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This talk: CP-violating hadronic processes within standard model

▶ Kaons: direct (K → ππ), indirect (K – K mixing)

▶ D mesons: direct (D → KK , D → ππ), indirect (D – D
mixing)
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K → ππ, setup
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RBC/UKQCD 2015 SM prediction: ε′/ε = 1.4(5.2)(4.4) × 10−4

2σ “tension” with exp.
[Z. Bai et al., arXiv:1505.07863/PRL 2015]

KTeV, NA48
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KTeV, NA48

Main challenges of lattice calculation:

▶ Kinematics require high-precision control of excited states in LQCD

▶ ππ scattering in finite-volume requires multi-operator approach

▶ Scheme matching between lattice and MS

▶ Wilson coefficients of ∆S = 1 effective Hamiltonian

▶ Statistical noise

▶ Isospin-breaking corrections could be enhanced (∆I = 1/2 rule, need
QCD+QED)
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K → ππ, a brief history of the lattice approach (1/2)

▶ 1991: Lüscher formalism relating FV spectra and scattering (Nucl.Phys.B 354
(1991) 531-578)

▶ 2001: Lellouch-Lüscher formalism relating FV matrix elements to IV
(Commun.Math.Phys.219(2001)31-44)

▶ 2011: RI/SMOM operator renormalization and 1-loop finite-terms for matching
to MS (Phys.Rev.D 84 (2011) 014001)

▶ 2011: threshold computation at mπ > mphys
π (Phys.Rev.D 84 (2011) 114503)

▶ 2012: first-principles reproduction and deconstruction of ∆I = 1/2 rule (I = 0
final state dominance, Phys.Rev.Lett. 110 (2013) 15, 152001)

▶ 2012: I = 2 final state at mphys
π no a → 0 limit (Phys.Rev.Lett. 108 (2012)

141601, Phys.Rev.D 86 (2012) 074513)

▶ 2015: I = 2 final state at mphys
π with a → 0 limit (Phys.Rev.D 91 (2015) 7,

074502)
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K → ππ, a brief history of the lattice approach (2/2)

▶ 2015: I = 0 final state at mphys
π no a → 0 limit, G-parity BC (Phys.Rev.Lett.

115 (2015) 21, 212001)

Re(ε′/ε)= 1.38(5.15)(4.59)10−4 (2.1σ tension with experiment)

▶ 2020: Multi-operator update of 2015 result (Phys.Rev.D 102 (2020) 5, 054509),
systematic effect uncovered

Re(ε′/ε)= 21.7(2.6)stat(6.2)syst(5.0)IB10
−4 (tension resolved)

▶ 2021: Detailed study of multi-operator effect on phase shifts (Phys.Rev.D 104
(2021) 11, 114506)

▶ 2023: I = 0, 2 ππ scattering with periodic BC as alternative approach
(Phys.Rev.D 107 (2023) 9, 094512)

▶ 2023: I = 0, 2 final states with periodic BC (Phys.Rev.D 108 (2023) 9, 094517)

Re(ε′/ε)= 29.4(5.2)stat(11.1)syst(5.0)IB10
−4
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K → ππ, status of G-parity effort (1/2)
(driven by Chris Kelly at BNL)

Latest paper (Phys.Rev.D 102 (2020) 5, 054509)

Re(ε′/ε)= 21.7(2.6)stat(6.2)syst(5.0)IB10
−4 (tension resolved) 80

 0
 0.2
 0.4
 0.6
 0.8

 1

-1 -0.5  0  0.5  1

η
_

ρ
_

∆Ms / ∆Md
εK + |Vcb|

sin 2β
|Vub/Vcb|

ε’

FIG. 12: The horizontal-band constraint on the CKM matrix unitarity triangle in the r̄� h̄ plane

obtained from our calculation of e 0, along with constraints obtained from other inputs [6, 75, 76].

The error bands represent the statistical and systematic errors combined in quadrature. Note that

the band labeled e 0 is historically (e.g. in Ref. [77]) labeled as e 0/e , where e is taken from

experiment.

