Anomaly Awareness Estimation in $b \to s \ell^+ \ell^-$ with VAEs

B. Capdevila University of Barcelona, ICCUB

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

In collaboration with:

A. Scaffidi; arXiv:241x.xxxx

Anomaly Detection in Low-Energy Observables

- Anomalies: Deviations between experimental data and theoretical predictions under a null hypothesis (SM hypothesis)
- Searching for anomalies in low-energy observables is critical for NP exploration
 ⇒ Observables at low energies receive contributions from higher scales due to quantum corrections
- ▶ Goal: *Properly* quantify the statistical significance of observed anomalies
- ▶ Examples of recent anomalies

$$\begin{array}{l} \Rightarrow \ B \ \text{anomalies} \ (b \to s\ell^+\ell^-, \ b \to c\ell\nu) \\ \Rightarrow \ (g-2)_\mu \\ \Rightarrow \ V_{cb}, \ V_{ub} \ \text{puzzle} \\ \Rightarrow \ \dots \end{array}$$

Anomaly Detection in $b \to s \ell^+ \ell^-$

Stats

$\rightarrow p - value$

Experimental Data in Phenomenological Analyses

- ► Experimental data:
 - \Rightarrow Released from the experiments as a vector of means μ^{exp} and a covariance matrix Λ^{exp}
- \Rightarrow Implicitly assumes a Gaussian distribution for the experimental measurements

$$p(\boldsymbol{x}^{\mathrm{exp}}) = \mathcal{N}(\boldsymbol{x}^{\mathrm{exp}}; \boldsymbol{\mu}^{\mathrm{exp}}, \boldsymbol{\Lambda}^{\mathrm{exp}})$$

$4.0 < q^2 < 6.0 { m GeV}^2/c^4$		$F_{ m L}$	P_1	P_2	P_3	P'_4	P'_5	P'_6	P'_8	
P_1	$0.088 \pm 0.235 \pm 0.029$	$F_{\rm L}$	1.00	0.04	0.05	-0.10	-0.04	-0.14	-0.17	0.14
P_2	$0.105\pm 0.068\pm 0.009$	P_1		1.00	0.06	0.07	-0.06	-0.10	-0.03	0.02
P_3	$-0.090\pm0.139\pm0.006$	P_2			1.00	-0.02	-0.14	-0.09	-0.03	-0.01
P'_4	$-0.312\pm0.115\pm0.013$	P_3				1.00	-0.01	0.07	0.19	-0.01
P'_5	$-0.439 \pm 0.111 \pm 0.036$	P'_4					1.00	0.02	0.04	0.01
P'_6	$-0.293 \pm 0.117 \pm 0.004$	P'_5						1.00	0.09	0.00
P'_8	$0.166 \pm 0.127 \pm 0.004$	P'_6							1.00	0.02
		P'_8								1.00

LHCb, arXiv:2003.04831

Theoretical Predictions in Phenomenological Analyses

- Theoretical predictions
 - ⇒ For the observables in the analysis $\boldsymbol{x} = (x_1, \ldots, x_n)$, we have functions representing their theoretical predictions in terms of several input parameters $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_m)$

$$x_i = x_i(\nu_1, \dots, \nu_m)$$

 \Rightarrow The **input parameters** are distributed according to some distribution, usually Gaussian

$$oldsymbol{
u}\sim\mathcal{N}(oldsymbol{
u};oldsymbol{\mu}_
u,oldsymbol{\Lambda}_
u)$$

where μ_{ν} and Λ_{ν} means and covariance of the distribution of underlying parameters

- ► Implications
 - ⇒ Even if the distribution of parameters is Gaussian, observables with complex structures do not distribute normally
 - \Rightarrow Except for observables with a **linear dependence** on the underlying parameters
 - ⇒ This means the **likelihood** $p(x|H_i)$ will generally be distributed under a **non-Gaussian distribution**

