Anomaly Awareness Estimation in $b \to s\ell^+\ell^-$ with VAEs

B. Capdevila University of Barcelona, ICCUB

Institut de Ciències del Cosmos **UNIVERSITAT DE BARCELONA**

EXCELENCIA $2020 - 2023$

In collaboration with:

A. Scaffidi; arXiv:241x.xxxx

Anomaly Detection in Low-Energy Observables

- ▶ Anomalies: Deviations between experimental data and theoretical predictions under a null hypothesis (SM hypothesis)
- ▶ Searching for anomalies in low-energy observables is critical for NP exploration
	- \Rightarrow Observables at low energies receive contributions from higher scales due to quantum corrections
- \triangleright Goal: *Properly* quantify the **statistical significance** of observed anomalies
- ▶ Examples of recent anomalies
	- \Rightarrow B anomalies $(b \rightarrow s\ell^+\ell^-, b \rightarrow c\ell\nu)$ \Rightarrow $(q-2)_{\mu}$ \Rightarrow V_{cb} , V_{ub} puzzle ⇒ . . .

Anomaly Detection in $b \to s\ell^+\ell^-$

Data Stats

$\rightarrow p$ − value

Experimental Data in Phenomenological Analyses

- \blacktriangleright Experimental data:
	- \Rightarrow Released from the experiments as a **vector of means** μ^{\exp} and a **covariance matrix** Λ^{\exp}
- \Rightarrow Implicitly assumes a Gaussian distribution for the experimental measurements

$$
p(\boldsymbol{x}^{\mathrm{exp}})=\mathcal{N}(\boldsymbol{x}^{\mathrm{exp}};\boldsymbol{\mu}^{\mathrm{exp}},\boldsymbol{\Lambda}^{\mathrm{exp}})
$$

LHCb, arXiv:2003.04831

Theoretical Predictions in Phenomenological Analyses

- ▶ Theoretical predictions
	- \Rightarrow For the observables in the analysis $x = (x_1, \ldots, x_n)$, we have functions representing their **theoretical** predictions in terms of several input parameters $v = (v_1, \ldots, v_m)$

$$
x_i = x_i(\nu_1,\ldots,\nu_m)
$$

 \Rightarrow The **input parameters** are distributed according to some distribution, usually Gaussian

$$
\boldsymbol{\nu} \sim \mathcal{N}(\boldsymbol{\nu};\boldsymbol{\mu_{\nu}},\boldsymbol{\Lambda_{\nu}})
$$

where μ_{ν} and Λ_{ν} means and covariance of the distribution of underlying parameters

- \blacktriangleright Implications
	- \Rightarrow Even if the distribution of parameters is Gaussian, observables with complex structures **do not** distribute normally
	- \Rightarrow Except for observables with a linear dependence on the underlying parameters
	- \Rightarrow This means the likelihood $p(x|H_i)$ will generally be distributed under a non-Gaussian distribution

Gaussian Likelihoods in Phenomenological analyses

▶ In conventional frequentist $b \to s\ell^+\ell^-$ analyses, Gaussian likelihoods are assumed

$$
p(\boldsymbol{x}|H_i) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{x}_{H_i}, \boldsymbol{\Lambda}_{H_i}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Lambda}_{H_i}|}} \exp \left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{H_i})^T \boldsymbol{\Lambda}_{H_i}^{-1} (\boldsymbol{x} - \boldsymbol{x}_{H_i})\right)
$$

 \Rightarrow $\mathbf{\Lambda}_{H_i}$ is the sum of theoretical and experimental covariances

$$
\boldsymbol{\Lambda}_{H_i} = \boldsymbol{\Lambda}_{H_i}^{\text{th}} + \boldsymbol{\Lambda}^{\text{exp}}
$$

- ⇒ Theory side: Covariance estimated from samples of theoretical predictions
- ⇒ Experimental side: Covariance read directly from data released by experiments
- ▶ Measuring goodness-of-fit

 \Rightarrow Use - log p(x|H_i) as a statistic to measure agreement between data and hypothesis H_i

$$
-\log p(\boldsymbol{x}|H_i) = \frac{\chi^2}{2} + \text{const}
$$

where χ^2 is the chi-squared function

- \Rightarrow If theoretical predictions are normally distributed, $-\log p(x|H_i)$ follows a χ^2 -distribution with $n_{\text{dof}} = n_{\text{obs}}$ in the analysis
- \Rightarrow If not normally distributed, $-\log p(x|H_i)$ is only asymptotically χ^2 due to the central limit theorem
- \Rightarrow Assuming χ^2 -distribution when it is not creates biases in calculating p-values from $-\log p(\boldsymbol{x}_{\rm exp}|H_i)$

