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Anomaly Detection in Low-Energy Observables

» Anomalies: Deviations between experimental data and theoretical predictions under a null
hypothesis (SM hypothesis)

» Searching for anomalies in low-energy observables is critical for NP exploration

= Observables at low energies receive contributions from higher scales due to quantum corrections
» Goal: Properly quantify the statistical significance of observed anomalies
» Examples of recent anomalies

= B anomalies (b — s¢t¢=, b — clv)

= (9-2)u
= Vip, Vup puzzle
=
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Anomaly Detection in b — sfT¢~
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Experimental Data in Phenomenological Analyses

» Experimental data:

= Released from the experiments as a vector of means ;**P and a covariance matrix A®*P

= Implicitly assumes a Gaussian distribution for the experimental measurements
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Theoretical Predictions in Phenomenological Analyses

» Theoretical predictions

= For the observables in the analysis © = (z1,...,2y), we have functions representing their theoretical
predictions in terms of several input parameters v = (v1,...,vpm)
i =xi(V1,...,Vm)

= The input parameters are distributed according to some distribution, usually Gaussian
v~ N p, Ay)

where p, and A, means and covariance of the distribution of underlying parameters

» Implications

= Even if the distribution of parameters is Gaussian, observables with complex structures do not
distribute normally

= Except for observables with a linear dependence on the underlying parameters

= This means the likelihood p(x|H;) will generally be distributed under a

non-Gaussian distribution
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Gaussian Likelihoods in Phenomenological analyses

> In conventional frequentist b — s€T£~ analyses, Gaussian likelihoods are assumed

1 1 T A—1 )
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p(z|H;) = N(z; xm;, Am;) =
= Ap, is the sum of theoretical and experimental covariances
Ay, = A, + AP
= Theory side: Covariance estimated from samples of theoretical predictions
= Experimental side: Covariance read directly from data released by experiments
» Measuring goodness-of-fit

= Use —logp(x|H,;) as a statistic to measure agreement between data and hypothesis H;
2

—logp(x|H;) = X? + const
where x?2 is the chi-squared function

= If theoretical predictions are normally distributed, — log p(z|H;) follows a x2-distribution with
Ndof = Mobs 1N the analysis

= If not normally distributed, —log p(z|H;) is only asymptotically x? due to the central limit
theorem

= Assuming y2-distribution when it is not creates biases in calculating p-values from — log p(@exp|H;)
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Distribution of — log p(x|H;) vs Asymptotic x?
» Distribution of —log p(x|H;)
= Calculated for the set of observables in the b — s¢¢ dataset under the SM hypothesis (Hy = SM)

= Obtained by calculating — log p(z|Ho) for each @ in a sample * = (x!,..., @ sample)

= Sample size: ngample = 10000
= Each x* generated by sampling underlying parameters v from N (v; ., Ay)

» Comparison
= Distribution of — logp(x|H;) vs asymptotic x2 distribution with corresponding degrees of freedom

= Difference observed between the two distributions
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Estimating Likelihoods

» Understanding p(x|H;)

= Goal: Determine the likelihood p(a|H;) = p(a) for enhanced statistical rigor in hypothesis testing

= Known: Distribution of underlying inputs p(v), which informs us about the prior probability of the
model parameters

= Computable: p(x|v), achievable by simulating observables @ using sampled parameters v from their
known distributions

» Obtaining p(x) as a marginal likelihood

p(@) = / dv p(a|)p(v)

= In most real-life applications v is usually high-dimensional
= Challenge: a direct computation the dv integral is generally computationally prohibitive
= Hence, the likelihood p(z) is typically intractable

> Estimation using Variational Autoencoders (VAEs)

= VAESs provide a feasible approach to approximate p(x) with arbitrary precision
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Introducing Variational Autoencoders

T

input

» VAE framework

b

95 (2|7)

A

> 2 po(z|z) > 7

b

latent vector reconstructed
input

= Model: Pairs a probabilistic decoder pg(x|z) with a probabilistic encoder g4 (z|x)
Latent variable z approximates underlying parameters v

0: parameters of the decoder

=
= VAEs do not map inputs to a deterministic latent variable, but to a probability space p(z)
=
=

¢: parameters of the decoder
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The Variational Lower Bound
» The Variational Lower Bound (ELBO) relates to two joint probability density functions: ps and g4

p@(w7 Z)
£00,65) = By oy 10824521
Fay(elo) q6(z|z)
= pg(x, z): joint distribution of & and z
= ¢4(z|x): approximate encoder posterior
= Simplifies to
L0, ¢;x) = By (2]a) [log po(x|2)] — D1 (90 (2|2)|po(2))