Gaussian Likelihoods in Phenomenological analyses

▶ In conventional frequentist $b \rightarrow s\ell^+\ell^-$ analyses, Gaussian likelihoods are assumed

$$p(\boldsymbol{x}|H_i) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{x}_{H_i}, \boldsymbol{\Lambda}_{H_i}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Lambda}_{H_i}|}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{H_i})^T \boldsymbol{\Lambda}_{H_i}^{-1}(\boldsymbol{x} - \boldsymbol{x}_{H_i})\right)$$

 $\Rightarrow \Lambda_{H_i}$ is the sum of theoretical and experimental covariances

$$oldsymbol{\Lambda}_{H_i} = oldsymbol{\Lambda}_{H_i}^{ ext{th}} + oldsymbol{\Lambda}^{ ext{exp}}$$

- \Rightarrow Theory side: Covariance estimated from samples of theoretical predictions
- \Rightarrow Experimental side: Covariance read directly from data released by experiments
- ► Measuring goodness-of-fit

 \Rightarrow Use $-\log p(\boldsymbol{x}|H_i)$ as a statistic to measure agreement between data and hypothesis H_i

$$-\log p(\boldsymbol{x}|H_i) = \frac{\chi^2}{2} + \text{const}$$

where χ^2 is the chi-squared function

- ⇒ If theoretical predictions are normally distributed, $-\log p(\boldsymbol{x}|H_i)$ follows a χ^2 -distribution with $n_{\text{dof}} = n_{\text{obs}}$ in the analysis
- ⇒ If not normally distributed, $-\log p(\boldsymbol{x}|H_i)$ is only asymptotically χ^2 due to the central limit theorem
- \Rightarrow Assuming χ^2 -distribution when it is not creates biases in calculating *p*-values from $-\log p(\boldsymbol{x}_{exp}|H_i)$

Distribution of $-\log p(\boldsymbol{x}|H_i)$ vs Asymptotic χ^2

- ► Distribution of $-\log p(\boldsymbol{x}|H_i)$
 - \Rightarrow Calculated for the set of observables in the $b \rightarrow s\ell\ell$ dataset under the SM hypothesis ($H_0 = SM$)
 - \Rightarrow Obtained by calculating $-\log p(\boldsymbol{x}|H_0)$ for each \boldsymbol{x} in a sample $\boldsymbol{x}^s = (\boldsymbol{x}^1, \dots, \boldsymbol{x}^{n_{\text{sample}}})$
 - \Rightarrow Sample size: $n_{\text{sample}} = 10000$
 - \Rightarrow Each x^s generated by sampling underlying parameters ν from $\mathcal{N}(\nu; \mu_{\nu}, \Lambda_{\nu})$
- ▶ Comparison
 - \Rightarrow Distribution of $-\log p(\boldsymbol{x}|H_i)$ vs asymptotic χ^2 distribution with corresponding degrees of freedom
 - \Rightarrow Difference observed between the two distributions

Estimating Likelihoods

- Understanding $p(\boldsymbol{x}|H_i)$
 - \Rightarrow Goal: Determine the likelihood $p(\boldsymbol{x}|H_i) = p(\boldsymbol{x})$ for enhanced statistical rigor in hypothesis testing
 - ⇒ Known: Distribution of underlying inputs $p(\nu)$, which informs us about the prior probability of the model parameters
 - ⇒ Computable: $p(\boldsymbol{x}|\boldsymbol{\nu})$, achievable by simulating observables \boldsymbol{x} using sampled parameters $\boldsymbol{\nu}$ from their known distributions
- Obtaining $p(\boldsymbol{x})$ as a marginal likelihood

$$p(\boldsymbol{x}) = \int d\boldsymbol{\nu} \; p(\boldsymbol{x}|\boldsymbol{\nu}) p(\boldsymbol{\nu})$$

- \Rightarrow In most real-life applications ν is usually high-dimensional
- \Rightarrow Challenge: a direct computation the $d\nu$ integral is generally computationally prohibitive
- \Rightarrow Hence, the likelihood $p(\mathbf{x})$ is typically **intractable**
- Estimation using Variational Autoencoders (VAEs)
 - \Rightarrow VAEs provide a feasible approach to approximate p(x) with **arbitrary precision**