Our first-principles calculation of e 0/e also allows us to place a new, horizontal-band constraint

on the CKM matrix unitarity triangle in the r̄� h̄ plane. In Fig. 12 we overlay this band with con-

straints arising from other sources. We find that our result is consistent with the other constraints

and does not at present suggest any violation of the CKM paradigm. For more information on how

this band was obtained, as well as the corresponding plot obtained using our 2015 results, we refer

the reader to Ref. [77].

IX. CONCLUSIONS

We have described in detail a calculation which substantially enhances our 2015 lattice calcu-

lation of e 0 [1]. Both the 2015 and the current calculation were performed on a single, 323⇥ 64

Möbius domain wall ensemble with the Iwasaki+DSDR gauge action, with an inverse lattice spac-

ing of 1.378(7) GeV and physical pion masses. G-parity boundary conditions are used in the three

spatial directions which induces non-zero momentum for the ground-state pions so that the energy

of the lightest two-pion state matches the kaon mass to around 2%, thereby ensuring a physical,

energy-conserving decay.

The new calculation reported here is based on an increase by a factor of 3.4 in the number

of Monte Carlo samples and includes two additional pp interpolating operators, which have dra-

Errors dominated by Wilson coefficients (≈ 12% uncertainty), IB (≈ 23%),
discretization errors of A0 (≈ 12%)
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K → ππ, status of G-parity effort (2/2)
(driven by Chris Kelly at BNL)

Discretization error: so far only single lattice spacing a−1 = 1.38 GeV, currently
generate second lattice spacing a−1 = 1.73 GeV; expect to have target statistics soon

Significant work invested to remove computational overhead of G-parity setup
compared to simpler periodic BC

First look at new lattice ensemble:

Results I

13

PRELIMINARY

Pion Kaon

PRELIMINARY

PRELIMINARY

Agreement within 5%

3op, 2 state

I=0 two-pion

1.3% stat err!

FIT RANGE DEPENDENCE

(more details can be found in Chris Kelly’s talk at Lattice 2024)
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K → ππ, status of periodic BC effort (1/2)
(driven by Masaaki Tomii at UConn/RBRC)

Latest paper (Phys.Rev.D 108 (2023) 9, 094517)

Re(ε′/ε)= 29.4(5.2)stat(11.1)syst(5.0)IB10
−4

Advantages over G-parity BC:

▶ Can re-use existing data for other projects such as muon g-2

HHIQCD 2024   Masaaki Tomii (UConn/RBRC)

Contents

Introduction (✔)


K → ππ


Long-distance HVP contribution to muon g-2


Summary & Outlook

8
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▶ Significantly simplifies inclusion of QED corrections
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K → ππ, status of periodic BC effort (2/2)
(driven by Masaaki Tomii at UConn/RBRC)

HHIQCD 2024   Masaaki Tomii (UConn/RBRC) 33

Current status of ε’/ε

PRD 102,054509

PRD 102,094517

PRL 115,212001

G-parity Boundary Conditions (GPBC) 
a-1 ≈ 1.38 GeV 
efforts started by early 2000s 
continuing calculation on finer 
lattice(s) C. Kelly’s talk at Lattice24

Periodic Boundary Conditions (PBC) 
newer project 
important for introducing EM/IB 
effects 
Led by MT (see backup slides for 
more details)

a-1 ≈ 1.38 GeV almost done, wrapping up 
starting calculation at a-1 ≈ 1.73 GeV

excited states

better controlled

a-1 ≈ 1.38 GeV

Re(ε'/ε) [x 10-4]

Published
Preliminary
Experiment

GPBC 15, 1.4 GeV

GPBC 20, 1.4 GeV

PBC 23, 1.0 GeV

PBC 24, 1.0 GeV
PBC 24, 1.4 GeV

PBC 24, a→0

PDG 2012-23

-10 0 10 20 30 40 50

RBC/UKQCD vs Experiment

-

a-1 ≈ 1.02 GeV
a-1 ≈ 1.38 GeV
a → 0

preliminary results 
with multiple 

lattice spacings

Result from another group, Ishizuka et al 2018: Re(ε’/ε) = (19 ± 57) x 10-4 (calculated at unphysical mπ, mK)

