How large could CP violation in *B* **meson mixing be? Implications for baryogenesis and upcoming searches**

Carlos Miró

Carlos.Miro@uv.es

DISCRETE, December 2024

1

In collaboration with Miguel Escudero & Miguel Nebot [2410.13936](https://arxiv.org/abs/2410.13936) (to appear in Physical Review D)

Outline

- Mixing parameters and CP asymmetries
- SM prediction *vs* Experiment
- BSM scenarios
	- Heavy New Physics in mass mixing *M^q* 12
	- Deviations of 3x3 CKM unitarity
	- New Physics in decay mixing Γ^q_{12}
- Overall picture
- Conclusions

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

Neutral B meson oscillations

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

Neutral B meson oscillations

$$
\mathcal{H}^{q} = \begin{pmatrix} M_{11}^{q} - i\Gamma_{11}^{q}/2 & M_{12}^{q} - i\Gamma_{12}^{q}/2 \\ M_{12}^{q*} - i\Gamma_{12}^{q*}/2 & M_{22}^{q} - i\Gamma_{22}^{q}/2 \end{pmatrix}
$$

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

Neutral B meson oscillations

$$
B_d \left(M_{12}^d, \Gamma_{12}^d \right) \left(\overline{B}_d \right)
$$

$$
B_s \overline{M_{12}^s, \Gamma_{12}^s}
$$

$$
\mathcal{H}^{q} = \begin{pmatrix} M_{11}^{q} - i\Gamma_{11}^{q}/2 & M_{12}^{q} - i\Gamma_{12}^{q}/2 \\ M_{12}^{q} - i\Gamma_{12}^{q} /2 & M_{22}^{q} - i\Gamma_{22}^{q}/2 \end{pmatrix}
$$

Mass mixing: M^q 12

Decay mixing: Γ*^q* 12

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

Neutral B meson oscillations

 B_s *M*^s₁₂, Γ^s₁₂ *B*

 \bar{B}_s ^{\bar{s}}

$$
\mathcal{H}^{q} = \begin{pmatrix} M_{11}^{q} - i\Gamma_{11}^{q}/2 & M_{12}^{q} - i\Gamma_{12}^{q}/2 \\ M_{12}^{q} - i\Gamma_{12}^{q} /2 & M_{22}^{q} - i\Gamma_{22}^{q}/2 \end{pmatrix}
$$

Mass mixing: M_{12}^q *Decay mixing:* Γ_{12}^q

If CP is conserved in *mixing*, then Γ^q_{12} / M^q_{12} is real. Therefore...

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

How can we

measure it?

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

■ This relative phase can be measured via *CP asymmetries* in *flavor-specific decays*:

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

■ This relative phase can be measured via *CP asymmetries* in *flavor-specific decays*:

Flavor-specific decays: $\;B_q\to \bar f$, $\bar B_q \to f\,\,\&\,\,\left|A(B_q\to f)\right|=\left|A(\bar B_q\to \bar f)\right|$, e.g., $B_q\to X\ell\nu$

The time evolution of a superposition $|\psi(t)\rangle=a(t)\,|\,B_q\rangle+b(t)\,|\,\bar B_q\rangle$ is controlled by the following effective Hamiltonian:

■ This relative phase can be measured via *CP asymmetries* in *flavor-specific decays*:

Flavor-specific decays: $\;B_q\to \bar f$, $\bar B_q \to f\,\,\&\,\,\left|A(B_q\to f)\right|=\left|A(\bar B_q\to \bar f)\right|$, e.g., $B_q\to X\ell\nu$

Semileptonic asymmetries:
$$
A_{\text{SL}}^q = \frac{\Gamma(\bar{B}_q(t) \to f) - \Gamma(B_q(t) \to \bar{f})}{\Gamma(\bar{B}_q(t) \to f) + \Gamma(B_q(t) \to \bar{f})}
$$

$$
A_{\text{SL}}^q = \text{Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q}\right)
$$

SM prediction *vs* Experiment

How much room for New Physics in A_{ST}^q *?* SL

 \blacksquare In the SM, neutral *B* meson mixing is triggered by box diagrams with *W* boson exchange:

■ In the SM, neutral *B* meson mixing is triggered by box diagrams with *W* boson exchange:

 \blacksquare In the SM, neutral *B* meson mixing is triggered by box diagrams with *W* boson exchange:

 M_{12}^q : internal *off-shell* particles (top dominated) $\qquad \qquad \Gamma_{12}^q$

 Γ^q_{12} : internal *on-shell* particles (only charm and up)

 \blacksquare In the SM, neutral *B* meson mixing is triggered by box diagrams with *W* boson exchange:

 M_{12}^q : internal *off-shell* particles (top dominated) $\qquad \qquad \Gamma_{12}^q$

■ On the experimental side: D0, LHCb and *B* factories

 Γ^q_{12} : internal *on-shell* particles (only charm and up)

 \blacksquare In the SM, neutral *B* meson mixing is triggered by box diagrams with *W* boson exchange:

 M_{12}^q : internal *off-shell* particles (top dominated) $\qquad \qquad \Gamma_{12}^q$

■ On the experimental side: D0, LHCb and *B* factories

$$
\bar{B}_q
$$
\n
$$
\bar{B}_q
$$
\n
$$
\bar{W}^{-}
$$
\n
$$
\bar{u}, \bar{c}, \bar{t}
$$
\n
$$
\bar{u}
$$
\n
$$
\bar{u}
$$
\n
$$
\bar{v}
$$
\n
$$
\bar{v}
$$
\n
$$
\bar{u}
$$
\n
$$
\bar{v}
$$
\n
$$
\bar{v}
$$

 Γ^q_{12} : internal *on-shell* particles (only charm and up)

2402.04224
$$
A_{SL}^{d,SM} = (-5.1 \pm 0.5) \times 10^{-4}
$$

\n2411.18639 $A_{SL}^{d,Exp} = (-21 \pm 17) \times 10^{-4}$
\n2402.04224 $A_{SL}^{s,SM} = (0.22 \pm 0.02) \times 10^{-4}$
\n2411.18639 $A_{SL}^{s,Exp} = (-6 \pm 28) \times 10^{-4}$

 \blacksquare In the SM, neutral *B* meson mixing is triggered by box diagrams with *W* boson exchange:

 M_{12}^q : internal *off-shell* particles (top dominated) $\qquad \qquad \Gamma_{12}^q$

■ On the experimental side: D0, LHCb and *B* factories

$$
\bar{B}_q
$$
\n
$$
\bar{B}_q
$$
\n
$$
\bar{W}^{-}
$$
\n
$$
\bar{u}, \bar{c}, \bar{t}
$$
\n
$$
\bar{u}, \bar{c}, \bar{t}
$$
\n
$$
\bar{b}
$$
\n
$$
B_q
$$

 Γ^q_{12} : internal *on-shell* particles (only charm and up)

2402.04224
$$
A_{SL}^{d,SM} = (-5.1 \pm 0.5) \times 10^{-4}
$$

\n2411.18639 $A_{SL}^{d,Exp} = (-21 \pm 17) \times 10^{-4}$

There is ample room for New Physics!

Heavy New Physics in mass mixing M^q 12

Model-independent approach assuming that heavy NP only enters in M^q_{12} :

Heavy New Physics in mass mixing M^q 12

Model-independent approach assuming that heavy NP only enters in M^q_{12} :

 $M_{12}^q = M_{12}^{q,\text{SM}} \Delta_q = M_{12}^{q,\text{SM}} |\Delta_q| e^{i\phi_q^{\Delta}}$ $\Gamma_{12}^{q} = \Gamma_{12}^{q, \text{SM}}$ $\phi_{12}^q = \phi_{12}^{q,\text{SM}} + \phi_q^{\Delta}$

Heavy New Physics in mass mixing M^q 12

Model-independent approach assuming that heavy NP only enters in M^q_{12} :

 $M_{12}^q = M_{12}^{q,\text{SM}} \Delta_q = M_{12}^{q,\text{SM}} |\Delta_q| e^{i\phi_q^{\Delta}}$ $\Gamma_{12}^{q} = \Gamma_{12}^{q, \text{SM}}$ $\phi_{12}^q = \phi_{12}^{q,\text{SM}} + \phi_q^{\Delta}$

Strong constraints from…

Heavy New Physics in mass mixing M^q 12

Model-independent approach assuming that heavy NP only enters in M^q_{12} :

Strong constraints from…

Heavy New Physics in mass mixing M^q 12

Model-independent approach assuming that heavy NP only enters in M^q_{12} :

Strong constraints from…

Heavy New Physics in mass mixing M^q 12

Model-independent approach assuming that heavy NP only enters in M^q_{12} :

Strong constraints from…

Heavy New Physics in mass mixing M^q 12

Model-independent approach assuming that heavy NP only enters in M^q_{12} :

Strong constraints from…

$$
\begin{vmatrix}\n|\Delta_d| = 0.98^{+0.10}_{-0.07} \\
\phi_d^{\Delta} = -0.071^{+0.058}_{-0.057} \\
|\Delta_s| = 1.00^{+0.06}_{-0.04} \\
\phi_s^{\Delta} = -0.004^{+0.025}_{-0.027}\n\end{vmatrix}
$$

Deviations of 3x3 CKM unitarity

Deviations of 3x3 CKM unitarity

■ Why is it interesting to consider deviations of 3x3 CKM unitarity?

In the SM…

$$
\arg M_{12}^q \sim \arg \Gamma_{12}^q \longrightarrow \text{Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q}\right) \sim 0
$$

Deviations of 3x3 CKM unitarity

■ Why is it interesting to consider deviations of 3x3 CKM unitarity?

In the SM…

$$
\arg M_{12}^q \sim \arg \Gamma_{12}^q \longrightarrow \text{Im} \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) \sim 0
$$

• M_{12}^q top-dominated
• CKM 3x3 unitarity

Deviations of 3x3 CKM unitarity

■ Why is it interesting to consider deviations of 3x3 CKM unitarity?