Introducing Variational Autoencoders

- ► VAE framework
 - \Rightarrow Model: Pairs a probabilistic decoder $p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$ with a probabilistic encoder $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$
 - \Rightarrow Latent variable *z* approximates underlying parameters ν
 - \Rightarrow VAEs do not map inputs to a deterministic latent variable, but to a probability space p(z)
 - $\Rightarrow \theta$: parameters of the decoder
 - $\Rightarrow \phi$: parameters of the decoder

The Variational Lower Bound

▶ The Variational Lower Bound (ELBO) relates to two joint probability density functions: p_{θ} and q_{ϕ}

$$\mathcal{L}(\theta, \phi; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$

- $\Rightarrow p_{\theta}(\boldsymbol{x}, \boldsymbol{z})$: joint distribution of \boldsymbol{x} and \boldsymbol{z}
- $\Rightarrow q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$: approximate encoder posterior
- \Rightarrow Simplifies to

$$\mathcal{L}(\theta, \phi; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z} | \boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x} | \boldsymbol{z}) \right] - D_{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}) || p_{\theta}(\boldsymbol{z}))$$

▶ Includes Kullback-Leibler divergence (KL-div) which is a distance in distribution space

$$D_{KL}(q_{\phi}(w)||p_{\theta}(w)) = \mathbb{E}_{q_{\phi}(w)}\left[\log\frac{q_{\phi}(w)}{p_{\theta}(w)}\right]$$

- Implications and optimisation objective
 - \Rightarrow Log-likelihood relation

$$\log p_{\theta}(\boldsymbol{x}) \geq \mathcal{L}(\theta, \phi; \boldsymbol{x})$$

- \Rightarrow Objective function to train VAEs
 - $\Rightarrow\,$ Maximize ELBO to approximate the true log-likelihood.
 - \Rightarrow Equivalent to minimising the negative ELBO (-ELBO)

Deep Learning Implementation of Variational Autoencoders

- ▶ Implementation and parametrisation
 - \Rightarrow Neural Networks as parametrisers
 - $\Rightarrow p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$ and $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$ parameterised using deep neural networks

$$\theta = \{W_{l_1}, \dots, W_{l_L}, b_{l_1}, \dots, b_{l_L}\}$$
$$\phi = \{V_{l_1}, \dots, V_{l_L}, c_{l_1}, \dots, c_{l_L}\}$$

where W_l (V_l), b_l (c_l) are the weights and biases of the encoder (decoder) network

 \Rightarrow This setup enables the modeling of complex, non-linear relationships between observed data and latent variables

Preparing Training Data with Theoretical and Experimental Inputs

► Generating Theoretical Predictions

- \Rightarrow Start by sampling the distribution of underlying inputs under hypothesis H_0 , $p(\boldsymbol{\nu}|H_0)$
- ⇒ Compute the vector of observables x^s for these values to obtain a sample of theoretical predictions: $x^s = (x^1, \dots, x^{n_{\text{sample}}})$
- ► Incorporating Experimental Uncertainties
 - \Rightarrow Smear the samples with experimental uncertainties to simulate realistic observational data

$$x^{\prime s} = x^s + L_{{f \Lambda}^{
m exp}} w$$

- $\Rightarrow L_{\Lambda^{exp}}$: Cholesky decomposition of the experimental covariance matrix Λ^{exp}
- $\Rightarrow w \sim \mathcal{N}(w; \mathbf{0}, \mathbf{1})$: Normal noise vector simulating experimental noise

Training the Variational Autoencoder with Experimental Uncertainties

- ► Training the VAE
 - $\Rightarrow\,$ Divide the smeared dataset into training and testing datasets
 - \Rightarrow Use the training dataset to **optimise the parameters** of the VAE, **minimising** the -ELBO

$$\mathcal{L}(\theta, \phi; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] - \beta D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$$