2015

2020

2023

2012–24

a-1 ≈ 1.02 GeV

2024

G-parity

G-parity

periodic BC

all periodic BC

(more details can be found in Masaaki Tomii’s talk at Lattice 2024)
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K → ππ, towards including IB corrections
Phys.Rev.D 106 (2022) 1, 014508

⇡ � ⇡ scattering, QED and finite-volume quantization

Norman Christ,1 Xu Feng,2, 3, 4, 5 Joseph Karpie,1 and Tuan Nguyen1

1Physics Department, Columbia University, New York City, New York 10027, USA

2School of Physics, Peking University, Beijing 100871, China

3Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

4Center for High Energy Physics, Peking University, Beijing 100871, China

5State Key Laboratory of Nuclear Physics and

Technology, Peking University, Beijing 100871, China

(Dated: October 17, 2021)

Abstract

Using the Coulomb gauge formulation of QED we present a lattice QCD procedure to calculate

the ⇡+⇡+ scattering phase shift including the e↵ects of the Coulomb potential which appears in

this formulation. The approach described here incorporates the e↵ects of relativity and avoids

finite-volume corrections that vanish as a power of the volume in which the lattice calculation is

performed. This is the first step in developing a complete lattice QCD calculation of the elec-

tromagnetic and isospin-breaking light-quark mass contributions to "0, the parameter describing

direct CP violating e↵ects in KL ! ⇡⇡ decay.
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K → ππ, future directions

▶ Going through mass thresholds non-perturbatively (current work on integrating
out charm)

▶ Eventually, lattice can also eliminate all perturbative truncation errors in αs by
simulating very fine lattices and integrating out EW physics with fully
non-perturbative QCD (Phys.Rev.D 97 (2018) 7, 074509)

▶ For now it would be great to have NNLO accuracy for Wilson coefficients. Work
started by Cerda-Sevilla, Gorbahn, Jäger, Kokulu (J.Phys.Conf.Ser. 800 (2017)
1, 012008, Acta Phys.Polon.B 49 (2018) 1087-1096).
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K–K mixing (BK )
K K

K K K K

�
�

�
��+ A

A
AU

u, c, t

u, c

▶ Established lattice
methodology, see
next slide

▶ “Long-distance contribution” under
active research

▶ Estimated to yield ≈ 5% correction
to εK

▶ Non-local (bi-local) methodology
has broad impact

[PRL113(2014)112003]
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Above is FLAG24; after FLAG24 also NNLO matching appeared
(Gorbahn, Jäger, Kvedaraite, arXiv:2411.19861)
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Excursion BSM contributions, tension
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Long-distance methodology [PRL113(2014)112003]
�MK – Lattice setup

in this sum over intermediate states show exponentially decreasing or increasing behavior

with increasing |t2 � t1| depending on whether En lies above or below MK .

We can integrate the times t1 and t2 in the unintegrated correlator over a time interval

[ta, tb] and obtain:

A =
1

2

tbX

t2=ta

tbX

t1=ta

h0|T
�
K0(tf)HW (t2)HW (t1)K0(ti)

�
|0i. (4)

We call this amplitude the integrated correlator. The integrated correlator is represented

schematically in Fig. 1. After inserting a sum over intermediate states and summing explic-

itly over t2 and t1 in the interval [ta, tb] one obtains:

A =N2
Ke�MK(tf�ti)

� X

n �=n0

hK0|HW |nihn|HW |K0i
MK � En

�
�T +

e(MK�En)T � 1

MK � En

�

+
1

2
hK0|HW |n0ihn0|HW |K0iT 2

�
.

(5)

Here T = tb � ta + 1 and the sum includes all possible intermediate states except a possible

state |n0i which is degenerate with the kaon, En0 = MK . The contribution from such a

degenerate state appears separately as the final term on the right hand side of this equation.

