₄:

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.6 \, (\frac{+3.0}{-2.7})_{\text{stat}} (\frac{+1.3}{-1.2})_{\text{syst}}) \times 10^{-11}$

KOTO2021:

 $BR(K_L \to \pi^0 \nu \bar{\nu}) \leq 4.9 \times 10^{-9}$ *@* 90%CL

NA62 (CERN) KOTO (JPARC)

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (2.58 \pm 0.30) \times 10^{-11}$

Allwicher et al. [2410.21444]

Consider the vector space spanned by the **3 generations of down quarks,** SU(3)q:

$$
\hat{d} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \hat{S} \sim \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \hat{b} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$

Gherardi, DM, Nardecchia, Romanino [1903.10954](https://arxiv.org/abs/1903.10954) DM, Nardecchia, Stanzione, Toni [2404.06533](https://arxiv.org/abs/2404.06533)

Directions in Flavour Space

Consider the vector space spanned by the **3 generations of down quarks,** SU(3)q: *L* = *iq*¯ 3 denerations of down quarks, SU(3) \bullet generations or automatiquems, \bullet \bullet \bullet

$$
\hat{d} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{\zeta} \sim \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{b} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$

We can parametrise a generic directions as: \overline{d}

$$
\hat{n} = \begin{pmatrix}\n\sin \theta \cos \phi e^{i\alpha_{bd}} \\
\sin \theta \sin \phi e^{i\alpha_{bs}} \\
\cos \theta\n\end{pmatrix}
$$
 neglecting phases,
it is a unit-vector
on a semi-sphere

Directions in Flavour Space u*l* **n i**_{*l*} *n* **i***n i uⁱ* ! *ujµ*⁺*µ C^S C^T , C^R td, V* ⇤ *ts, V* ⇤

Gherardi, DM, Nardecchia, Romanino [1903.10954](https://arxiv.org/abs/1903.10954) DM, Nardecchia, Stanzione, Toni [2404.06533](https://arxiv.org/abs/2404.06533) d Gherardi, DM, Nardecchia, Romanino 1

A *,* (5) A *,* (5) it is a unit-vector neglecting phases, on a semi-sphere Table 1: SM quark directions of the unitary vector ˆ*ni*. The plot shows the corresponding di-

 $\begin{bmatrix} \pi & \pi \end{bmatrix}$ be can be can be can be considered to π π] *The overall phase is unp* '
sical<mark>\</mark>\ $2 \quad 2$
 $\left| \frac{1}{1} \right|$ $\frac{1}{2}$ $\begin{array}{c}\n\hline\n\end{array}$ $\theta \in$ $\sqrt{ }$ 0*,* π 2 $\overline{1}$ *,* $\phi \in [0, 2\pi)$, $\alpha_{bd} \in$ $\left[-\frac{\pi}{2}\right]$ 2 *,* π 2 $\overline{}$, $\alpha_{bs} \in$ $\left[-\frac{\pi}{2}\right]$ 2 *,* π 2 $\begin{bmatrix} \pi & \pi \end{bmatrix}$ The overall phase is unphysical: U(1)_B we analyse the constraints on the direction $\mathbf{10}$

-
-

Consider the vector space spanned by the **3 generations of down quarks,** SU(3)q: *L* = *iq*¯ 3 denerations of down quarks, SU(3) \bullet generations or automatiquems, \bullet \bullet \bullet

$$
\hat{d} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{\zeta} \sim \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{b} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$

We can parametrise a generic directions as: \overline{d}

$$
\hat{n} = \begin{pmatrix}\n\sin \theta \cos \phi e^{i\alpha_{bd}} \\
\sin \theta \sin \phi e^{i\alpha_{bs}} \\
\cos \theta\n\end{pmatrix}
$$
 neglecting phases,
it is a unit-vector
on a semi-sphere

Directions in Flavour Space u*l* **n i**_{*l*} *n* **i***n i uⁱ* ! *ujµ*⁺*µ C^S C^T , C^R td, V* ⇤ *ts, V* ⇤