In the SM…

Simplest solution to deviate from 3x3 unitarity: vector-like quark $SU(2)_L$ *singlets*

Deviations of 3x3 CKM unitarity

■ Why is it interesting to consider deviations of 3x3 CKM unitarity?

In the SM…

Simplest solution to deviate from 3x3 unitarity: vector-like quark $SU(2)_L$ *singlets*

$$
\arg M_{12}^q \sim \arg \Gamma_{12}^q \longrightarrow \text{Im} \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) \sim 0 \qquad \text{UVLQ model:} \quad u_{L_4} \sim (3,1)_{2/3} \quad u_{R_4} \sim (3,1)_{2/3}
$$
\n•
$$
M_{12}^q \text{ top-dominated}
$$
\n• CKM 3x3 unitarity

Deviations of 3x3 CKM unitarity

■ Why is it interesting to consider deviations of 3x3 CKM unitarity?

In the SM…

Simplest solution to deviate from 3x3 unitarity: vector-like quark $SU(2)_L$ *singlets*

$$
\arg M_{12}^q \sim \arg \Gamma_{12}^q \longrightarrow \text{Im} \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) \sim 0
$$

• M_{12}^q top-dominated
• **CKM 3x3 unitarity**

UVLQ model: $u_{L_4} \sim (3,1)_{2/3}$ $u_{R_4} \sim (3,1)_{2/3}$

DVLQ model: $d_{L_4} \sim (3,1)_{-1/3}$ $d_{R_4} \sim (3,1)_{-1/3}$

Deviations of 3x3 CKM unitarity

■ Why is it interesting to consider deviations of 3x3 CKM unitarity?

In the SM…

Simplest solution to deviate from 3x3 unitarity: vector-like quark $SU(2)_L$ *singlets*

$$
\arg M_{12}^q \sim \arg \Gamma_{12}^q \longrightarrow \text{Im} \left(\frac{\Gamma_{12}^q}{M_{12}^q} \right) \sim 0 \qquad \text{UVLQ model:} \quad u_{L_4} \sim (3,1)_{2/3} \qquad u_{R_4} \sim (3,1)_{2/3} \qquad \lambda_{bq}^u + \lambda_{bq}^c + \lambda_{bq}^t + \lambda_{bq}^T = 0
$$
\n
$$
\bullet \qquad M_{12}^q \text{ top-dominated}
$$
\n
$$
\bullet \qquad \text{DVLQ model:} \quad d_{L_4} \sim (3,1)_{-1/3} \qquad d_{R_4} \sim (3,1)_{-1/3} \qquad \lambda_{bq}^u + \lambda_{bq}^c + \lambda_{bq}^t = (D_L)_{qb}
$$

Deviations of 3x3 CKM unitarity

■ Why is it interesting to consider deviations of 3x3 CKM unitarity?

In the SM…

• CKM 3x3 unitarity

Simplest solution to deviate from 3x3 unitarity: vector-like quark $SU(2)_L$ *singlets*

UVLQ model:
$$
u_{L_4} \sim (3,1)_{2/3}
$$
 $u_{R_4} \sim (3,1)_{2/3}$ $\lambda_{bq}^u + \lambda_{bq}^c + \lambda_{bq}^t + \lambda_{bq}^T = 0$
\n**DVLQ model:** $d_{L_4} \sim (3,1)_{-1/3}$ $d_{R_4} \sim (3,1)_{-1/3}$ $\lambda_{bq}^u + \lambda_{bq}^c + \lambda_{bq}^t = (D_L)_{qb}$

Z-FCNC diagrams arising in DVLQ models

Deviations of 3x3 CKM unitarity

Deviations of 3x3 CKM unitarity

Deviations of 3x3 CKM unitarity

New Physics in decay mixing Γ*^q* 12
BSM scenarios *New Physics in decay mixing* Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators

(see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

Caveat

In UV complete models: strong mass suppression from heavy mediators contributing to M_{12}^q

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators

(see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

Caveat

In UV complete models: strong mass suppression from heavy mediators contributing to M_{12}^q

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators

(see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

Caveat

In UV complete models: strong mass suppression from heavy mediators contributing to M_{12}^q

II) Minimal B -Mesogenesis: contributions to $b \to u_i \bar{u}_j q$ and $b \to \psi \bar{\psi} q$ (invisible particles)

 $m_{\Phi} \in [10, 100]$ GeV

 $4 \text{ MeV} \lesssim T \lesssim 100 \text{ MeV}$ **BBN QCD**

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

Figure adapted from [1810.00880](https://inspirehep.net/literature/1696697) and [2101.02706](https://inspirehep.net/literature/1840008)

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

Caveat In UV complete models: strong mass suppression from heavy mediators contributing to M_{12}^q

II) Minimal B -Mesogenesis: contributions to $b \to u_i \bar{u}_j q$ and $b \to \psi \bar{\psi} q$ (invisible particles)