The method proposed in Ref. [4] to control finite volume errors requires that the spatial

volume be adjusted to create such a degenerate ⇡ � ⇡ state and that this state be omitted

from the finite volume expression used as an approximation to the infinite volume quantity

�MK . [12] The expression on the right-hand side of Eq. (5) has been made easier to recognize

by replacing the quantity 1� exp (MK � En)a, which results from the sum over the discrete

times t1 and t2, by its value in the continuum limit, i .e. by either zero or (En � MK)a as

appropriate.

d

d

s

s

u

u

HW HW

t2 t1
K

0
(tf) K

0
(ti)

tb ta

FIG. 1. One type of diagram contributing to A in Eq. (4). Here t2 and t1 are integrated over the

time interval [ta, tb], represented by the shaded region.

7

I Inserting a complete set of states in

A =
1

2

tbX

t1,t2=ta

h0|T{K
0
(tf )HW (t2)HW (t1)K

0
(ti )}|0i (7)

yields

A = N2
Ke�MK (tf �ti )

P
n

hK0|HW |nihn|HW |K0i
mK�En

⇣
�T + e(MK�En)T�1

MK�En

⌘

with T = tb � ta + 1.
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Inserting a complete set of states, T = tb − ta + 1 ⇒ 2nd order
PT expression is accessible

�
���

�
�
�
�
��

Challenges:

▶ Finite-volume effects

▶ Exponentially growing contributions

▶ Short-distance subtraction

Applications:

▶ ∆MK

▶ εK (BK )

▶ rare K decays

K K
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Long-distance contribution to K–K mixing, current status:

Phys.Rev.D 109 (2024) 5, 054501

(which also requires a lattice calculation of the single long-
distance, hadronic amplitude BK). The short-distance QCD
and electroweak perturbation theory calculation, reviewed
for example in Ref. [10], has been carried out to NLO [29]
and partially to NNLO [1,14]. While we anticipate that in
the future such a calculation will be performed to evaluate
the needed off-shell four-quark Green’s function at an
energy scale μRI to NLO, at present such a result is not
available. However, present results do provide this four-
quark Green’s function at NNLO evaluated at the scale
μRI ¼ 0. This allows us to obtain the required Green’s
function for a larger value of μRI to order ðαsÞ0 by
evaluating a simple convergent one-loop integral.
This one-loop calculation allows the RI-normalized

lattice calculation to be matched to the MS perturbative
result, providing an “MS to RI/SMOM correction,” denoted

ImMut;LD;MS→RI
0̄0

, is added to the lattice result. At the order
we are working this depends on μRI but not on μMS.
However, when this correction is added to our RI-normal-
ized lattice calculation the result should be independent of
the scale μRI. This μRI-dependence can seen in Tables X
and XI. If we examine the more accurate result in Table XI
from diagrams of types 1 and 2 only (appropriate since
the omitted disconnected diagrams only enter at higher
order in QCD perturbation theory) we see the 14%
dependence of lattice result for Im Mut;RI

0̄0
as μRI is varied

from 2.11 to 2.56 GeV decreases to 4% when combined
with this MS to RI/SMOM correction.
The unphysical quark masses and single lattice spacing

used in our calculation make the present result an unreliable
long-distance correction to ϵK . Nevertheless it is of interest
to compare the size of this correction to the current short-
distance result for ϵK:

ϵLDK ðμRI ¼ 2.11 GeVÞ ¼ 0.195ð0.077Þeiϕϵ × 10−3 ð63Þ

ϵSDK ¼ 1.446ð0.154Þeiϕϵ × 10−3 ð64Þ

ϵRI→MS
K ðμRI ¼ 2.11 GeVÞ ¼ −0.086eiϕϵ × 10−3: ð65Þ

Here the first number is our result for the long-distance
contribution to ϵK including connected and disconnected
diagrams with the bilinear operator product renormalized in
the RI-SMOM scheme with μRI ¼ 2.11 GeV. [We have
explicitly included the phase of ϵK introduced in Eqs. (1)
and (2) so that we can display the magnitude of ϵK and still
combine the quantities shown algebraically, including their
relative signs.] The second number is a recent result for ϵK
without long-distance correction [30]. The third number is
the Oð1Þ correction that should be added to the second
number giving a sum which represents the complete
RI-SMOM-normalized short-distance contribution, also
evaluated at μRI ¼ 2.11 GeV. This sum could then be
added to the first line to obtain a consistent prediction