Gherardi, DM, Nardecchia, Romanino [1903.10954](https://arxiv.org/abs/1903.10954) DM, Nardecchia, Stanzione, Toni [2404.06533](https://arxiv.org/abs/2404.06533) d Gherardi, DM, Nardecchia, Romanino 1

> A *,* (5) A *,* (5) it is a unit-vector neglecting phases, on a semi-sphere Table 1: SM quark directions of the unitary vector ˆ*ni*. The plot shows the corresponding di-

 $\begin{bmatrix} \pi & \pi \end{bmatrix}$ be can be can be can be considered to π π] *The overall phase is unp* '
sical<mark>\</mark>\ $2 \quad 2$
 $\left| \frac{1}{1} \right|$ $\frac{1}{2}$ $\begin{array}{c}\n\hline\n\end{array}$ $\theta \in$ $\sqrt{ }$ 0*,* π 2 $\overline{1}$ *,* $\phi \in [0, 2\pi)$, $\alpha_{bd} \in$ $\left[-\frac{\pi}{2}\right]$ 2 *,* π 2 $\overline{}$, $\alpha_{bs} \in$ $\left[-\frac{\pi}{2}\right]$ 2 *,* π 2 $\begin{bmatrix} \pi & \pi \end{bmatrix}$ The overall phase is unphysical: U(1)_B we analyse the constraints on the direction $\mathbf{10}$

-
-

rections in the semi-sphere description of \mathcal{M} and the show also illuminate in $(V^*u^i_{\tau})$. |니
| rk up quarks using: $\frac{4L}{L}$ We show also

 $q_L^i =$

 $\int V_{ji}^* u_L^i$

 \overline{d}^i_{I}

L

◆

11

*^LO*NP + h.c. *,* (3) $\left\{ \frac{a_L}{\mu} \frac{\mu}{\mu} \int \left| \frac{\nu}{L} \right|^2 \mu L \right\}$ $\left\{ \frac{a_R}{\mu} \frac{\mu}{\mu} \frac{a_R}{\mu} \right\}$

- with linear flavor violation in the control of the
The control of the c We assume that **New Physics is aligned to a specific direction** $\hat{\boldsymbol{n}}$ **.**
- *Ie* times the where **C**_P 2 **R** and *C_R 2 R and ⁿ <i>n n***_{i**} *s <i>n n***_{***i***}** *<i>n* space. We can space. We can space the space. We </sub> > the **EFT coefficients** are given by an overall scale times the **projection of** *n* **on the specific flavour direction** *̂*

 $\hat{n}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon_{0}$ $\overline{1}$ \overline{a} $\sin\theta\cos\phi e^{i\alpha_{bd}}$ $\sin\theta\sin\phi e^{i\alpha_{bs}}$ $\cos\theta$

 $t_{\rm 1}$

Rank-One Flavour Violation vour violation. 1*.*17 1*.*17 1*.*17 1*.*17 1*.*17 1.25 *compared*

Gherardi, DM, Nardecchia, Romanino [1903.10954](https://arxiv.org/abs/1903.10954) DM, Nardecchia, Stanzione, Toni [2404.06533](https://arxiv.org/abs/2404.06533)

11

*^LO*NP + h.c. *,* (3) $\left\{ \frac{a_L}{\mu} \frac{\mu}{\mu} \int \left| \frac{\nu}{L} \right|^2 \mu L \right\}$ $\left\{ \frac{a_R}{\mu} \frac{\mu}{\mu} \frac{a_R}{\mu} \right\}$

$$
= \begin{pmatrix} \sin \theta \cos \phi e^{i\alpha_{bd}} \\ \sin \theta \sin \phi e^{i\alpha_{bs}} \\ \cos \theta \end{pmatrix}
$$

