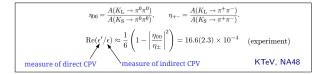

Probing CP-violation using lattice QCD

Christoph Lehner (University of Regensburg)

December 2, 2024 - DISCRETE 2024

This talk: CP-violating hadronic processes within standard model



• Kaons: direct $(K \to \pi\pi)$, indirect $(K - \overline{K} \text{ mixing})$

▶ D mesons: direct $(D \to KK, D \to \pi\pi)$, indirect $(D - \overline{D})$ mixing)

 $K \rightarrow \pi \pi$, setup

Main challenges of lattice calculation:

- Kinematics require high-precision control of excited states in LQCD
- \blacktriangleright $\pi\pi$ scattering in finite-volume requires multi-operator approach
- Scheme matching between lattice and $\overline{\mathrm{MS}}$
- Wilson coefficients of ΔS = 1 effective Hamiltonian
- Statistical noise
- ► Isospin-breaking corrections could be enhanced ($\Delta I = 1/2$ rule, need QCD+QED)

$K ightarrow \pi\pi$, a brief history of the lattice approach (1/2)

- 1991: Lüscher formalism relating FV spectra and scattering (Nucl.Phys.B 354 (1991) 531-578)
- 2001: Lellouch-Lüscher formalism relating FV matrix elements to IV (Commun.Math.Phys.219(2001)31-44)
- 2011: RI/SMOM operator renormalization and 1-loop finite-terms for matching to MS (Phys.Rev.D 84 (2011) 014001)
- ▶ 2011: threshold computation at $m_{\pi} > m_{\pi}^{\rm phys}$ (Phys.Rev.D 84 (2011) 114503)
- ▶ 2012: first-principles reproduction and deconstruction of $\Delta I = 1/2$ rule (I = 0 final state dominance, Phys.Rev.Lett. 110 (2013) 15, 152001)
- ▶ 2012: I = 2 final state at m_{π}^{Phys} no $a \to 0$ limit (Phys.Rev.Lett. 108 (2012) 141601, Phys.Rev.D 86 (2012) 074513)
- ▶ 2015: I = 2 final state at $m_{\pi}^{\rm phys}$ with $a \rightarrow 0$ limit (Phys.Rev.D 91 (2015) 7, 074502)

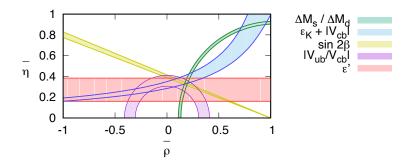
 $K \rightarrow \pi \pi$, a brief history of the lattice approach (2/2)

▶ 2015: I = 0 final state at m_{π}^{phys} no $a \rightarrow 0$ limit, G-parity BC (Phys.Rev.Lett. 115 (2015) 21, 212001)

 $\text{Re}(\varepsilon'/\varepsilon) = 1.38(5.15)(4.59)10^{-4}$ (2.1 σ tension with experiment)

 2020: Multi-operator update of 2015 result (Phys.Rev.D 102 (2020) 5, 054509), systematic effect uncovered

 $\operatorname{Re}(\varepsilon'/\varepsilon) = 21.7(2.6)_{stat}(6.2)_{syst}(5.0)_{IB}10^{-4}$ (tension resolved)

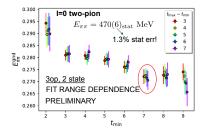

- 2021: Detailed study of multi-operator effect on phase shifts (Phys.Rev.D 104 (2021) 11, 114506)
- ► 2023: $I = 0, 2 \pi \pi$ scattering with periodic BC as alternative approach (Phys.Rev.D 107 (2023) 9, 094512)
- 2023: I = 0, 2 final states with periodic BC (Phys.Rev.D 108 (2023) 9, 094517)

 $\text{Re}(\varepsilon'/\varepsilon) = 29.4(5.2)_{\text{stat}}(11.1)_{\text{syst}}(5.0)_{\text{IB}}10^{-4}$

 $K \rightarrow \pi \pi$, status of G-parity effort (1/2) (driven by Chris Kelly at BNL)

Latest paper (Phys.Rev.D 102 (2020) 5, 054509)

 $Re(\epsilon'/\epsilon) = 21.7(2.6)_{stat}(6.2)_{syst}(5.0)_{IB}10^{-4}$ (tension resolved)

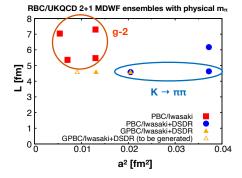

Errors dominated by Wilson coefficients (\approx 12% uncertainty), IB (\approx 23%), discretization errors of A_0 (\approx 12%)

$K \rightarrow \pi \pi$, status of G-parity effort (2/2) (driven by Chris Kelly at BNL)