for ϵK, had these quantities been computed with consistent
quark masses and other weak interaction input parameters.
The 8% relative size of the difference of the sum of the first
and the third lines compared to the second is somewhat
larger than the phenomenological estimate of 5% [5]
because we are comparing to a short-distance prediction
which itself is somewhat smaller than the measured result
jϵKj ¼ 2.228ð0.011Þ × 10−3. The discrepancy between the
experimental result and the standard model short-distance
prediction given in Ref. [30] is not understood but may be
related to the significant discrepancy between the exclusive
and inclusive experimental results for the CKM matrix
element Vcb.
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APPENDIX: FOUR-QUARK OPERATOR MIXING
AND NONPERTURBATIVE RENORMALIZATION

The four-flavor RI-SMOM nonperturbative renormali-
zation scheme used here to determine the Wilson coef-
ficients for the four-quark operators defined on the lattice
was first used in the calculation of ΔMK in Ref. [2]. In the
case of ΔMK , only the coefficients of the two current-
current operators are needed. For the calculation of ϵK ,
the nonperturbative renormalization (NPR) will be more
challenging because we must also include the QCD
penguin operators which mix among themselves and also
appear when the renormalization scheme or scale for the
two current-current operators is changed. The procedure is
similar to what we have done in Refs. [26] and [31] when
computing K → ππ decay but with the difference that we
are now working in the four-flavor theory and do not
need to include the electroweak penguin operators. We
impose the RI/SMOM condition specified in Ref. [25] on
Landau gauge fixed, amputated Green’s functions with
off-shell external momenta p1 and p2. These momenta
obey p2

1 ¼ p2
2 ¼ ðp1 − p2Þ2 ¼ μ2RI. We have chosen to use

μRI ¼ 2.15 GeV, the same as our choice in Ref. [2]. Four
different RI-SMOM schemes are studied in Ref. [25]: the

ZIYUAN BAI et al. PHYS. REV. D 109, 054501 (2024)

054501-28

Improved calculation currently underway using two ensembles at physical pion mass
and a−1 = 2.359 GeV as well as a−1 = 2.7 GeV. Ensemble with a−1 = 3.5 GeV
currently being generated that will be crucial as well!
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Hadronic D meson decays, first steps

▶ Problem of many open channels for physical kinematics, application of Luscher
method very challenging

▶ Simplified at SU(3) symmetric point (PoS LATTICE2022 (2023) 063), where
spectrum is manageable (on reasonable volumes 5-10 states lighter than
mD ≈ 4mπ)

▶ First results for scattering phase shift (plot from MT Hansen Lattice 2023)Phase shift tells consistent story

Next steps

Complete and analyze moving frame data
More careful phase-shift analysis

13

preliminary

▶ Lellouch-Lüscher factor also available (generalization by Hansen and Sharpe
Phys.Rev.D 86 (2012), 016007)

▶ Going to physical pion masses very challenging
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Hadronic D meson decays, towards physical pion mass

Bruno-Hansen alternative approach JHEP 06 (2021) 043 may be viable.

Idea: introduce smearing kernel in energy that can be approximated well by weighted
sum over Euclidean correlators.
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0
4
3

spectral functions convoluted with a known resolution function

ρ̂(ω,∆, L) ≡
∫ ∞

0
dω δ̂∆(ω,ω) ρ(ω, L) , (1.2)

where δ̂∆(ω,ω) is peaked at ω = ω with characteristic width ∆. Encouraging progress
has recently been made in developing improved strategies to regulate the inverse problem
and systematically target a resolution function [61, 62] to extract eq. (1.2) from eq. (1.1).
To reach a physical prediction, these methods formally require that the infinite-volume
limit (L → ∞) is taken before the resolution width is sent to zero (∆ → 0). Such ideas
might prove useful also in the context of QED corrections to semi-leptonic decays, and
similar processes,2 where intermediate on-shell states prevent the analytic continuation to
Minkowski signature and approximate numerical solutions to the inverse problem could
play a significant role.