 $t_{\rm 1}$

 \hat{n}

- with linear flavor violation in the control of the
The control of the c We assume that **New Physics is aligned to a specific direction** $\hat{\boldsymbol{n}}$ **.**
- *Ie* times the where **C**_P 2 **R** and *C_R 2 R and ⁿ <i>n n***_{i**} *s <i>n n***_{***i***}** *<i>n* space. We can space. We can space the space. We </sub> > the **EFT coefficients** are given by an overall scale times the **projection of** *n* **on the specific flavour direction** *̂*

- a si $\overline{}$ 0*,* $\frac{1}{2}$ i This structure is automatic if New Physics couples linearly to a single combination of quarks:
	- leptoquarks coupled mainly to 1 lepton family tor coupled via the mixing of a single vector-like guark studying these can be summarized as follows: for a given direction ˆ*n*, we fix (some combina-- Vector coupled via the mixing of a single vector-like quark e.g.

Rank-One Flavour Violation vour violation. 1*.*17 1*.*17 1*.*17 1*.*17 1*.*17 1.25 *compared*

Gherardi, DM, Nardecchia, Romanino [1903.10954](https://arxiv.org/abs/1903.10954) DM, Nardecchia, Stanzione, Toni [2404.06533](https://arxiv.org/abs/2404.06533)

We analyse the constraints on the direction ˆ*n* under di↵erent assumptions. We begin in $\sum_{i} \sum_{j} \lambda_{j} \overline{\alpha}^{i} (\overline{\Omega})$ _{ND} $+$ h.c. eq. $\mathcal{L} \supset \lambda_i \bar{q}^i \mathcal{O}_{\text{NP}} + \text{h.c.}$ e.g.

Linus structure is automatic if INew Physics conditionally

*^LO*NP + h.c. *,* (3) $\left\{ \frac{a_L}{\mu} \frac{\mu}{\mu} \int \left| \frac{\nu}{L} \right|^2 \mu L \right\}$ $\left\{ \frac{a_R}{\mu} \frac{\mu}{\mu} \frac{a_R}{\mu} \right\}$

- with linear flavor violation in the control of the
The control of the c We assume that **New Physics is aligned to a specific direction** $\hat{\boldsymbol{n}}$ **.**
- *Ie* times the where **C**_P 2 **R** and *C_R 2 R and ⁿ <i>n n***_{i**} *s <i>n n***_{***i***}** *<i>n* space. We can space. We can space the space. We </sub> > the **EFT coefficients** are given by an overall scale times the **projection of** *n* **on the specific flavour direction** *̂*

 $\overline{1}$ $\sin\theta\cos\phi e^{i\alpha_{bd}}$ $\sin\theta\sin\phi e^{i\alpha_{bs}}$ $\hat{n}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/2\pi\varepsilon_{0}$ \overline{a} $\cos\theta$ $\int f(x) dx$ ✓ 2 0*,* span λ $\overline{}$ $T = \cup_{\alpha}$ (a), implies structure of the existence of $T = \{0, 1, 2, \ldots\}$

study the summarized as follows: for a given direction α , we fix α , we fix α , we fix (some combination α)

Rank-One Flavour Violation vour violation. 1*.*17 1*.*17 1*.*17 1*.*17 1*.*17 1.25 *compared*

Gherardi, DM, Nardecchia, Romanino [1903.10954](https://arxiv.org/abs/1903.10954) DM, Nardecchia, Stanzione, Toni [2404.06533](https://arxiv.org/abs/2404.06533)

For the best-fit of R^v_K and for simplicity we fix: $\mathbf{d}_{\mathbf{k}s}$ = $\mathbf{d}_{\mathbf{kd}}$ = 0 (fit in backup slides) *^L*↵⌧*L*) (4)

 Γ by imposing the **hast-fit of** $R \rightarrow K^*$ **in** Sec. **by** using the extra sing on the case $\frac{1}{2}$ θ ^{*y*} At any value of (φ, θ) we can fix the overall scale *g*^{α}*y*^{α}*y* α ^{*y*} α ^{*y*} α ^{*y*} α ⇤² (¯*bL*↵*cL*)(¯⌫*^µ ^L*↵*µL*) (3) At any value of (φ, θ) we can fix the overall scale *C* by imposing the **best-fit of** *B→ K(*) νν*.

