

Teaming up MET plus jet with Drell-Yan in the SMEFT

In collaboration with G.Hiller and L.Nollen Based on 2403.17063 and Work in preparation

Daniel Wendler 3rd December 2024

9th Symposium on Prospects in the Physics of Discrete Symmetries

Standard Model Effective Field Theory

• EFT constructed from the SM fields with the full SM gauge group

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{d=5}^{\infty} \sum_{i} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}$$

- $C_i^{(d)}$: WC capturing the short distance physics
- $\mathcal{O}_i^{(d)}$: Effective operators encoding the long distance physics
- Λ : New Physics scale or power counting parameter
- Focus on dimension 6 operators

Neutral-current DY in the SMEFT

- Drell-Yan (DY) studied extensively in the SMEFT [arxiv:2207.10756,arxiv:2304.12837, arXiv:2003.12421,...]
- Four-fermion and electroweak (EW) dipole operators are energy enhanced relative to the SM
- Flavor sensitivities through parton distribution functions (PDFs)
- Measurement of $m_{\ell\ell}$

SM contribution to NC DY

Drell-Yan to dineutrinos

• In the SMEFT charged leptons and neutrinos are part of an doublet

 $l = \binom{\nu}{\ell}$

So what about neutrinos ?

Drell-Yan to dineutrinos

In the SMEFT charged leptons and neutrinos are part of an doublet

 E_{T}^{miss} -spectrum

- At LO $E_T^{\rm miss} = P_T \gtrsim 100 \, {\rm GeV},$ separation from soft radiation
- The leading contribution will be through $\mathcal{O}(\alpha_s)$ contribution in the SM
- Multiple partonic channels contribute in the SM and SMEFT
- Gluon PDFs are dominant in the high energy regime

SM contributions to $pp \rightarrow \nu \bar{\nu} + \text{jet}$

Comparision between the observables

Observable	$m_{\ell\ell}$	E_T^{miss}
QCD order (LO)	1	α_s
Processes (LO)	$2 \rightarrow 2$	$2 \rightarrow 3$
Partonic channels (LO)	q ar q	$q ar q, \; q g, \; ar q g$
Leptons	charged leptons	neutrinos
Vector couplings	Z,γ	Z,g
Z resonance	within spectrum	integrated over
Lepton tagging	\checkmark	×

Back to SMEFT

Operators considered

Semileptonic Four-Fermion							
$O^{(1)}_{lq}$	$(\bar{l}_{\alpha}\gamma_{\mu}l_{\beta})(\bar{q}_{i}\gamma^{\mu}q_{j})$	$O^{(3)}_{\ \ lq}$	$\big(\bar{l}_{\alpha}\gamma_{\mu}\tau^{I}l_{\beta}\big)\big(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j}\big)$	O_{qe}	$\big(\bar{q}_i\gamma_\mu q_j\big)\big(\bar{e}_\alpha\gamma^\mu e_\beta\big)$		
$O_{lu}^{\alpha\beta ij}$	$(\bar{l}_{\alpha}\gamma_{\mu}l_{\beta})(\bar{u}_{i}\gamma^{\mu}u_{j})$	$O_{ld}^{\alpha\beta ij}$	$(\bar{l}_{\alpha}\gamma_{\mu}l_{\beta})(\bar{d}_{i}\gamma^{\mu}d_{j})$	$O_{\substack{eu\\ij\alpha\beta}}^{\alpha\beta ij}$	$(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(\bar{u}_{i}\gamma^{\mu}u_{j})$		
$O_{\substack{ed\\\alpha\beta ij}}$	$(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(\bar{d}_{i}\gamma^{\mu}d_{j})$	O _{ledq}	$(\bar{l}^k_\alpha e_\beta) \big(\bar{d}_i q^k_j \big)$	$O_{lequ}^{(1)}$	$\big(\bar{l}^k_\alpha e_\beta\big)\epsilon_{km}\big(\bar{q}^m_i u_j\big)$		
$O_{\substack{lequ\\\alpha\beta ij}}^{(3)}$	$(\bar{l}^k_\alpha\sigma_{\mu\nu}e_\beta)\epsilon_{km}(\bar{q}^m_i\sigma^{\mu\nu}u_j)$			apij			

- Contact interaction \Rightarrow fully energy enhanced
- Observables are proportional to linear combinations of several WCs
- Interference term with the SM for diagonal flavor combinations only
- WCs with SU(2) doublets can not absorb mass rotation matrices fully \Rightarrow alignment dependence

Dipole operators

$$\mathcal{L}^{\mathsf{Dip}} = C^{ij}_{uX} \bar{q}_i \sigma^{\mu\nu} \tau^A u_j X^A_{\mu\nu} \tilde{\varphi} + C^{ij}_{dX} \bar{q}_i \sigma^{\mu\nu} \tau^A d_j X^A_{\mu\nu} \varphi + \mathsf{h.c.} \quad X = G^A, W^I, B$$