» Includes Kullback-Leibler divergence (KL-div) which is a distance in distribution space

Dr1(qs(w)|[po(w)) = Eq, (w) [bg %}

» Implications and optimisation objective

= Log-likelihood relation
log po () > L(0, ¢; )
= Objective function to train VAEs
= Maximize ELBO to approximate the true log-likelihood.
= Equivalent to minimising the negative ELBO (-ELBO)
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Deep Learning Implementation of Variational Autoencoders

» Implementation and parametrisation
= Neural Networks as parametrisers
= pe(x|z) and gy (z|x) parameterised using deep neural networks
O ={Wy,...,Wi, ,by,....,bi, }
o= {Vll,u-,VlL,Cll,...,ClL}
where W, (V}), by (¢;) are the weights and biases of the encoder (decoder) network

= This setup enables the modeling of complex, non-linear relationships between observed data and latent
variables
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Preparing Training Data with Theoretical and Experimental Inputs

» Generating Theoretical Predictions

= Start by sampling the distribution of underlying inputs under hypothesis Ho, p(v|Ho)
= Compute the vector of observables x® for these values to obtain a sample of theoretical predictions:
x° = (x!,... x"sample)
» Incorporating Experimental Uncertainties
= Smear the samples with experimental uncertainties to simulate realistic observational data
xS = x° + Lpexpw
= Lpexp: Cholesky decomposition of the experimental covariance matrix A®*P

= w ~ N(w;0,1): Normal noise vector simulating experimental noise
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Training the Variational Autoencoder with Experimental Uncertainties

» Training the VAE

= Divide the smeared dataset into training and testing datasets
= Use the training dataset to optimise the parameters of the VAE, minimising the -ELBO

L(0, p; ) = Eq, (z|a) [log po(2]2)] — BDK1(q4(2|2)||po(2))

= Notice the parameter § in the ELBO. It allows us to test the generative properties of the model

= Objective: approximate the full log-likelihood distribution of the observables under Hy as
closely as possible

» Model Assumptions

= Assume distributions for model simplicity:

po(z) = N(z;0,1)
po(x|z) = N(z; &, Ag) with Ay = diag(o2)
4 (z]z) = N(2;n, Ar) with A, = diag(?)

= These assumptions do not imply a Gaussian likelihood but approximate relationships within the
VAE structure
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Statistical Analysis Using Trained VAE for b — s¢*¢~
» Analysing the test dataset
= Compute the -ELBO distribution using the test dataset, approximating the full -log-likelihood under

hypothesis Hp.
= Evaluate -ELBO for the experimental data to compute the p-value

» Preliminary results
= Performed for the b — sf¢ dataset with promising preliminary outcomes
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Refining Model Tuning and Validity in VAE Training

» Challenges in Model Tuning

= How do we determine the optimal dimensionality for the DNNs of the encoder and decoder, or the
correct value of 37

= Could these choices bias the p-value?

= The choice of neural networks’ architecture and /3 significantly affects the model’s performance and the
fidelity of the statistical results

» Testing and Validating Model Parameters

= Ongoing research and empirical testing are essential to optimise these parameters while minimising
biases

» Strategies for Validation and Hyperparameter Optimisation

= Employ validation techniques to ensure model outputs are stable and reliable across various parameter
configurations

= Use synthetic datasets to evaluate the impact of hyperparameter adjustments on model performance
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Optimising Hyperparameters

» Generating artificially anomalous data

= Used to train the VAE across different configurations to optimise anomaly detection
» Tuning g in the ELBO

= Exploring the impact of 5 on anomaly detection and VAE’s generative accuracy
» Pre-experimental blind analysis

= Ensures that the final measurement of experimental data is unbiased
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Outlook and Continued Research

» Deepening understanding of VAE parameters

= Exploring how different parameters influence the anomaly score and VAE’s generative properties
» Ongoing hyperparameter optimisation

= Continuously refining the model to enhance its predictive accuracy and anomaly detection

» Addressing sparse covariance matrices

= Using random matrix theory techniques to sample observables and covariance matrices at the same
time (LKJ distribution, Wishart distribution)

= Will allow us to quantify the uncertainty attached to many unnatural zeros in the experimental
covariance matrix

» Expanding application scope
= Applying methodologies to SMEFT fits beyond b — s/
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Thank You!
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Dual-Branch VAE Architecture

= We need the VAE to estimate pg(z|z) = N (x; &, Ag) o
= We need two output branches: one for & and one for Az ‘
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