For the best-fit of
$$
Rv_K
$$
 and for simplicity we fix: $d_{Ls} = d_{Ld} = 0$

Rank-One Flavour Violation

$L^{i,juv} = C \hat{n}_{i} \hat{n}_{j}^{*}$ $L^{sivv} = C \cos \theta \sin \theta \sin \phi = (8 TeV)^{-2}$

Once *C* **is fixed as function of (θ, φ)**, all parameters are set and we can check the

constraints from other observables

[2404.06533](https://arxiv.org/abs/2404.06533)

Rank-One Flavour Violation
 $\int_{0}^{i,j_{vv}}$ = $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ $\int_{0}^{i,j_{vv}}$ rkds

Once *C* **is fixed as function of (θ, φ)**, all parameters are set and we can check the

constraints from other observables

$$
C \cos \theta \sin \theta \sin \phi \equiv (8 \text{TeV})^{-2}
$$

The allowed region (white) is close to the third generation, with a misalignment of O(CKM).

[2404.06533](https://arxiv.org/abs/2404.06533)

14

Top-philic New Physics

Both experimental and theory arguments motivate having **TeV-scale New Physics coupled mostly to the top quark**.

[e.g. review by Franceschini 2301.04407]

We just saw how the **preferred region** to address the Belle-II excess compatibly with other

constraints is **close to the third generation quarks** (up to O(CKM) deviations).

This trend is expected and well known, can be generalised:

If, in the quark sector, **New Physics couples indeed mostly to the top quark:**

What are the strongest constraints we can put?

Where do they come from?

How do indirect bounds compare with direct ones from LHC?

[see also these, on similar spirit: 0704.1482, 0802.1413, 1109.2357, 1408.0792, 1909.13632, 2012.10456]

[Garosi, DM, Rodriguez-Sanchez, Stanzione 2310.00047]

Top SMEFT

[Garosi, DM, Rodriguez-Sanchez, Stanzione 2310.00047]

Let us **assume heavy NP couples, among quarks, mostly to the top**.

We leave **arbitrary lepton flavour and gauge structures**

These are the **SMEFT dim-6** operators satisfying these conditions:

Since we are assuming that the top quark is somehow "special" from the UV point of view, we work in the **up quark mass basis**:

$$
q^i = (u_L^i, \, V_{ij} d_L^j)
$$

[see Isidori et al. 2024 for an analysis varying continuously from up to down basis]

Indirect constraints

[Jenkins, Manohar and Trott 2013; Dekens and Stoffer [1908.05295]; Jenkins, Manohar and Stoffer [1711.05270], DSixTools …Flavour bounds

RG evolution to low scales induce effects in a wide range of observables

Observables included

Global analysis of Cabibbo-related observables by [Cirigliano et al. 2112.02087]

B physics

Kaon

physics

Cabibbo angle-related EW precision obs. ⁺ Higgs

Leptonic

[Falkowski et al. [1503.07872, 1911.07866]

LFV

One-parameter fits from our global analysis of indirect constraints on top quark operators. In the third column we report the observable giving the dominant constraint in each case.

One-parameter fits

What **scale** are we probing with **indirect** probes?

One-parameter fits from our global analysis of indirect constraints on top quark operators. In the third column we report the observable giving the dominant constraint in each case.

<u>IeV</u> range.

One-parameter fits

 B **s-mixing, RK, Bs**→**μμ**, and top-loop **from dipoles to (g-2)e,μ**. **Λ** ≳ **10 TeV Λ** ≳ **180 - 80 TeV**

What **scale** are we probing with **indirect** probes?

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

Example

How does it generate a contribution?

 $X_{SMEFT} = C_{uv} |E_R Y_t t_R| |E_R Y'' t_R|$

Example

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

How does it generate a contribution?