- Chirality flip \Rightarrow interference term with SM strongly suppressed
- Proportional to $v \Rightarrow$ partial energy enhancement for EW Dipole
- Gluon dipoles are fully energy enhanced, due to the longitudinal modes of the ${\cal Z}$

 $C_{u\gamma}, C_{uZ}$ are related by rotations

High energy behaviour of C_{uG} and C_{dG}

• Longitudinal vector boson modes are equivalent to the goldstone modes π in the high energy limit ^[Nuclear Physics B 261 (1985) 379, arxiv:1911.12366]

$$\mathcal{M}(u_ig \to u_j Z_L) \stackrel{\hat{s} \gg v^2}{=} \mathcal{M}(u_ig \to u_j \pi^0)$$

High energy behaviour of C_{uG} and C_{dG}

• Longitudinal vector boson modes are equivalent to the goldstone modes π in the high energy limit ^[Nuclear Physics B 261 (1985) 379, arxiv:1911.12366]

$$\mathcal{M}(u_ig \to u_j Z_L) \stackrel{\hat{s} \gg v^2}{=} \mathcal{M}(u_ig \to u_j \pi^0)$$

• Expansion of the higgs doublet

$$\phi = \left(\frac{\pi^+}{\frac{v+h+i\pi^0}{\sqrt{2}}}\right)$$

$$\Rightarrow \mathcal{L}^{\mathsf{Dip}} \supset -i \frac{C_{uG}^{ij}}{\Lambda^2} \bar{u}_i \sigma^{\mu\nu} T^A P_R u_j G^A_{\mu\nu} \frac{\pi^0}{\sqrt{2}} + \mathsf{h.c.}$$

• Describes a contact term \Rightarrow fully energy enhanced

Quark flavor through PDFs

$$\mathrm{d} \boldsymbol{\sigma} = \sum_{i,j=\mathrm{partons}} \int \frac{\mathrm{d} \boldsymbol{\tau}}{\tau} \; \mathcal{L}_{ij}\left(\boldsymbol{\tau},\boldsymbol{\mu}_F\right) d \hat{\sigma}_{ij}(\boldsymbol{\tau},\boldsymbol{P}_T,\boldsymbol{\eta},\ldots) \quad \boldsymbol{\tau} = \frac{\hat{s}}{s}$$

Discrete 2024 - D. Wendler 12

(preliminary) Results

Single operator results: (ij) = (12)

Four-fermion operators with doublets

EW Dipoles: (ij) = (12)

Dineutrinos Charged Leptons Combined

0.5

1.0

 C_{dW}

0.0

Comparison in a larger context

- Bounds derived constrain the multi TeV region
- Flavor observables are usually more constraining than high- P_T , however processes involving τ -leptons are generally not measured
- $m_{\ell\ell}$ and $E_T^{\rm miss}$ complement this by constraining all lepton flavors
- Charm Physics: Gluon Dipoles give bounds $C_7^{(\prime)} \lesssim 2.8$ and $C_8^{(\prime)} \lesssim 4.4$, which are about one order of magnitude weaker than charm decays
- $E_T^{\rm miss}$ bounds on four-fermion operators can be extended to light sterile neutrinos

Summary

- $m_{\ell\ell}$ and $E_T^{\rm miss}$ probe different combination of WCs \Rightarrow Synergies
- Full energy enhancement for four-fermion and gluon dipoles, partial energy enhancement for EW dipoles
- Generally $m_{\ell\ell}$ is more constraining for the four-fermion operators, but $E_T^{\rm miss}$ constraints the dipole operators better
- SMEFT is a tool to study correlations between different observables from different energy scales and experiments, to test the SM and check consistency