Distribution of $-\log p(\mathbf{x}|H_i)$ vs Asymptotic χ^2

- ▶ Distribution of $-\log p(x|H_i)$
	- \Rightarrow Calculated for the set of observables in the $b \rightarrow s \ell \ell$ dataset under the SM hypothesis $(H_0 = SM)$
	- \Rightarrow Obtained by calculating $-\log p(x|H_0)$ for each x in a sample $x^s = (x^1, \ldots, x^{n_{\text{sample}}})$
	- \Rightarrow Sample size: $n_{\text{sample}} = 10000$
	- \Rightarrow Each x^s generated by sampling underlying parameters ν from $\mathcal{N}(\nu;\mu_\nu,\Lambda_\nu)$
- \blacktriangleright Comparison
	- \Rightarrow Distribution of $-\log p(x|H_i)$ vs asymptotic χ^2 distribution with corresponding degrees of freedom
	- Difference observed between the two distributions

Estimating Likelihoods

- Understanding $p(x|H_i)$
	- \Rightarrow Goal: Determine the likelihood $p(x|H_i) = p(x)$ for enhanced statistical rigor in hypothesis testing
	- \Rightarrow Known: Distribution of underlying inputs $p(\nu)$, which informs us about the prior probability of the model parameters
	- \Rightarrow Computable: $p(x|\nu)$, achievable by simulating observables x using sampled parameters ν from their known distributions
- \blacktriangleright Obtaining $p(x)$ as a marginal likelihood

$$
p(\boldsymbol{x}) = \int d\boldsymbol{\nu} \ p(\boldsymbol{x}|\boldsymbol{\nu}) p(\boldsymbol{\nu})
$$

- \Rightarrow In most real-life applications ν is usually high-dimensional
- \Rightarrow Challenge: a direct computation the $d\nu$ integral is generally computationally prohibitive
- \Rightarrow Hence, the likelihood $p(x)$ is typically **intractable**
- ▶ Estimation using Variational Autoencoders (VAEs)
	- \Rightarrow VAEs provide a feasible approach to approximate $p(x)$ with arbitrary precision

Introducing Variational Autoencoders

- ▶ VAE framework
	- \Rightarrow **Model**: Pairs a probabilistic decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$ with a probabilistic encoder $q_{\phi}(\mathbf{z}|\mathbf{x})$
	- \Rightarrow Latent variable z approximates underlying parameters ν
	- \Rightarrow VAEs do not map inputs to a deterministic latent variable, but to a **probability space** $p(z)$
	- $\Rightarrow \theta$: parameters of the decoder
	- \Rightarrow ϕ : parameters of the decoder

The Variational Lower Bound

 \triangleright The Variational Lower Bound (ELBO) relates to two joint probability density functions: p_θ and q_ϕ

$$
\mathcal{L}(\theta, \phi; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}\left[\log\frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}\right]
$$

- \Rightarrow p_θ(x, z): joint distribution of x and z
- $\Rightarrow q_{\phi}(z|x)$: approximate encoder posterior
- ⇒ Simplifies to

$$
\mathcal{L}(\theta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}))
$$

▶ Includes Kullback-Leibler divergence (KL-div) which is a distance in distribution space

$$
D_{KL}(q_{\phi}(w)||p_{\theta}(w)) = \mathbb{E}_{q_{\phi}(w)}\left[\log \frac{q_{\phi}(w)}{p_{\theta}(w)}\right]
$$

- ▶ Implications and optimisation objective
	- ⇒ Log-likelihood relation

$$
\log p_\theta(\bm{x}) \geq \mathcal{L}(\theta, \phi; \bm{x})
$$

- ⇒ Objective function to train VAEs
	- ⇒ Maximize ELBO to approximate the true log-likelihood.
	- \Rightarrow Equivalent to minimising the negative ELBO (-ELBO)

Deep Learning Implementation of Variational Autoencoders

- ▶ Implementation and parametrisation
	- ⇒ Neural Networks as parametrisers
	- \Rightarrow $p_{\theta}(\mathbf{x}|\mathbf{z})$ and $q_{\phi}(\mathbf{z}|\mathbf{x})$ parameterised using deep neural networks

$$
\theta = \{W_{l_1}, \dots, W_{l_L}, b_{l_1}, \dots, b_{l_L}\}\
$$

$$
\phi = \{V_{l_1}, \dots, V_{l_L}, c_{l_1}, \dots, c_{l_L}\}\
$$

where W_l (V_l), b_l (c_l) are the weights and biases of the encoder (decoder) network

⇒ This setup enables the modeling of complex, non-linear relationships between observed data and latent variables