 $X_{SMEFT} = C_{uv} |E_R Y_t t_R| |E_R Y'' t_R|$ 1-loop $C_{\omega\omega}\frac{N_cY_t^2}{(4\pi)^2}log\frac{\Lambda^2}{M_t^2}(\overline{L}_RY_tL_R)(H^T\overrightarrow{D'}H)$

Example

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

How does it generate a contribution?

$$
\mathcal{L}_{SMEFT} = C_{uv} \left(\bar{t}_{R} \gamma_{r} t_{R} \right) \left(\bar{t}_{R} \gamma^{r} t_{R} \right)
$$
\n
$$
1\text{-loop} \int_{(uv \overline{(4\pi)^{2}}} \int_{\text{Og}} \frac{\Lambda^{2}}{m_{t}^{2}} \left(\bar{t}_{R} \gamma_{r} t_{R} \right) \left(H^{*} \overrightarrow{D}^{r} H \right)
$$
\n
$$
2\text{-loop} \text{ (leading Log)} \int_{(4\pi)^{2}} \int_{\text{Og}} \frac{\Lambda^{2}}{m_{t}^{2}} \left(H^{*} \overrightarrow{D}^{r} H \right)^{2}
$$

This is the operator contributing to the **EW T-parameter** (Z-mass). In the fit we used it shows up as a Z-coupling contribution. [1911.07866]

Example

Let us take for example this 4-top operator. Its strongest bound is from LEP (Z-pole).

How does it generate a contribution?

$$
\mathcal{L}_{SMEFT} = C_{uv} \left(\bar{t}_{R} \gamma_{r} t_{R} \right) \left(\bar{t}_{R} \gamma^{r} t_{R} \right)
$$
\n
$$
1\text{-loop} \int_{(uv \overline{(4\pi)^{2}}} \int_{\text{Og}} \frac{\Lambda^{2}}{m_{t}^{2}} \left(\bar{t}_{R} \gamma_{r} t_{R} \right) \left(H^{*} \overrightarrow{D}^{r} H \right)
$$
\n
$$
2\text{-loop} \text{ (leading Log)} \int_{(4\pi)^{2}} \int_{\text{Og}} \frac{\Lambda^{2}}{m_{t}^{2}} \left(H^{*} \overrightarrow{D}^{r} H \right)^{2}
$$

This is the operator contributing to the **EW T-parameter** (Z-mass). In the fit we used it shows up as a Z-coupling contribution. [1911.07866]

21

- Top operators can be constrained directly from LHC measurements of top quark processes: **SMEFiT 2105.00006**
	- PP t E Z $P P \rightarrow t \bar{t} W$ P of E H
	- Higgs physics ggF, VBF, Vh, etc..
- $PP \rightarrow t \rightarrow X$ $PP \rightarrow tZ + X$ $P S \rightarrow tW + X$ $P \rightarrow tH+X$

Direct constraints from LHC

 $\rho \rho \rightarrow t\bar{t}$ $P P \rightarrow t \bar{t} t \bar{t}$ $PP + ttbb$

[Garosi, DM, Rodriguez-Sanchez, Stanzione 2310.00047]

How **direct bounds** compare with **indirect** ones? **Indirect are typically much stronger.**

Indirect vs. Direct

2D fits

Combining bounds from different datasets allows to derive **much stronger constraints**.

Conclusions

If **New Physics** is present at a scale reachable by present or (~near) future colliders, then it must enjoy some **non-trivial flavour structure** that suppresses large FCNC effects.

Typically this tends to **align it close it to the 3rd generation**.

With a **Rank-One Flavour Violation** setup we show how close to the top direction this should be, in the case of fitting the B→Kνν excess: **only deviations of** ≲ **O(CKM)** are allowed.

Correlations between different observables are crucial to identify the flavour structure.

Assuming **New Physics couples mostly to the top quark**, we show that **indirect bounds provide almost always stronger constraints than direct bounds** from LHC: also here it is crucial to combine different datasets.

