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Anomaly Detection in Low-Energy Observables

▶ Anomalies: Deviations between experimental data and theoretical predictions under a null
hypothesis (SM hypothesis)

▶ Searching for anomalies in low-energy observables is critical for NP exploration
⇒ Observables at low energies receive contributions from higher scales due to quantum corrections

▶ Goal: Properly quantify the statistical significance of observed anomalies
▶ Examples of recent anomalies

⇒ B anomalies (b → sℓ+ℓ−, b → cℓν)
⇒ (g − 2)µ
⇒ Vcb, Vub puzzle
⇒ . . .
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Anomaly Detection in b → sℓ+ℓ−

p − value

Data Stats
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Experimental Data in Phenomenological Analyses

▶ Experimental data:
⇒ Released from the experiments as a vector of means µexp and a covariance matrix Λexp

⇒ Implicitly assumes a Gaussian distribution for the experimental measurements

p(xexp) = N (xexp;µexp,Λexp)

LHCb, arXiv:2003.04831
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Theoretical Predictions in Phenomenological Analyses

▶ Theoretical predictions
⇒ For the observables in the analysis x = (x1, . . . , xn), we have functions representing their theoretical

predictions in terms of several input parameters ν = (ν1, . . . , νm)

xi = xi(ν1, . . . , νm)

⇒ The input parameters are distributed according to some distribution, usually Gaussian

ν ∼ N (ν;µν ,Λν)

where µν and Λν means and covariance of the distribution of underlying parameters

▶ Implications
⇒ Even if the distribution of parameters is Gaussian, observables with complex structures do not

distribute normally
⇒ Except for observables with a linear dependence on the underlying parameters
⇒ This means the likelihood p(x|Hi) will generally be distributed under a

non-Gaussian distribution
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Gaussian Likelihoods in Phenomenological analyses
▶ In conventional frequentist b → sℓ+ℓ− analyses, Gaussian likelihoods are assumed

p(x|Hi) = N (x;xHi ,ΛHi) =
1√

(2π)n|ΛHi |
exp

(
−1

2
(x− xHi)

TΛ−1
Hi

(x− xHi)

)
⇒ ΛHi

is the sum of theoretical and experimental covariances

ΛHi
= Λth

Hi
+Λexp

⇒ Theory side: Covariance estimated from samples of theoretical predictions
⇒ Experimental side: Covariance read directly from data released by experiments

▶ Measuring goodness-of-fit
⇒ Use − log p(x|Hi) as a statistic to measure agreement between data and hypothesis Hi

− log p(x|Hi) =
χ2

2
+ const

where χ2 is the chi-squared function
⇒ If theoretical predictions are normally distributed, − log p(x|Hi) follows a χ2-distribution with

ndof = nobs in the analysis
⇒ If not normally distributed, − log p(x|Hi) is only asymptotically χ2 due to the central limit

theorem
⇒ Assuming χ2-distribution when it is not creates biases in calculating p-values from − log p(xexp|Hi)
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Distribution of − log p(x|Hi) vs Asymptotic χ2

▶ Distribution of − log p(x|Hi)
⇒ Calculated for the set of observables in the b → sℓℓ dataset under the SM hypothesis (H0 = SM)
⇒ Obtained by calculating − log p(x|H0) for each x in a sample xs = (x1, . . . ,xnsample )

⇒ Sample size: nsample = 10000

⇒ Each xs generated by sampling underlying parameters ν from N (ν;µν ,Λν)
▶ Comparison

⇒ Distribution of − log p(x|Hi) vs asymptotic χ2 distribution with corresponding degrees of freedom
⇒ Difference observed between the two distributions
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Estimating Likelihoods

▶ Understanding p(x|Hi)

⇒ Goal: Determine the likelihood p(x|Hi) = p(x) for enhanced statistical rigor in hypothesis testing
⇒ Known: Distribution of underlying inputs p(ν), which informs us about the prior probability of the

model parameters
⇒ Computable: p(x|ν), achievable by simulating observables x using sampled parameters ν from their

known distributions

▶ Obtaining p(x) as a marginal likelihood

p(x) =

∫
dν p(x|ν)p(ν)

⇒ In most real-life applications ν is usually high-dimensional
⇒ Challenge: a direct computation the dν integral is generally computationally prohibitive
⇒ Hence, the likelihood p(x) is typically intractable

▶ Estimation using Variational Autoencoders (VAEs)
⇒ VAEs provide a feasible approach to approximate p(x) with arbitrary precision
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Introducing Variational Autoencoders

x

input

qϕ(z|x) z

latent vector

pθ(x|z) x̂

reconstructed
input

▶ VAE framework
⇒ Model: Pairs a probabilistic decoder pθ(x|z) with a probabilistic encoder qϕ(z|x)
⇒ Latent variable z approximates underlying parameters ν

⇒ VAEs do not map inputs to a deterministic latent variable, but to a probability space p(z)

⇒ θ: parameters of the decoder
⇒ ϕ: parameters of the decoder

B. Capdevila Discrete 2024, 12/03/2024 8/18



The Variational Lower Bound
▶ The Variational Lower Bound (ELBO) relates to two joint probability density functions: pθ and qϕ

L(θ, ϕ;x) = Eqϕ(z|x)

[
log

pθ(x,z)

qϕ(z|x)