Primordial baryon asymmetry related to observables at collider experiments

$$
Y_B \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B_q \to \psi \mathcal{BM})}{10^{-3}} \sum_{q=s,d} \alpha_q \frac{A_{\text{SL}}^q}{10^{-3}} \tag{a_s A_{\text{S}}^s}
$$

$$
\left(\alpha_s A_{\rm SL}^s + \alpha_d A_{\rm SL}^d\right) \mathop{\text{Br}}\nolimits\left(B_q \to \psi \mathcal{BM}\right) = 10^{-6}
$$

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

Caveat In UV complete models: strong mass suppression from heavy mediators contributing to M_{12}^q

II) Minimal B -Mesogenesis: contributions to $b \to u_i \bar{u}_j q$ and $b \to \psi \bar{\psi} q$ (invisible particles)

Primordial baryon asymmetry related to observables at collider experiments

$$
Y_B \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B_q \to \psi \mathcal{BM})}{10^{-3}} \sum_{q=s,d} \alpha_q \frac{A_{\text{SL}}^q}{10^{-3}}
$$

 $\frac{A_{\text{SL}}}{10^{-3}}$ $\left(\alpha_s A_{\text{SL}}^s + \alpha_d A_{\text{SL}}^d\right) \text{Br}\left(B_q \to \psi \mathcal{BM}\right) = 10^{-6}$

• At least one
$$
A_{\rm SL}^q
$$
 must be positive

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

Caveat In UV complete models: strong mass suppression from heavy mediators contributing to M_{12}^q

II) Minimal B -Mesogenesis: contributions to $b \to u_i \bar{u}_j q$ and $b \to \psi \bar{\psi} q$ (invisible particles)

Primordial baryon asymmetry related to observables at collider experiments

$$
Y_B \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B_q \to \psi \mathcal{BM})}{10^{-3}} \sum_{q=s,d} \alpha_q \frac{A_{\text{SL}}^q}{10^{-3}}
$$

 $\frac{A_{\text{SL}}}{10^{-3}}$ $\left(\alpha_s A_{\text{SL}}^s + \alpha_d A_{\text{SL}}^d\right) \text{Br}\left(B_q \to \psi \mathcal{BM}\right) = 10^{-6}$

• At least one A^q_{SL} must be positive

 $Br(B_q \to \psi \mathcal{BM}) < 0.5\%$ (incl.) [ALEPH at 95% CL] $m_{\psi} \sim 1$ GeV

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see, e.g., [1912.07621](https://inspirehep.net/literature/1771386) and [2307.07013](https://inspirehep.net/literature/2677298) for model-independent bounds on these operators): $A_{\rm SL}^q \sim \mathcal{O}(10^{-3})$, but…

II) Minimal B -Mesogenesis: contributions to $b \to u_i \bar{u}_j q$ and $b \to \psi \bar{\psi} q$ (invisible particles)

Primordial baryon asymmetry related to observables at collider experiments

$$
Y_B \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B_q \to \psi \mathcal{BM})}{10^{-3}} \sum_{q=s,d} \alpha_q \frac{A_{\text{SL}}^q}{10^{-3}}
$$

 $\frac{A_{\text{SL}}}{10^{-3}}$ $\left(\alpha_s A_{\text{SL}}^s + \alpha_d A_{\text{SL}}^d\right) \text{Br}\left(B_q \to \psi \mathcal{BM}\right) = 10^{-6}$

- At least one A^q_{SL} must be positive
- Minimal value: $A_{\text{SL}}^q > + 10^{-4}$

 $Br(B_q \to \psi \mathcal{BM}) < 0.5\,\%$ (incl.) [ALEPH at 95% CL] $m_{\psi} \sim 1$ GeV

New Physics in decay mixing Γ*^q* 12

New Physics in decay mixing Γ*^q* 12

$$
\mathcal{L} = -\sum_{k} y_{\psi d_k} Y d_{kR}^c \overline{\psi} - \sum_{i,j} y_{u_i d_j} Y^{\star} \overline{u}_{iR} d_{jR}^c + \text{h.c.}
$$
\n
$$
Y \sim (3,1)_{-1/3} \text{ scalar boson}
$$
\n
$$
M_Y > 500 \text{ GeV}
$$
\nNew decay $b \to \psi \overline{\psi}q$

\nModifies $b \to u_i \overline{u}_j q$

\n
$$
\psi
$$
\ndark sector antibaryon

\n
$$
m_{\psi} \lesssim m_b/2
$$

New Physics in decay mixing Γ*^q* 12

New Physics in decay mixing Γ*^q* 12

II) Minimal B -Mesogenesis: contributions to $b \to u_i \bar{u}_j q$ and $b \to \psi \bar{\psi} q$ (invisible particles)

$$
|\delta A_{\text{SL}}^{q}(\psi)| \leq \mathcal{O}(10^{-5}) \left(\frac{500 \text{ GeV}}{M_Y}\right)^2
$$

$$
|\delta A_{\text{SL}}^{q}(\psi)| \leq \mathcal{O}(10^{-4}) \left(\frac{500 \text{ GeV}}{M_Y}\right)
$$