Conclusions

If **New Physics** is present at a scale reachable by present or (~near) future colliders, then it must enjoy some **non-trivial flavour structure** that suppresses large FCNC effects.

Typically this tends to **align it close it to the 3rd generation**.

With a **Rank-One Flavour Violation** setup we show how close to the top direction this should be, in the case of fitting the B→Kνν excess: **only deviations of** ≲ **O(CKM)** are allowed.

Correlations between different observables are crucial to identify the flavour structure.

Assuming **New Physics couples mostly to the top quark**, we show that **indirect bounds provide almost always stronger constraints than direct bounds** from LHC: also here it is crucial to combine different datasets.

Thank you!

Backup

ATLAS SUSY Searches* - 95% CL Lower Limits

*Only a selection of the available mass limits on new states or
phenomena is shown. Many of the limits are based on
simplified models, c.f. refs. for the assumptions made.

 10^{-1}

ATLAS Preliminary
 $\sqrt{s} = 13 \text{ TeV}$

Mass scale [TeV]

 $\mathbf{1}$

We analyse the constraints on the direction ˆ*n* under di↵erent assumptions. We begin in Sec. ?? by using the e↵ective description in eq. (3) and focussing on the case *C^R* = 0. We described by the CKM matrix. several semileptonic processes. Tab. 2 shows the dependencies of the various types of process *^L*↵*µL*) (3) - and un-a ⇤2 *t* ¯SM SM ¯ *^E*.⇤*HC* The misalignment between down- and up-quarks is

 $\sin\theta\cos\phi e^{i\alpha_{bd}}$ $\sin \phi e^{i\alpha_{bs}}$ $\cos \theta$

ub) 0*.*23 1*.*57 1*.*17 1*.*17 *cb*) 1*.*80 1*.*53 6*.*2 ⇥ 10⁴ 3*.*3 ⇥ 10⁵ *S,T,R* = *CS,T,R n ^j ,* (4) where *CS,T,R* 2 **R** and ˆ*nⁱ* is a unitary vector in three-dimensional flavor space. We can *n*ˆ = @ **Directions in Flavour Space**

Gherardi, DM, Nardecchia, Romanino <u>[1903.10954](https://arxiv.org/abs/1903.10954)</u>
DM, Nardecchia, Stanzione, Toni 2404 06533 DM, Nardecchia, Stanzione, Toni [2404.06533](https://arxiv.org/abs/2404.06533)

SMEFT

Possible tree-level contributions from the following SMEFT dim-6 operators:

$$
\mathcal{O}_{lq}^{(1)\alpha\beta ij} = (\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}) (\bar{q}_{L}^{i}\gamma^{\mu}q_{L}^{j}) , \qquad \mathcal{O}_{Hq}^{(1)ij} = (H^{\dagger}\overleftrightarrow{D}_{\mu}H) (\bar{q}_{L}^{i}\gamma^{\mu}q_{L}^{j}) ,
$$

$$
\mathcal{O}_{lq}^{(3)\alpha\beta ij} = (\bar{l}_{L}^{\alpha}\gamma_{\mu}\sigma_{a}l_{L}^{\beta}) (\bar{q}_{L}^{i}\gamma^{\mu}\sigma_{a}q_{L}^{j}) , \qquad \mathcal{O}_{Hq}^{(3)ij} = (H^{\dagger}\sigma_{a}\overleftrightarrow{D}_{\mu}H) (\bar{q}_{L}^{i}\gamma^{\mu}\sigma_{a}q_{L}^{j}) ,
$$

$$
\mathcal{O}_{l d}^{\alpha\beta ij} = (\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}) (\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{j}) , \qquad \mathcal{O}_{Hd}^{ij} = (H^{\dagger}\overleftrightarrow{D}_{\mu}H) (\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{j}) .
$$

- Since the **scale of New Physics is ~TeV**, the contribution could come from heavy New Physics: **SMEFT**.
	-

$$
\begin{split} &L_L^{ij\alpha\beta}=C_{lq}^{(1)\alpha\beta ij}-C_{lq}^{(3)\alpha\beta ij}+C_{Hq}^{(1)ij}\delta_{\alpha\beta}+C_{Hq}^{(3)ij}\\ &L_R^{ij\alpha\beta}=C_{ld}^{\alpha\beta ij}+C_{Hd}^{ij}\delta_{\alpha\beta}\,. \end{split}
$$

dilepton constraints

SMEFT: **which combinations of coefficients** to study?