In this manuscript, we present a strategy for combining the ideas summarized by
eqs. (1.1) and (1.2) with the work of Maiani and Testa [1], in order to extend the reach
of the latter to energies above scattering threshold, without suffering the dominance of
off-shell terms. We present the idea both in the context of three- and four-point functions
and, as a side benefit, we also reach new results for extracting threshold information from
standard correlators.

Although we focus in this work on three- and four-point functions, the basic idea can
already be expressed with a two point function of a scalar current, J(t,x),

G(t) =
∫
d3x ⟨J(t,x)J(0)⟩ , (1.3)

where we assume the L→∞ limit has been taken. We then define the modified correlator

GΘ(t|s) =
∫
d3x ⟨J(t,x)Θ(Ĥ −√s,∆)J(0)⟩ , (1.4)

where Θ(z,∆) is a smoothened Heaviside function, interpolating from zero for z < 0 to one
for z > 0. A specific definition of Θ(z,∆) is given in eq. (2.5) below, but any function can
be used provided it is smooth and becomes the usual Heaviside step function for ∆ → 0.
Defining the spectral function as

ρ(ω) =
∫
d3x ⟨J(0,x)δ(Ĥ − ω)J(0)⟩ , (1.5)

note that the following relations hold:

G(t) =
∫ ∞

0
dω e−ωt ρ(ω) , GΘ(t|s) =

∫ ∞

0
dω
[
Θ(ω −√s,∆)e−ωt] ρ(ω) . (1.6)

These two simple results form the basis of this work. In the expression for G(t), the kernel
e−ωt becomes sharply peaked at threshold for large t, leading to the threshold dominance

2Other notable examples are long distance effects in ϵK and time-like Compton amplitudes. See also
refs. [63] and [64] for finite-volume methods targeting these observables.

– 3 –

Introduces additional scale (smearing width ∆) that needs to be carefully removed
after infinite-volume limit L → ∞ is taken.
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0
4
3

Figure 1. Sketch of the normalized effective resolution functions, δ̂(E , t2) and δ̂Θ(E , t2), defined in
eqs. (2.11) and (2.12) respectively. The corresponding correlators can be written as convolution
integrals of these resolution functions with the same spectral function, ρq(E), which contains the
time-like information we are after. Thus, the functional forms plotted here give an indication of
the energies that predominantly contribute to the correlation functions. The left panel illustrates
that cq,−q(t2) is dominated by E ≈ 2mπ and that large t2 sharpens the near-threshold resolution.
By contrast, the right panel illustrates the modification involving Θ(E − 2ωq,∆) (also plotted here
in gray) for 2ωq = 5mπ. The three curves correspond to the same ∆ value, and the sharpening
around E = 5mπ is achieved by increasing t2, with the dashed curves showing the corresponding
factors of e−t2(E−2ωq).

where

ρq(E) =
2ωq ⟨π, q|π̃−q(0) δ(Ĥ − E) J(0)|0⟩√

Zπ
, (2.10)

δ̂(E , t2) = θ(E − 2mπ) e−(E−2ωq)t2 , (2.11)
δ̂Θ(E , t2) = Θ(E − 2ωq,∆) e−(E−2ωq)t2 . (2.12)

Here we have included a zero-width Heaviside function (denoted θ(x)) in the definition of
δ̂(E , t2) to further emphasize the similarities. This is allowed as the spectral function, ρ(E),
has zero support for E < 2mπ.5

In figure 1 we show the functional forms of δ̂(E , t2) and δ̂Θ(E , t2), normalized to unit
area. Note that δ̂(E , t2) is sharply peaked at threshold with a width given by 1/t2. For
this reason, the large t2 limit can only access time-like information at threshold, as was
famously established in ref. [1]. For δ̂Θ(E , t2), the peak is shifted and mimics the resolution
functions discussed in refs. [59, 60], formally allowing one to extract scattering amplitudes
at all energies. The key advantage, as compared to the earlier work, is that the effective
resolution width can be reduced at fixed ∆ by increasing t2. This gives a powerful handle on
the target observable and can be expressed as a large t2 expansion, to which we now turn.