]
⇒ pθ(x,z): joint distribution of x and z

⇒ qϕ(z|x): approximate encoder posterior
⇒ Simplifies to

L(θ, ϕ;x) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||pθ(z))

▶ Includes Kullback-Leibler divergence (KL-div) which is a distance in distribution space

DKL(qϕ(w)||pθ(w)) = Eqϕ(w)

[
log

qϕ(w)

pθ(w)

]
▶ Implications and optimisation objective

⇒ Log-likelihood relation
log pθ(x) ≥ L(θ, ϕ;x)

⇒ Objective function to train VAEs
⇒ Maximize ELBO to approximate the true log-likelihood.
⇒ Equivalent to minimising the negative ELBO (-ELBO)
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Deep Learning Implementation of Variational Autoencoders
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▶ Implementation and parametrisation
⇒ Neural Networks as parametrisers
⇒ pθ(x|z) and qϕ(z|x) parameterised using deep neural networks

θ = {Wl1 , . . . ,WlL , bl1 , . . . , blL}
ϕ = {Vl1 , . . . , VlL , cl1 , . . . , clL}

where Wl (Vl), bl (cl) are the weights and biases of the encoder (decoder) network
⇒ This setup enables the modeling of complex, non-linear relationships between observed data and latent

variables

B. Capdevila Discrete 2024, 12/03/2024 10/18



Preparing Training Data with Theoretical and Experimental Inputs

▶ Generating Theoretical Predictions
⇒ Start by sampling the distribution of underlying inputs under hypothesis H0, p(ν|H0)

⇒ Compute the vector of observables xs for these values to obtain a sample of theoretical predictions:
xs = (x1, . . . ,xnsample )

▶ Incorporating Experimental Uncertainties
⇒ Smear the samples with experimental uncertainties to simulate realistic observational data

x′s = xs +LΛexpw

⇒ LΛexp : Cholesky decomposition of the experimental covariance matrix Λexp

⇒ w ∼ N (w;0,1): Normal noise vector simulating experimental noise
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Training the Variational Autoencoder with Experimental Uncertainties
▶ Training the VAE

⇒ Divide the smeared dataset into training and testing datasets
⇒ Use the training dataset to optimise the parameters of the VAE, minimising the -ELBO

L(θ, ϕ;x) = Eqϕ(z|x) [log pθ(x|z)]− βDKL(qϕ(z|x)||pθ(z))

⇒ Notice the parameter β in the ELBO. It allows us to test the generative properties of the model
⇒ Objective: approximate the full log-likelihood distribution of the observables under H0 as

closely as possible

▶ Model Assumptions
⇒ Assume distributions for model simplicity:

pθ(z) = N (z;0,1)

pθ(x|z) = N (x; x̂,Λx̂) with Λx̂ = diag(σ2
x̂)

qϕ(z|x) = N (z;η,Λτ ) with Λτ = diag(τ2)

⇒ These assumptions do not imply a Gaussian likelihood but approximate relationships within the
VAE structure
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Statistical Analysis Using Trained VAE for b → sℓ+ℓ−

▶ Analysing the test dataset
⇒ Compute the -ELBO distribution using the test dataset, approximating the full -log-likelihood under

hypothesis H0.
⇒ Evaluate -ELBO for the experimental data to compute the p-value

▶ Preliminary results
⇒ Performed for the b → sℓℓ dataset with promising preliminary outcomes
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Refining Model Tuning and Validity in VAE Training

▶ Challenges in Model Tuning
⇒ How do we determine the optimal dimensionality for the DNNs of the encoder and decoder, or the

correct value of β?
⇒ Could these choices bias the p-value?
⇒ The choice of neural networks’ architecture and β significantly affects the model’s performance and the

fidelity of the statistical results
▶ Testing and Validating Model Parameters

⇒ Ongoing research and empirical testing are essential to optimise these parameters while minimising
biases

▶ Strategies for Validation and Hyperparameter Optimisation
⇒ Employ validation techniques to ensure model outputs are stable and reliable across various parameter

configurations
⇒ Use synthetic datasets to evaluate the impact of hyperparameter adjustments on model performance
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Optimising Hyperparameters
▶ Generating artificially anomalous data

⇒ Used to train the VAE across different configurations to optimise anomaly detection
▶ Tuning β in the ELBO

⇒ Exploring the impact of β on anomaly detection and VAE’s generative accuracy
▶ Pre-experimental blind analysis

⇒ Ensures that the final measurement of experimental data is unbiased
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Outlook and Continued Research

▶ Deepening understanding of VAE parameters
⇒ Exploring how different parameters influence the anomaly score and VAE’s generative properties

▶ Ongoing hyperparameter optimisation
⇒ Continuously refining the model to enhance its predictive accuracy and anomaly detection

▶ Addressing sparse covariance matrices
⇒ Using random matrix theory techniques to sample observables and covariance matrices at the same

time (LKJ distribution, Wishart distribution)
⇒ Will allow us to quantify the uncertainty attached to many unnatural zeros in the experimental

covariance matrix

▶ Expanding application scope
⇒ Applying methodologies to SMEFT fits beyond b → sℓℓ
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Thank You!
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Dual-Branch VAE Architecture
⇒ We need the VAE to estimate pθ(x|z) = N (x; x̂,Λx̂)

⇒ We need two output branches: one for x̂ and one for Λx̂
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