Operators

Dipole							
$O_{\substack{uB\\ij}}$	$(\bar{q}_i \sigma^{\mu\nu} u_j) \tilde{\varphi} B_{\mu\nu}$	$O_{\substack{uW\\ij}}$	$(\bar{q}_i \sigma^{\mu\nu} u_j) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$O_{\substack{uG\\ij}}$	$(\bar{q}_i \sigma^{\mu\nu} T^A u_j) \tilde{\varphi} G^A_{\mu\nu}$		
$O_{\substack{dB\\ij}}$	$(\bar{q}_i \sigma^{\mu\nu} d_j) \varphi B_{\mu\nu}$	$O_{\substack{dW\\ij}}$	$(\bar{q}_i \sigma^{\mu\nu} d_j) \tau^I \varphi W^I_{\mu\nu}$	$O_{\substack{dG\\ij}}$	$\big(\bar{q}_i\sigma^{\mu\nu}T^Ad_j\big)\varphi G^A_{\mu\nu}$		
Semileptonic Four-Fermion							
$O^{(1)}_{\substack{lq\\ \alphaeta ij}}$	$(\bar{l}_{\alpha}\gamma_{\mu}l_{\beta})(\bar{q}_{i}\gamma^{\mu}q_{j})$	$O^{(3)}_{\substack{lq\\ \alpha\beta ij}}$	$(\bar{l}_{\alpha}\gamma_{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j})$	$O_{\substack{qe\\\alpha\beta ij}}$	$(\bar{q}_i\gamma_\mu q_j)(\bar{e}_\alpha\gamma^\mu e_\beta)$		
$O_{\underset{\alpha\beta ij}{lu}}$	$(\bar{l}_{\alpha}\gamma_{\mu}l_{\beta})(\bar{u}_{i}\gamma^{\mu}u_{j})$	$O_{\substack{ld\\ \alpha \beta ij}}$	$(\bar{l}_{\alpha}\gamma_{\mu}l_{\beta})(\bar{d}_{i}\gamma^{\mu}d_{j})$	$O_{\mathop{eu}\limits_{ij\alpha\beta}}$	$(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(\bar{u}_{i}\gamma^{\mu}u_{j})$		
$O_{\mathop{ed}\limits_{\alpha\beta ij}}$	$(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(\bar{d}_{i}\gamma^{\mu}d_{j})$	$O_{\substack{ledq\\\alphaeta ij}}$	$(\bar{l}^k_\alpha e_\beta)(\bar{d}_i q^k_j)$	$O_{\substack{lequ\\ \alpha\beta ij}}^{(1)}$	$\big(\bar{l}^k_\alpha e_\beta\big)\epsilon_{km}\big(\bar{q}^m_i u_j\big)$		
$O_{\substack{lequ\\ \alpha\beta ij}}^{(3)}$	$(\bar{l}^k_\alpha\sigma_{\mu\nu}e_\beta)\epsilon_{km}(\bar{q}^m_iu_j)$						

Lepton flavor for four-fermion operators

- Lepton rotation matrices can always be aligned with charged leptons
- Dineutrinos not tagged
 - \Rightarrow PMNS matrix drops out of E_T^{miss} -spectrum
- $m_{\ell\ell}$ measurements tag the leptons ($e^+e^-, \mu^+\mu^-, e^-\mu^+ {\rm etc.}$)
- Different lepton flavor scenarios

$$\begin{split} C_{ijkl} &= C_{ij}^{\mathsf{LU}} \delta_{kl} \\ C_{ijkl} &= C_{ij}^{\mathsf{cLFC}} \delta_{kl} + C_{ij}^{\mathsf{LFV}} \delta_{k\neq l} \end{split}$$

Four fermion: SU(2)-doublets

- Rotating to mass basis for left handed quarks $q=U^q q^\prime$
- Up- or down-alignment
- Consider $C_{lq,ijkl}^{+}$ in matrix form for fixed k, l: $\mathcal{L}^{4F} \supset \operatorname{Tr} \left[\bar{u}' \left(U^{u} \right)^{\dagger} \gamma^{\mu} C_{lq}^{+} U^{u} u' \left(\bar{\nu} \gamma_{\mu} \nu \right) + \bar{d}' \left(U^{d} \right)^{\dagger} \gamma^{\mu} C_{lq}^{+} U^{d} d' \left(\bar{\ell} \gamma_{\mu} \ell \right) \right]$ $= \operatorname{Tr} \left[\overline{u}' \gamma^{\mu} \underbrace{\left(U^{u} \right)^{\dagger} C_{lq}^{+} U^{u}}_{\tilde{C}_{lq}^{+}} u' \left(\bar{\nu} \gamma_{\mu} \nu \right) + \bar{d}' \underbrace{\left(U^{d} \right)^{\dagger} U^{u}}_{V_{\mathsf{CKM}}} \gamma^{\mu} \underbrace{\left(U^{u} \right)^{\dagger} C_{lq}^{+} U^{u}}_{\tilde{C}_{lq}^{+}} \underbrace{\left(U^{u} \right)^{\dagger} U^{d}}_{V_{\mathsf{CKM}}} d' \left(\bar{\ell} \gamma_{\mu} \ell \right) \right]$

• (i,j)=(1,2) and expanding in $\lambda=\sin\theta_{\rm cab}$

$$\tilde{C}_{lq,12kl}^{+}\left(\underbrace{\bar{u}'\gamma^{\mu}c'\bar{\nu}_{k}\gamma_{\mu}\nu_{l}}_{E_{T}^{\text{miss}}}+\underbrace{\bar{d}'\gamma^{\mu}s'\ell_{k}\gamma_{\mu}\ell_{l}+\lambda\left(\bar{d}'\gamma^{\mu}d'-\bar{s}'\gamma^{\mu}s'\right)\ell_{k}\gamma_{\mu}\ell_{l}}_{m_{\ell\ell}}\right)+\mathcal{O}(\lambda^{2})$$

- Analogously for down alignment and (or) $C^-_{lq,ijkl}$
- Inclusivity of observables leads to the bound being dominated by one observable