Discretization error: so far only single lattice spacing $a^{-1} = 1.38$ GeV, currently generate second lattice spacing $a^{-1} = 1.73$ GeV; expect to have target statistics soon

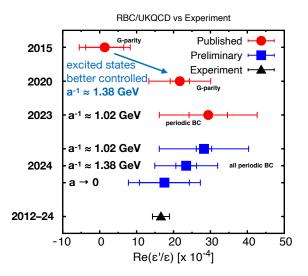
Significant work invested to remove computational overhead of G-parity setup compared to simpler periodic BC

First look at new lattice ensemble:


(more details can be found in Chris Kelly's talk at Lattice 2024)

 $K \rightarrow \pi\pi$, status of periodic BC effort (1/2) (driven by Masaaki Tomii at UConn/RBRC) Latest paper (Phys.Rev.D 108 (2023) 9, 094517)

 $Re(\varepsilon'/\varepsilon) = 29.4(5.2)_{stat}(11.1)_{syst}(5.0)_{IB}10^{-4}$


Advantages over G-parity BC:

Can re-use existing data for other projects such as muon g-2

Significantly simplifies inclusion of QED corrections

 $K \rightarrow \pi\pi$, status of periodic BC effort (2/2) (driven by Masaaki Tomii at UConn/RBRC)

(more details can be found in Masaaki Tomii's talk at Lattice 2024)

$K \rightarrow \pi \pi$, towards including IB corrections Phys.Rev.D 106 (2022) 1, 014508

$\pi - \pi$ scattering, QED and finite-volume quantization

Norman Christ,¹ Xu Feng,^{2,3,4,5} Joseph Karpie,¹ and Tuan Nguyen¹

¹Physics Department, Columbia University, New York City, New York 10027, USA

²School of Physics, Peking University, Beijing 100871, China

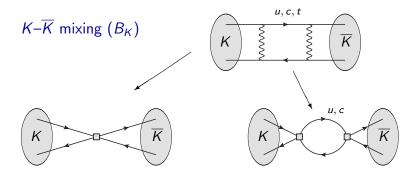
³Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

⁴Center for High Energy Physics, Peking University, Beijing 100871, China ⁵State Key Laboratory of Nuclear Physics and

Technology, Peking University, Beijing 100871, China

(Dated: October 17, 2021)

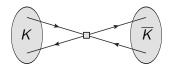
Abstract


Using the Coulomb gauge formulation of QED we present a lattice QCD procedure to calculate the $\pi^+\pi^+$ scattering phase shift including the effects of the Coulomb potential which appears in this formulation. The approach described here incorporates the effects of relativity and avoids finite-volume corrections that vanish as a power of the volume in which the lattice calculation is performed. This is the first step in developing a complete lattice QCD calculation of the electromagnetic and isospin-breaking light-quark mass contributions to ε' , the parameter describing direct CP violating effects in $K_L \to \pi\pi$ decay.

$K \rightarrow \pi \pi$, future directions

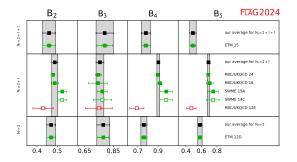
 Going through mass thresholds non-perturbatively (current work on integrating out charm)

Eventually, lattice can also eliminate all perturbative truncation errors in α_s by simulating very fine lattices and integrating out EW physics with fully non-perturbative QCD (Phys.Rev.D 97 (2018) 7, 074509)


For now it would be great to have NNLO accuracy for Wilson coefficients. Work started by Cerda-Sevilla, Gorbahn, Jäger, Kokulu (J.Phys.Conf.Ser. 800 (2017) 1, 012008, Acta Phys.Polon.B 49 (2018) 1087-1096).

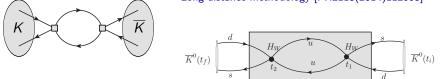
 Established lattice methodology, see next slide

[PRL113(2014)112003]


- "Long-distance contribution" under active research
- ► Estimated to yield ≈ 5% correction to ε_K
- Non-local (bi-local) methodology has broad impact

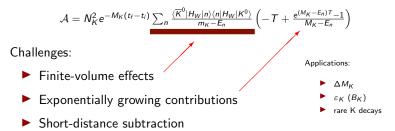
Âκ FLAG2024 $N_f = 2 + 1 + 1$ FLAG average for N_f=2+1+1 ETM 15 FLAG average for N_f=2+1 RBC/UKOCD 24 RBC/UKQCD 16 SWME 15A RBC/UKOCD 14B SWME 14 $N_f = 2 + 1$ SWME 13A HE I SWME 13 **RBC/UKOCD 12A** Laiho 11 SWME 11A **BMW 11** RBC/UKOCD 10B SWME 10 Aubin 09 FLAG average for N_f=2 $N_{\rm f} = 2$ ETM 12D ETM 10A 0.75 0.80 0.85 0.70