- \Rightarrow Notice the parameter β in the ELBO. It allows us to test the generative properties of the model
- \Rightarrow Objective: approximate the full log-likelihood distribution of the observables under H_0 as closely as possible
- Model Assumptions
 - \Rightarrow Assume distributions for **model simplicity**:

$$\begin{split} p_{\theta}(\boldsymbol{z}) &= \mathcal{N}(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{1}) \\ p_{\theta}(\boldsymbol{x} | \boldsymbol{z}) &= \mathcal{N}(\boldsymbol{x}; \hat{\boldsymbol{x}}, \boldsymbol{\Lambda}_{\hat{\boldsymbol{x}}}) \text{ with } \boldsymbol{\Lambda}_{\hat{\boldsymbol{x}}} = \operatorname{diag}(\sigma_{\hat{\boldsymbol{x}}}^2) \\ q_{\phi}(\boldsymbol{z} | \boldsymbol{x}) &= \mathcal{N}(\boldsymbol{z}; \boldsymbol{\eta}, \boldsymbol{\Lambda}_{\boldsymbol{\tau}}) \text{ with } \boldsymbol{\Lambda}_{\boldsymbol{\tau}} = \operatorname{diag}(\tau^2) \end{split}$$

 \Rightarrow These assumptions do not imply a Gaussian likelihood but approximate relationships within the VAE structure

Statistical Analysis Using Trained VAE for $b\to s\ell^+\ell^-$

- ► Analysing the test dataset
 - \Rightarrow Compute the -ELBO distribution using the test dataset, approximating the full -log-likelihood under hypothesis H_0 .
 - $\Rightarrow\,$ Evaluate -ELBO for the experimental data to compute the p-value
- ▶ Preliminary results
 - \Rightarrow Performed for the $b \rightarrow s\ell\ell$ dataset with promising preliminary outcomes

Refining Model Tuning and Validity in VAE Training

- ► Challenges in Model Tuning
 - ⇒ How do we determine the optimal dimensionality for the DNNs of the encoder and decoder, or the correct value of β ?
 - \Rightarrow Could these choices bias the *p*-value?
 - \Rightarrow The choice of neural networks' architecture and β significantly affects the model's performance and the fidelity of the statistical results
- ▶ Testing and Validating Model Parameters
 - \Rightarrow Ongoing research and empirical testing are essential to optimise these parameters while minimising biases
- ▶ Strategies for Validation and Hyperparameter Optimisation
 - \Rightarrow Employ validation techniques to ensure model outputs are stable and reliable across various parameter configurations
 - \Rightarrow Use synthetic datasets to evaluate the impact of hyperparameter adjustments on model performance

Optimising Hyperparameters

- ▶ Generating artificially anomalous data
 - $\Rightarrow\,$ Used to train the VAE across different configurations to optimise anomaly detection
- $\blacktriangleright\,$ Tuning β in the ELBO
 - $\Rightarrow\,$ Exploring the impact of β on anomaly detection and VAE's generative accuracy
- ▶ Pre-experimental blind analysis
 - \Rightarrow Ensures that the final measurement of experimental data is unbiased

Outlook and Continued Research

- ▶ Deepening understanding of VAE parameters
 - \Rightarrow Exploring how different parameters influence the anomaly score and VAE's generative properties
- ▶ Ongoing hyperparameter optimisation
 - \Rightarrow Continuously refining the model to enhance its predictive accuracy and anomaly detection
- ▶ Addressing sparse covariance matrices
 - ⇒ Using random matrix theory techniques to sample observables and covariance matrices at the same time (LKJ distribution, Wishart distribution)
 - \Rightarrow Will allow us to quantify the uncertainty attached to many unnatural zeros in the experimental covariance matrix
- ► Expanding application scope
 - \Rightarrow Applying methodologies to SMEFT fits beyond $b \rightarrow s\ell\ell$

Thank You!

Backup Slides

Dual-Branch VAE Architecture

