[arXiv:2411.06457]

Freeze-in production of axions in DFSZ-type axion models

Kodai Sakurai (Tohoku U.)

In collaboration with

Fuminobu Takahashi (Tohoku U.)

Discreate 2024, Dec. 2th, 2024

- Dark matter (DM) is one of the unsolved problems in the SM.
- Dark matter may be light and feeble interactions.
 - promising candidate: axions
- Axions can solve DM and strong CP problems.
- The nature of the axion is unknown.
 - Mass scale, interactions
 - Production mechanisms

In this talk, we will discuss axion production from heavy Higgs bosons.

Axion productions in early Universe

Non-thermal productions (Misalignment mechanism)

- Axion acquires potential due to the explicit U(1).
- It starts to oscillate when $m_a \gtrsim H$.

Axion productions in early Universe

Non-thermal productions (Misalignment mechanism)

- Axion acquires potential due to the explicit $\mathcal{U}(\mathbf{1})$.
- It starts to oscillate when $m_a \gtrsim H$.

Thermal productions

- Axion is thermalized (i.e., small f_a).
 - It is in thermal equilibrium.
 - It decouples from thermal plasma at a certain temperature.
- Axion is not thermalized (i.e., large f_a).

Freeze-in mechanism

Freeze-in mechansim

et. al., JHEP 03 (2010)080]]

<u>Assumptions</u>

- Axion couple with bath particles in thermal plasma.
- It never reaches thermal equilibrium.

Features

- Axion is produced from the thermal plasma.
- The energy density increases as temperature decreases.
- The production of axion stops at $T \sim m_a$.

Concrete axion models

KSVZ-type model [Original model: J. E. Kim (1979); M. A. Shifman, A. I. Vainshtein, V. I. Zakharov (1980)]

 $\mathscr{L}_{\mathrm{KSVZ}} \ni y_Q \bar{Q}_L Q_R S + \mathrm{h.c.}$

Q:extra vector like singlet fermions
S:extra singlet scalar:
$$S = \frac{1}{\sqrt{2}}(v_s + \rho) \exp(ia/v_s)$$

- Extra fields (Q, S) are U(1) charged.
- Axion mainly couples with gluon. No Axion-fermion coupling at the tree-level.

DFSZ-type model [Original model: A. R. Zhitnitsky (1980); M. Dine, W. Fischler, M. Srednicki (1981)]

 $\mathscr{L}_{\text{DFSZ}} \ni \kappa H_1^{\dagger} H_2 S^2 + y_u \bar{Q} H_2^c u_R + y_d \bar{Q} H_1 d_R + \text{h.c.} \qquad H_1 : \text{SM Higgs doublet} \\ H_2 : \text{extra Higgs doublet} \ni H, A, H^{\pm} \\ S: \text{extra singlet scalar}$

- Axion couple with Higgs bosons
- Axion-gluon couplings are realized by SM-fermions

$$u_i, d_j, e_k$$
 g

Thermal productions in KSVZ/DSFZ type models

- For DFSZ type-model, axion is mainly produced from Higgs in sym. phase.
- Renormalizable int. generates IR dominant contributions for *a* production.
 - \rightarrow Axion production from heavy Higgs is important.

Thermal productions in KSVZ/DSFZ type models

- For DFSZ type-model, axion is mainly produced from Higgs in sym. phase.
- Renormalizable int. generates IR dominant contributions for *a* production.
 - \rightarrow Axion production from heavy Higgs is important.

Thermal productions in KSVZ/DSFZ type models

- For DFSZ type-model, axion is mainly produced from Higgs in sym. phase.
- Renormalizable int. generates IR dominant contributions for *a* production.
 - \rightarrow Axion production from heavy Higgs is important.

Production processces from heavy Higgs

Axion production from heavy Higgs decays

• ΔN_{eff} can be $\mathcal{O}(0.01)$ at $v_s \sim \mathcal{O}(10^9) \text{GeV}$.

 \rightarrow Axion production can be

Cosmological bounds for the keV scale axion

 $\rho_{\rm DM.0}$

 $1 \text{keV} \lesssim m_a \lesssim 0.1 \text{GeV}$

- Deacying axion is constrained by the X-ray and CMB, etc.
- The two bound constrains $g_{a\gamma}$ and R_a .

(X-ray): $R_a \leq 10^{-12}$

(CMB): $R_a \lesssim 10^{-14}$

• More heaviear mass of extra Higgs make the bound strong.

 \rightarrow If axion is produced from heavy Higgs boson, comosorogical bounds depends on the properties of the heavy Higgs bosons.

Cosmological bounds for the keV scale axion

 $\rho_{\rm DM.0}$

 $1 \text{keV} \lesssim m_a \lesssim 0.1 \text{GeV}$

- Deacying axion is constrained by the X-ray and CMB, etc.
- The two bound constrains $g_{a\gamma}$ and R_a .

(X-ray): $R_a \leq 10^{-12}$

(CMB): $R_a \lesssim 10^{-14}$

• More heaviear mass of extra Higgs make the bound strong.

 \rightarrow If axion is produced from heavy Higgs boson, comosorogical bounds depends on the properties of the heavy Higgs bosons.

Summary

• We have discussed axion thermal productions from the heavy Higgs bosons in DFSZ type axioin models.

• We find that the amount of axion produced from the heavy Higgs decays is lager than that of heavy Higgs scatterings.

• the axion energy density depends on the model parameters of the Higgs sector. The Higgs sector can be explored by the cosmorogical observations (Xray, CMB, N_{eff} etc.).