-
- We assume they are **induce by specific heavy UV states** and study those simplified models instead.

SMEFT

$$
\mathcal{O}_{Hq}^{(1)ij} = \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \left(\overrightarrow{q}_{L}^{i} \gamma^{\mu} q_{L}^{j} \right) ,
$$

$$
\mathcal{O}_{Hq}^{(3)ij} = \left(H^{\dagger} \sigma_{a} \overleftrightarrow{D}_{\mu} H \right) \left(\overrightarrow{q}_{L}^{i} \gamma^{\mu} \sigma_{a} q_{L}^{j} \right) ,
$$

$$
\mathcal{O}_{Hd}^{ij} = \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) \left(\overrightarrow{d}_{R}^{i} \gamma^{\mu} d_{R}^{j} \right) .
$$

$$
\mathcal{O}_{lq}^{(1)\alpha\beta ij} = \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}\right)\left(\bar{q}_{L}^{i}\gamma^{\mu}q_{L}^{j}\right)
$$

$$
\mathcal{O}_{lq}^{(3)\alpha\beta ij} = \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}\sigma_{a}l_{L}^{\beta}\right)\left(\bar{q}_{L}^{i}\gamma^{\mu}\sigma_{a}q_{L}^{j}\right)
$$

$$
\mathcal{O}_{ld}^{\alpha\beta ij} = \left(\bar{l}_{L}^{\alpha}\gamma_{\mu}l_{L}^{\beta}\right)\left(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{j}\right)
$$

Colorless vectors & Leptoquarks

U₁ LQ does not contribute to bsw: we don't consider it

These give too large contributions to B_s mixing and $B_s \rightarrow \mu\mu$:

vectorlike quarks

A good fit of the R ^{*ν*}*K* excess is never allowed. (see backup slide)

L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz and O. Sumensari [2309.02246]

UV mediators - R ² leptoquark ̃

We fix the **LQ mass at 2 TeV** to avoid direct-searches bounds.

(similar for S1)

At each parameter space point we fix the best-fit:

$$
\left. C_{ld}^{\tau\tau sb}\right|_{\tilde{R}_2,{\rm best-fit}}\approx (7.5\,{\rm TeV})^{-2}
$$

Show regions excluded by:

Correlation between *BKνν* and *Kπνν* for the points within 1σ region.

(similar for S1)

Favoured region from the global fit of all observables, marginalising over |λ|.

UV mediators - R ² leptoquark̃

 $C=-g_q g_\ell/M_{Z'}^2$

Idors
$$
\sum_{i,j} g_R^{ij} (\bar{d}_R^i \gamma^\mu d_R^j) + \sum_{\alpha \beta} g_\ell^{\alpha \beta} \bar{l}_L^{\alpha} \gamma^\mu l_L^{\beta} \Bigg] Z'_\mu
$$

(similar for a coupling to LH quarks or for a SU(2) triplet V')

$$
C_{ld}^{\tau\tau sb}\Big|_{Z_R, \text{best-fit}} \approx (7.7 \,\text{TeV})^{-2}
$$

Meson mixing puts an upper bound on |*gq/gℓ***|**. Combined with the **perturbative unitarity** constraint *gℓ* **< 2.3** we get an **upper limit on the vector mass** for each point in the plane, when imposing a fit to the anomaly:

$$
M_{V'} \lesssim 1391 \text{ GeV} \left(\frac{|g_q/g_\ell|^{\text{max}}}{0.05} \right)^{1/2} |\sin \theta \cos \theta \sin \phi|^{\frac{1}{2}}
$$

$$
\approx 762 \text{ GeV} \left(\frac{|g_q/g_\ell|^{\text{max}}}{0.05} \right)^{1/2} \left| \frac{\theta}{0.3} \right|^{1/2}, \text{ (for } \theta \ll 1 \text{ and } \phi \sim \pi/2)
$$