Above is FLAG24; after FLAG24 also NNLO matching appeared (Gorbahn, Jäger, Kvedaraite, arXiv:2411.19861)


Excursion BSM contributions, tension

Tensions between results using RI/MOM and RI/SMOM for $B_{\rm 4}$ and $B_{\rm 5}$

Long-distance methodology [PRL113(2014)112003]


 t_a

 $t_{\rm L}$

$$\mathcal{A} = \frac{1}{2} \sum_{t_1, t_2 = t_a}^{t_b} \langle 0 | T\{ \overline{K}^0(t_f) H_W(t_2) H_W(t_1) \overline{K}^0(t_i) \} | 0 \rangle$$

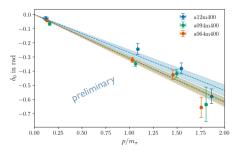
Inserting a complete set of states, $T = t_b - t_a + 1 \Rightarrow 2$ nd order PT expression is accessible

Long-distance contribution to $K-\overline{K}$ mixing, current status:

Phys.Rev.D 109 (2024) 5, 054501

The unphysical quark masses and single lattice spacing used in our calculation make the present result an unreliable long-distance correction to ϵ_K . Nevertheless it is of interest to compare the size of this correction to the current shortdistance result for ϵ_K :

$$\epsilon_K^{LD}(\mu_{\rm RI} = 2.11 \text{ GeV}) = 0.195(0.077)e^{i\phi_e} \times 10^{-3}$$
 (63)


$$\epsilon_K^{SD} = 1.446(0.154)e^{i\phi_e} \times 10^{-3}$$
 (64)

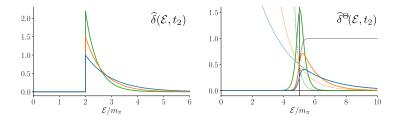
$$\epsilon_K^{\text{RI}\to\overline{\text{MS}}}(\mu_{\text{RI}} = 2.11 \text{ GeV}) = -0.086 e^{i\phi_c} \times 10^{-3}.$$
 (65)

Improved calculation currently underway using two ensembles at physical pion mass and $a^{-1} = 2.359$ GeV as well as $a^{-1} = 2.7$ GeV. Ensemble with $a^{-1} = 3.5$ GeV currently being generated that will be crucial as well!

Hadronic D meson decays, first steps

- Problem of many open channels for physical kinematics, application of Luscher method very challenging
- Simplified at SU(3) symmetric point (PoS LATTICE2022 (2023) 063), where spectrum is manageable (on reasonable volumes 5-10 states lighter than $m_D \approx 4m_{\pi}$)
- First results for scattering phase shift (plot from MT Hansen Lattice 2023)

- Lellouch-Lüscher factor also available (generalization by Hansen and Sharpe Phys.Rev.D 86 (2012), 016007)
- Going to physical pion masses very challenging


Hadronic D meson decays, towards physical pion mass

Bruno-Hansen alternative approach JHEP 06 (2021) 043 may be viable.

Idea: introduce smearing kernel in energy that can be approximated well by weighted sum over Euclidean correlators.

$$\widehat{\rho}(\overline{\omega}, \Delta, L) \equiv \int_0^\infty d\omega \, \widehat{\delta}_\Delta(\omega, \overline{\omega}) \, \rho(\omega, L) \,,$$

Introduces additional scale (smearing width Δ) that needs to be carefully removed after infinite-volume limit $L \to \infty$ is taken.

$D - \overline{D}$ mixing

Remember expression for kaon case, need to subtract all intermediate states lighter than the D meson:

$$\mathcal{A} = N_K^2 e^{-M_K(t_f - t_i)} \sum_n \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n} \left(-T + \frac{e^{(M_K - E_n)T} - 1}{M_K - E_n} \right)$$

This is currently intractible at physical pion mass and reasonably large volumes. Again, smeared kernels can help at the cost of a careful double limit procedure.

Summary of CP-violating hadronic processes within standard model

- More than a decade of effort in K → ππ, steady progress. Methods are refined but significant challenges remain for next precision frontier! Now there are two competing methods (G-parity and periodic BC) that are being carried out in parallel by RBC/UKQCD.
- ► Long-distance contribution to K-K mixing has well established methodology but discretization errors still seem large. Costly calculation to address this is in progress!
- Hadronic D decays can be studied with similar methodology at SU(3) symmetric point but going to physical masses may require a change in methodology using smeared kernels.
- D-D mixing also facing similar issues at physical pion masses and also in this case smeared kernel methods may be the fastest path towards robust results.