Preparing Training Data with Theoretical and Experimental Inputs

▶ Generating Theoretical Predictions

- \Rightarrow Start by sampling the distribution of underlying inputs under hypothesis H_0 , $p(\nu|H_0)$
- ⇒ Compute the vector of observables x^s for these values to obtain a sample of theoretical predictions: $\boldsymbol{x}^s = (\boldsymbol{x}^1, \dots, \boldsymbol{x}^{n_\text{sample}})$
- ▶ Incorporating Experimental Uncertainties
	- \Rightarrow Smear the samples with experimental uncertainties to simulate realistic observational data

$$
\boldsymbol{x}^{\prime s} = \boldsymbol{x}^s + \boldsymbol{L}_{\boldsymbol{\Lambda}^{\text{exp}}} \boldsymbol{w}
$$

- \Rightarrow L_Λexp: Cholesky decomposition of the experimental covariance matrix Λ^{exp}
- \Rightarrow w ~ $\mathcal{N}(w; 0, 1)$: Normal noise vector simulating experimental noise

Training the Variational Autoencoder with Experimental Uncertainties

- ▶ Training the VAE
	- \Rightarrow Divide the smeared dataset into **training and testing datasets**
	- \Rightarrow Use the training dataset to **optimise the parameters** of the VAE, **minimising** the -ELBO

$$
\mathcal{L}(\theta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}))
$$

- \Rightarrow Notice the parameter β in the ELBO. It allows us to test the **generative properties** of the model
- \Rightarrow Objective: approximate the full log-likelihood distribution of the observables under H_0 as closely as possible
- ▶ Model Assumptions
	- \Rightarrow Assume distributions for **model simplicity**:

$$
p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{1})
$$

\n
$$
p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \hat{\mathbf{x}}, \mathbf{\Lambda}_{\hat{\mathbf{x}}}) \text{ with } \mathbf{\Lambda}_{\hat{\mathbf{x}}} = \text{diag}(\sigma_{\hat{\mathbf{x}}}^2)
$$

\n
$$
q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\eta}, \mathbf{\Lambda}_{\boldsymbol{\tau}}) \text{ with } \mathbf{\Lambda}_{\boldsymbol{\tau}} = \text{diag}(\tau^2)
$$

 \Rightarrow These assumptions do not imply a Gaussian likelihood but approximate relationships within the VAE structure

Statistical Analysis Using Trained VAE for $b \to s\ell^+\ell^-$

- ▶ Analysing the test dataset
	- \Rightarrow Compute the -ELBO distribution using the test dataset, approximating the full -log-likelihood under hypothesis H_0 .
	- \Rightarrow Evaluate -ELBO for the experimental data to compute the p-value
- ▶ Preliminary results
	- \Rightarrow Performed for the $b \rightarrow s \ell \ell$ dataset with promising preliminary outcomes

Refining Model Tuning and Validity in VAE Training

- ▶ Challenges in Model Tuning
	- \Rightarrow How do we determine the optimal dimensionality for the DNNs of the encoder and decoder, or the correct value of β?
	- \Rightarrow Could these choices bias the *p*-value?
	- \Rightarrow The choice of neural networks' architecture and β significantly affects the model's performance and the fidelity of the statistical results
- ▶ Testing and Validating Model Parameters
	- \Rightarrow Ongoing research and empirical testing are essential to optimise these parameters while minimising biases
- Strategies for Validation and Hyperparameter Optimisation
	- ⇒ Employ validation techniques to ensure model outputs are stable and reliable across various parameter configurations
	- ⇒ Use synthetic datasets to evaluate the impact of hyperparameter adjustments on model performance

Optimising Hyperparameters

- \triangleright Generating artificially anomalous data
	- \Rightarrow Used to train the VAE across different configurations to optimise anomaly detection
- \blacktriangleright Tuning β in the ELBO
	- \Rightarrow Exploring the impact of β on anomaly detection and VAE's generative accuracy
- ▶ Pre-experimental blind analysis
	- \Rightarrow Ensures that the final measurement of experimental data is unbiased

Outlook and Continued Research

- ▶ Deepening understanding of VAE parameters
	- \Rightarrow Exploring how different parameters influence the anomaly score and VAE's generative properties
- ▶ Ongoing hyperparameter optimisation
	- ⇒ Continuously refining the model to enhance its predictive accuracy and anomaly detection
- ▶ Addressing sparse covariance matrices
	- ⇒ Using random matrix theory techniques to sample observables and covariance matrices at the same time (LKJ distribution, Wishart distribution)
	- \Rightarrow Will allow us to quantify the uncertainty attached to many unnatural zeros in the experimental covariance matrix
- ▶ Expanding application scope
	- \Rightarrow Applying methodologies to SMEFT fits beyond $b \rightarrow s \ell \ell$

Thank You!

[Backup Slides](#page-18-0)

Dual-Branch VAE Architecture