Stronger bounds than in the Heavy New Physics scenario with a general modification of M_{12}^q

Conclusions

- General modification of M_{12}^q can lead to $A_{SL}^d \sim \mathcal{O}(10^{-3})$ and $A_{SL}^s \sim \mathcal{O}(10^{-4})$
- Similar results with VLQ extensions inducing deviations of 3x3 CKM unitarity
- Modifications of Γ^q_{12} give much smaller enhancements in realistic UV completions
- *B*-Mesogenesis in tension: small enhancements of $A^q_{\rm SL}$ require larger ${\rm Br}(B_q \to \psi \mathcal{BM})$
- Upcoming LHCb and Belle II searches for CP asymmetries are not expected to probe new regions of the parameter space in the most generic models (chance at FCC-ee…)

THANK YOU!

Back up

Mixing parameters *Neutral B meson systems*

In the absence of weak interactions, $|\psi(t)\rangle = a(t) |B_q\rangle + b(t) | \bar{B}_q\rangle$ evolves in time according to:

$$
\mathcal{H}^{q}
$$
 is hermitian
\n
$$
\mathcal{H}_{B_{q}} = \begin{pmatrix} M_{B_{q}} & 0 \\ 0 & M_{B_{q}} \end{pmatrix}
$$
\n
$$
M_{B_{q}} = \langle B_{q} | \mathcal{H}^{q} | B_{q} \rangle = \langle \bar{B}_{q} | \mathcal{H}^{q} | \bar{B}_{q} \rangle
$$
\n**N.B.** CPT invariance is assumed

\nassumed

Once the weak interaction is considered, B_q and $\bar B_q$ can decay to other states ($\mathscr H_q$ is not hermitian anymore) and oscillate between themselves (${\mathscr H}_q$ is not diagonal anymore):

$$
\mathcal{H}^{q} = M^{q} - i \frac{\Gamma^{q}}{2} \qquad \mathcal{H}^{q} = \begin{pmatrix} M_{11}^{q} - i \Gamma_{11}^{q} / 2 & M_{12}^{q} - i \Gamma_{12}^{q} / 2 \\ M_{12}^{q*} - i \Gamma_{12}^{q*} / 2 & M_{22}^{q} - i \Gamma_{22}^{q} / 2 \end{pmatrix} \qquad \qquad M^{q} = M^{q\dagger} \qquad \qquad
$$

The underlying fundamental physics effects can be encoded into the matrix elements of \mathcal{H}^q using the framework of perturbation theory (in the weak interaction ${\mathscr H}_W$):

$$
M_{12}^q = \langle B_q | \mathcal{H}_W | \bar{B}_q \rangle + \sum_n P \frac{\langle B_q | \mathcal{H}_W | n \rangle \langle n | \mathcal{H}_W | \bar{B}_q \rangle}{M_{B_q} - E_n} + \dots
$$

- $\Delta B = 2$ transition through virtual intermediate states
- Sensitive to heavy virtual particles

$$
\Gamma_{12}^{q} = 2\pi \sum_{n} \delta(M_{B_q} - E_n) \langle B_q | \mathcal{H}_W | n \rangle \langle n | \mathcal{H}_W | \bar{B}_q \rangle + \dots
$$

- Two $\Delta B = 1$ transitions through real intermediate states
- Sensitive to light particles with masses below $M_{B_q} \sim m_b$
- Decay modes common to both B_q and ${\bar B}_q$

Mixing observables *SM prediction*

Mixing observables *SM prediction*

Mixing parameters and CP asymmetries

Relevant observables

■ Meson mass differences between the heavy and light eigenstates:

$$
\Delta M_q = 2 \left| M_{12}^q \right|
$$

Golden CP phases:

Gold-plated **modes** *Tree-level dominated*

$$
B_q
$$
\n
$$
F(B_q(t) \to f) \neq \Gamma(\bar{B}_q(t) \to f)
$$
\n
$$
B_d \to J/\psi K_S
$$
\nwith $A_{CP} \propto \sin \phi_d^{\text{tree}}$
\ndifferent *interfering* amplitudes
\n
$$
B_s \to J/\psi \phi
$$
\nwith $A_{CP} \propto \sin \phi_s^{\text{tree}}$
\n
$$
\phi_q^{\text{tree}} \sim \arg M_{12}^q
$$

However, SM gluon penguin exchange diagrams may give a contribution comparable to the current experimental sensitivity:

P. Frings, U. Nierste & M. Wiebusch, [1503.00859](https://arxiv.org/abs/1503.00859) M. Z. Barel, K. De Bruyn, R. Fleischer & E. Malami, [2010.14423](https://arxiv.org/abs/2010.14423)

Mixing observables

Current measurements and future prospects

■ Current experimental status of mixing observables (see [2411.18639](https://inspirehep.net/literature/2854243) for the latest update):