The **vector must be rather light** in the allowed region! Need to check di-tau bounds without assuming EFT.

$$
\mathcal{L} \supset \left[\sum_{ij} g_L^{ij} (\bar{q}_L^i \gamma^\mu q_L^j) + \sum_{i} \right]
$$

Since g_ℓ is large, the *Z'* decays mostly to $\tau\tau$ or vv , with $Br \sim 1/2$.

$$
\sigma(pp \to V'^0 \to \tau^+ \tau^-) \approx \frac{4\pi^2}{3} {\cal B}(V'^0 \to \tau^+ \tau^-) \sum_{i,j=u,d,s,c,b} \frac{\Gamma(V'^0 \to V'^0 \tau^-)}{M}
$$

 $\frac{1}{M_{V'}}\frac{q^{i}\bar{q}^{j})}{s_{0}}\frac{2}{s_{0}}\mathcal{L}_{q^{i}\bar{q}^{j}}(M_{V'})$

 $\Gamma_{\rm tot}/M_{V'}\approx 14\%$

$$
\Gamma(V'^0\rightarrow q^i\bar{q}^j)=\frac{M_{V'}N_c}{24\pi}|g^{ij}_q|^2
$$

 $M_{Z_{\scriptscriptstyle B}^\prime}^{max}$ [GeV]

Outside the white dashed line is excluded by Flavour + EW

(this is a rough constraint, we neglect effect of different acceptances between scalar and vector resonances)

Fits of the s-b couplings - LEFT & vectors

Fits of the s-b couplings - LQ

Given the multiple possible combinations of coefficients, we assume they are induce by specific heavy UV states.

In this case: vector-like quarks:

A good fit of the R ^{*νK*} excess is never allowed.

L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz and O. Sumensari [2309.02246]

Fits of the s-b couplings - VLQ

Observables included

Cabibbo angle

2D fits

With electrons and muons: **EW bounds** do **not allow** a combined explanations of **Cabibbo anomaly** and **B**→**Kνν**

Gaussian Fit ex. semileptonics

$$
\vec{C} = (C_{qq}^{(+)}, C_{qq}^{(-)}, C_{uu}, C_{qu}^{(1)}, C_{qu}^{(8)}
$$

 $\Delta\chi^2\equiv\chi^2_{\rm SM}-\chi^2_{\rm best-fit}\approx10.9$

Due to flat directions, we report the result in terms of the eigenvectors of the Hessian matrix around the minimum

$$
\chi^2 = \chi^2_{\text{best-fit}} + (C_i - \mu_{C_i})(\sigma^2)^{-1}_{ij}(C_j - \mu_{C_j}) = \chi^2_{\text{best-fit}} + \frac{(K_i - \mu_{K_i})^2}{\sigma^2_{K_i}} \qquad \qquad \vec{K} = U_{KC}\vec{C}
$$

 $(C_{Hg}^{(+)}, C_{Hg}^{(-)}, C_{Hu}, C_{uH}, C_{uG}, C_{uW}, C_{uB})\, .$

(only mild improvements in several observables, not a single "anomaly")

fit $[{\rm TeV^{-2}}]$ $\pm\,0.79$ $\pm\,0.88$ ± 1.3 ± 1.8 ± 13 ± 16

Flat directions: $K_{11} \approx -0.80 C_{qq}^{(-)} + 0.45 C_{uu} - 0.36 C_{qu}^{(1)} - 0.12 C_{Hu} + \dots,$ $K_{12} \approx +0.40 C_{qq}^{(-)} + 0.88 C_{uu} + 0.24 C_{qu}^{(1)} - 0.09 C_{Hu} + \dots$