Returning to eq. (2.4), the next step is to insert a complete set of states between π̃q2(0)
and J(0) to reach

cΘq1q2
(t2|ω0) =

∑

k

∫
dΦk e

−(E(p)−ωq1−ωq2 )t2 Θ
(
s(p)1/2− 2ω0,∆

)
Ak(q1, q2;p)Bk(p) , (2.13)

5We assume throughout that the system has no bound state.

– 7 –
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D–D mixing

Remember expression for kaon case, need to subtract all
intermediate states lighter than the D meson:

�MK – Lattice setup

in this sum over intermediate states show exponentially decreasing or increasing behavior

with increasing |t2 � t1| depending on whether En lies above or below MK .

We can integrate the times t1 and t2 in the unintegrated correlator over a time interval

[ta, tb] and obtain:

A =

1

2

tbX

t2=ta

tbX

t1=ta

h0|T
�
K0

(tf)HW (t2)HW (t1)K0
(ti)

�
|0i. (4)

We call this amplitude the integrated correlator. The integrated correlator is represented

schematically in Fig. 1. After inserting a sum over intermediate states and summing explic-

itly over t2 and t1 in the interval [ta, tb] one obtains:

A =N2
Ke�MK(tf �ti)

�
X

n �=n0

hK0|HW |nihn|HW |K0i
MK � En

�
�T +

e(MK�En)T � 1

MK � En

�

+

1

2

hK0|HW |n0ihn0|HW |K0iT 2

�
.

(5)

Here T = tb � ta + 1 and the sum includes all possible intermediate states except a possible

state |n0i which is degenerate with the kaon, En0 = MK . The contribution from such a

degenerate state appears separately as the final term on the right hand side of this equation.

The method proposed in Ref. [4] to control finite volume errors requires that the spatial

volume be adjusted to create such a degenerate ⇡ � ⇡ state and that this state be omitted

from the finite volume expression used as an approximation to the infinite volume quantity

�MK . [12] The expression on the right-hand side of Eq. (5) has been made easier to recognize

by replacing the quantity 1� exp (MK � En)a, which results from the sum over the discrete

times t1 and t2, by its value in the continuum limit, i .e. by either zero or (En � MK)a as

appropriate.

d

d

s

s

u

u

HW HW

t2 t1
K

0
(tf) K

0
(ti)

tb ta

FIG. 1. One type of diagram contributing to A in Eq. (4). Here t2 and t1 are integrated over the

time interval [ta, tb], represented by the shaded region.

7

I Inserting a complete set of states in

A =
1

2

tbX

t1,t2=ta

h0|T{K 0
(tf )HW (t2)HW (t1)K

0
(ti )}|0i (7)

yields

A = N2
Ke

�MK (tf �ti )
P

n
hK0|HW |nihn|HW |K0i

mK�En

⇣
�T + e(MK�En)T�1

MK�En

⌘

with T = tb � ta + 1.
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This is currently intractible at physical pion mass and reasonably
large volumes. Again, smeared kernels can help at the cost of a
careful double limit procedure.
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Summary of CP-violating hadronic processes within standard model

▶ More than a decade of effort in K → ππ, steady progress. Methods are refined
but significant challenges remain for next precision frontier! Now there are two
competing methods (G-parity and periodic BC) that are being carried out in
parallel by RBC/UKQCD.

▶ Long-distance contribution to K–K mixing has well established methodology
but discretization errors still seem large. Costly calculation to address this is in
progress!

▶ Hadronic D decays can be studied with similar methodology at SU(3) symmetric
point but going to physical masses may require a change in methodology using
smeared kernels.

▶ D–D mixing also facing similar issues at physical pion masses and also in this
case smeared kernel methods may be the fastest path towards robust results.

19 / 19