Projected 1 σ **sensitivities (according to [1808.08865,](https://inspirehep.net/literature/1691586) [1808.10567](https://inspirehep.net/literature/1692393), [2101.02706,](https://inspirehep.net/literature/1840008) [2406.19421](https://inspirehep.net/literature/2803143)):**

$$
\delta A_{\rm SL}^s = 10 \times 10^{-4} \text{ [LHCb (23 fb^{-1})} - 2025]
$$

\n
$$
\delta A_{\rm SL}^s = 3 \times 10^{-4} \text{ [LHCb (300 fb^{-1})} - 2040]
$$

\n
$$
\delta A_{\rm SL}^d = 8 \times 10^{-4} \text{ [LHCb (23 fb^{-1})} - 2025]
$$

\n
$$
\delta A_{\rm SL}^d = 2 \times 10^{-4} \text{ [LHCb (300 fb^{-1})} - 2040]
$$

\n
$$
\delta A_{\rm SL}^d = 5 \times 10^{-4} \text{ [Belle II (50 ab^{-1})} - 2035]
$$

It has been suggested that FCC-ee could reach $\delta A_{\rm SL}^s \sim 10^{-5}$ (see [2106.01259\)](https://inspirehep.net/literature/1866734).

Golden CP asymmetries

Experimental world averages

B_s *system B_s system*

Plot from LHCb [seminar](https://indico.cern.ch/event/1281612/) June 13, 2023 Plot from [2411.18639](https://inspirehep.net/literature/2854243)

$$
\sin \phi_d^{\text{Exp}} = 0.708 \pm 0.011 \qquad \qquad \phi_s^{\text{Exp}} \qquad \qquad \phi_s^{\text{Exp}} \qquad \qquad \phi_s^{\text{Exp}} \qquad \qquad \beta_s \to J/\psi K_{S/L}, \, B_d \to \psi(2S)K_L, \, B_d \to \chi_{c1}K_S \ldots \qquad \qquad B_s \to J/\psi \phi \,,
$$

$$
\phi_s^{Exp} = -0.052 \pm 0.013
$$

$$
B_s \rightarrow J/\psi \phi, B_s \rightarrow \psi(2S) \phi, B_s \rightarrow D_s^+ D_s^- \dots
$$

Golden CP asymmetries

Penguin pollution

Figures extracted from M. Artuso, G. Borissov & A. Lenz, [1511.09466](https://inspirehep.net/literature/1407152)

 $B_d \rightarrow J/\psi K_S$

Golden CP asymmetries

Penguin pollution

Experimental and theoretical constraints

- Taking our model-independent analysis (assuming that heavy NP only enters in M_{12}^q) as a benchmark:
	- **Parameters** $|\Delta_s|$, $|\Delta_d|$ ϕ_s^{Δ} , ϕ_d^{Δ} $f^2_{B_s} B_{B_s}$, $f^2_{B_d} B_{B_d}$ θ_{12} , θ_{13} , θ_{23} , δ **Lattice QCD** $f^2_{B_{\circ}} B_{B_{\circ}}$, $\hat{B}_s^2 B_{B_s}$, $f_{B_d}^2 B_{B_d}$ **CKM** $|V_{ud}|$, $|V_{us}|$, $|V_{ub}|$, $|V_{cb}|$, γ **Leptonic asymmetries** $A^{\mathcal{S}}_{\mathsf{SL}}$, $A^{\mathcal{d}}_{\mathsf{SL}}$ *Golden* **CP phases** ϕ_s , $\sin \phi_d$ **Mass differences** ΔM_s , ΔM_d $+$ $|V_{tb}|$ constraint *in VLQ extensions* • Meson mass differences: $\Delta M_q^{} = \Delta M_q^{\rm SM} \, |\, \Delta_q \, |$ • Golden CP asymmetries: $\phi_q = \phi_q^{\rm SM} + \phi_q^{\Delta}$ Penguin pollution, $O(1^{\circ})$, summed in quadrature with experimental error • CKM mixing: 3x3 CKM unitarity is implicit in the PDG parametrization: $\{\theta_{12}, \theta_{13}, \theta_{23}, \delta\}$ • In our VLQ extensions, the CKM mixing is embedded in 4x4 unitary matrix: In VLQ extensions, $|V_{tb}|$ constraint must be included ${\theta_1, \theta_2, \theta_3, \theta_2, \theta_4, \theta_2, \theta_3, \theta_4, \delta, \delta_{14}, \delta_{24}}$ *With penguin pollution* • Heavy quark: $m_T > 1.6 \text{ TeV}$ to avoid direct lower bounds (production and decay)

Vector-like quark contributions to mass mixing M^q 12

In UVLQ models:

$$
\frac{M_{12}^{q,\text{UVLQ}}}{M_{12}^{q,\text{SM-like}}} = 1 + \frac{\lambda_{bq}^T}{\lambda_{bq}^t} \frac{C_1^{\text{up}}(x_t, x_T)}{S_0(x_t)} + \left(\frac{\lambda_{bq}^T}{\lambda_{bq}^t}\right)^2 \frac{C_2^{\text{up}}(x_T)}{S_0(x_t)}
$$

In DVLQ models:

$$
\frac{M_{12}^{q,\text{DVLQ}}}{M_{12}^{q,\text{SM-like}}} = 1 + \frac{(D_L)_{qb}}{\lambda_{bq}^t} \frac{C_1^{\text{down}}(x_t)}{S_0(x_t)} + \left(\frac{(D_L)_{qb}}{\lambda_{bq}^t}\right)^2 \frac{C_2^{\text{down}}}{S_0(x_t)}
$$

Loop functions:

$$
C_1^{\text{up}}(x_t, x_T) = 2S_0(x_t, x_T)
$$

\n
$$
C_1^{\text{down}}(x_t) = -4Y(x_t)
$$

\n
$$
C_2^{\text{down}} = \frac{2\sqrt{2}\pi^2}{G_F M_W^2}
$$

\n
$$
C_2^{\text{down}} = \frac{2\sqrt{2}\pi^2}{G_F M_W^2}
$$

- Dependence on heavy T quark mass m_T
- New contributions: proportional and quadratic in the deviation of unitarity λ_{bq}^T
- No dependence on heavy quark masses.
- New contributions: proportional and quadratic in the deviation of unitarity (*DL*)*qb*

$$
S_0(x) \equiv \lim_{y \to x} S_0(x, y) = \frac{x}{(1 - x)^2} \left[1 - \frac{11x}{4} + \frac{x^2}{4} - \frac{3x^2 \ln x}{2(1 - x)} \right]
$$

 $Y(x) =$

x

 $\frac{1}{4(x-1)}$ $\left[x-4+ \right]$

$$
S_0(x, y) = xy \left[-\frac{3}{4(1-x)(1-y)} + \left(1 - 2x + \frac{x^2}{4} \right) \frac{\ln x}{(1-x)^2(x-y)} + \left(1 - 2y + \frac{y^2}{4} \right) \frac{\ln y}{(1-y)^2(y-x)} \right]
$$

3*x* ln *x*

 $\overline{x-1}$]

New Physics in decay mixing Γ*^q* 12

I) Channels that are common to both B_q and \bar{B}_q that can still accommodate new physics effects through $\Delta B=1$ operators (see e.g., *A. Lenz & G. Tetlalmatzi-Xolocotzi, [1912.07621](https://inspirehep.net/literature/1771386)*, and *M. Bordone & M. Fernández Navarro, [2307.07013](https://inspirehep.net/literature/2677298)* for model-independent bounds on these operators)

e.g. scalar diquark
$$
\phi \sim (3,1)_{-1/3}
$$

A. Crivellin & M. Kirk, 2309.07205
 $A_{SL}^s \approx -4 \times 10^{-5}$

e.g. scalar diquark $\phi \sim (3,1)_{-1/3}$ *e.g. vector leptoquark* $U_1^{\mu} \sim (3,1)_{2/3}$ *C. Cornella et al., [2103.16558](https://inspirehep.net/literature/1854533)*

$$
A_{\rm SL}^s \lesssim 10^{-5}
$$

Minimal realization of B-Mesogenesis

Interactions involving a color triplet scalar *Y* **with hypercharge** $-1/3$ **and a dark antibaryon** ψ

$$
\mathcal{L} = -\sum_{k} y_{\psi d_k} Y d_{kR}^c \bar{\psi} - \sum_{i,j} y_{u_i d_j} Y^{\star} \bar{u}_{iR} d_{jR}^c + \text{h.c.}
$$
\n
$$
Y \sim (3,1)_{-1/3} \text{ scalar boson}
$$
\n
$$
M_Y > 500 \text{ GeV}
$$
\nNew decay $b \to \psi \bar{\psi}q$

\nModifies $b \to u_i \bar{u}_j q$

\nNoting the system of the system is given by:

\n
$$
y \to (3,1)_{-1/3} \text{ scalar boson}
$$
\n
$$
M_Y > 500 \text{ GeV}
$$
\nNew decay $b \to \psi \bar{\psi}q$

$$
\Gamma_{12}^{q,\text{NP}}(\psi) = -\frac{f_{B_q}^2 M_{B_q}}{256\pi} \frac{y_{\psi q} y_{\psi b}^* m_b^2}{M_Y^4} \left(1 - \frac{2}{3} \frac{m_{\psi}^2}{m_b^2}\right) \sqrt{1 - 4 \frac{m_{\psi}^2}{m_b^2}}
$$

$$
M_{12}^{q,\text{NP}}(\psi) = \frac{f_{B_q}^2 M_{B_q}}{384\pi^2} \frac{y_{\psi q} y_{\psi b}^*}{M_Y^2} G(x_{\psi Y})
$$

$$
G(x) = \frac{1+x}{(1-x)^2} + \frac{2x \ln x}{(1-x)^3} \qquad x_{\alpha\beta} = \frac{m_{\alpha}^2}{m_{\beta}^2}
$$

 ΔM_q constraint:

$$
|y_{\psi d} y_{\psi b}| < (2 - 4) \times 10^{-2} \frac{M_Y}{1.5 \text{ TeV}}
$$

$$
|y_{\psi s} y_{\psi b}| < (1 - 2) \times 10^{-1} \frac{M_Y}{1.5 \text{ TeV}}
$$

Minimal realization of B-Mesogenesis

Interactions involving a color triplet scalar *Y* **with hypercharge** $-1/3$ **and a dark antibaryon** ψ

$$
\mathcal{L} = -\sum_{k} y_{\psi} X d_{k} \bar{\psi} - \sum_{i,j} y_{u,d} Y^* \bar{u}_{iR} d_{jR}^c + \text{h.c.}
$$
\n
$$
V \sim (3,1)_{-1/3} \text{ scalar boson}
$$
\n
$$
M_{Y} > 500 \text{ GeV}
$$
\n
$$
\psi \text{ dark sector antibaryon}
$$
\n
$$
m_{\psi} \leq m_{b}/2
$$
\n
$$
\sum_{i,j} \left[B_{i} \left(\frac{a_{u,c,t}}{a_{u,c,t}} \right) \frac{1}{\bar{u}_{u,c,t}} \right]_{u,c,t}^{u,c,t} \left(\frac{1}{\bar{u}_{u,c,t}} \sum_{j=1}^{N} \frac{1}{\bar{u}_{u,c,t}} \left(\frac{1}{\bar{u}_{u,c,t}} \sum_{j=1}^{N} \frac{1}{\bar{u}_{u,c,t}} \left[(V_{ib} V_{jq}^* y_{iq}^*)_{jb}^* y_{ib}^* y_{jb}^* \frac{1}{\bar{u}_{ib}^* \bar{u}_{jb}^* \bar{v}_{jb}^* \frac{1}{\bar{u}_{ib}^* \bar{u}_{jb}^*} \frac{1}{\bar{u}_{ib}^* \bar{u}_{ib}^* \bar{v}_{jb}^* \frac{1}{\bar{u}_{ib}^* \bar{u}_{jb}^*} \frac{1}{\bar{u}_{ib}^* \bar{u}_{ib}^* \bar{u}_{ib}^* \bar{v}_{ib}^* \frac{1}{\bar{u}_{ib}^* \bar{u}_{ib}^* \bar{v}_{ib}^* \frac{1}{\bar{u}_{ib}^* \bar{u}_{ib}^*} \frac{1}{\bar{u}_{ib}^* \bar{u}_{ib}^* \bar{u}_{ib}^* \bar{u}_{ib}^* \bar{v}_{ib}^* \frac{
$$

$$
f_1^{ij}(x_{iW}, x_{jW}, x_{iY}, x_{jY}, x_{WY}) = \frac{x_{iW}(x_{iW} - 4)\ln x_{iY}}{(x_{iW} - 1)(x_{iY} - 1)(x_{iW} - x_{jW})} + \frac{x_{jW}(x_{jW} - 4)\ln x_{jY}}{(x_{jW} - 1)(x_{jY} - 1)(x_{jW} - x_{iW})} - \frac{3\ln x_{WY}}{(x_{iW} - 1)(x_{jW} - 1)(x_{WY} - 1)}
$$
\n
$$
g_W: SU(2)_L \text{ weak coupling}
$$
\n
$$
f_2^{ij}(x_{iY}, x_{jY}) = \frac{1}{(x_{iY} - 1)(x_{jY} - 1)} + \frac{x_{iY}^2 \ln x_{iY}}{(x_{iY} - x_{jY})(x_{iY} - 1)^2} + \frac{x_{jY}^2 \ln x_{jY}}{(x_{jY} - x_{iY})(x_{jY} - 1)^2}
$$
\n
$$
x_{\alpha\beta} = \frac{m_{\alpha}^2}{m_{\beta}^2}
$$
\n
$$
g_2^{ij}(m_b^2, m_i^2, m_j^2) = -\frac{\lambda(m_b^2, m_i^2, m_j^2)}{m_b^4}
$$
\n
$$
g_3^{ij}(m_b^2, m_i^2, m_j^2) = \frac{2(m_b^4 - 2m_i^4 - 2m_j^4 + m_b^2m_i^2 + m_b^2m_j^2 + 4m_i^2m_j^2)}{m_b^4}
$$
\n
$$
M(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz
$$
BSM scenarios

Minimal realization of B-Mesogenesis

Fig. 1 from G. Alonso-Álvarez, G. Ellor & M. Escudero, [2101.02706](https://inspirehep.net/literature/1840008)

BSM scenarios

Some examples

■ There is a plethora of models that induce modifications on mixing observables, e.g.:

S. Iguro & Y. Omura, [1802.01732](https://inspirehep.net/literature/1653444)

Supersymmetric models

R-M. Wang et al., [1102.2031](https://inspirehep.net/literature/889170)

Left-right symmetric models

S. Bertolini et al., [1403.7112](https://inspirehep.net/literature/1287642)

Extra dimensions

A. Datta et al., [1011.5979](https://inspirehep.net/literature/878808)

We will explore this framework…