CP-violating portal to Dark Sectors

Nicola Valori

University of Valencia & IFIC

DISCRETE 2024 Ljubljana 04/12/2024

Based on JHEP11(2024)049 with M. Ardu, M.H. Rahat, O.Vives

Motivation

1

Particle Dark Matter:

- **Dark Matter** is almost ¹/₄ of the whole energy budget.
- **Dark Matter Production** (usually) requires interaction with SM.
- If DM ∈ DS: **Portals** between the visible and dark sector.

Particle Dark Matter:

- **Dark Matter** is almost ¹/₄ of the whole energy budget.
- **Dark Matter Production** (usually) requires interaction with SM.
- If DM ∈ DS: **Portals** between the visible and dark sector.

CP-violation:

- The SM of particle physics allows for **CP-violation** (CKM matrix)
- CP-violation in the SM is not enough to explain matter-antimatter asymmetry
- CP-violation in Hidden sectors or **Portals** ?

A **portal** is a Lagrangian term with fields from different sectors

A **portal** is a Lagrangian term with fields from different sectors

Some of the most commonly used in literature are:

A **portal** is a Lagrangian term with fields from different sectors

Some of the most commonly used in literature are:

Abelian Kinetic Mixing:

- Additional **U(1) abelian** dark gauge group
- Kinetic Mixing at dim 4: $rac{\epsilon}{2}B^{\mu
 u}X_{\mu
 u}$
- ϵ naturally O(1) but experiments yields $\epsilon << 1$

$$SM \longrightarrow B \longrightarrow X$$

A **portal** is a Lagrangian term with fields from different sectors

Some of the most commonly used in literature are:

Abelian Kinetic Mixing:

- Additional **U(1) abelian** dark gauge group
- Kinetic Mixing at dim 4: $rac{\epsilon}{2}B^{\mu
 u}X_{\mu
 u}$
- ϵ naturally O(1) but experiments yields $\epsilon << 1$

$$SM \longrightarrow B \longrightarrow X$$

Scalar Mixing:

- Additional **Dark Scalar** neutral under SM
- Interaction at renormalizable level: $k |H|^2 |S|^2$
- $\langle S
 angle
 eq 0$ and mixing.

• Introduction of a SU(N) **Non Abelian Dark Sector** $\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{k=1}^{n}$

• Introduction of a SU(N) Non Abelian Dark Sector $\sum_{k=1}^{\infty} Z_a : Scalar fields in the adjoint of SU(N) <math>X_a^{\mu}: N^2 - 1$ gauge bosons

CP-even

• Dim. 5 operators: **EFT description** $-\frac{C}{\Lambda} \mathbf{Tr} \left[\Sigma X^{\mu\nu} \right] B_{\mu\nu}$

- Introduction of a SU(N) Non Abelian Dark Sector $\sum_{k=1}^{\infty} Z_a : Scalar fields in the adjoint of SU(N)$ $<math>X_a^{\mu}: N^2 - 1$ gauge bosons
- Dim. 5 operators: **EFT description** $-\frac{C}{\Lambda} \mathbf{Tr} \left[\Sigma X^{\mu\nu} \right] B_{\mu\nu} \frac{\tilde{C}}{\Lambda} \mathbf{Tr} \left[\Sigma X^{\mu\nu} \right] \tilde{B}_{\mu\nu}$

• Introduction of a SU(N) Non Abelian Dark Sector $\sum_{k=1}^{\infty} Z_a : Scalar fields in the adjoint of SU(N) <math>X_a^{\mu}: N^2 - 1$ gauge bosons

• Dim. 5 operators: **EFT description**
$$-\frac{C}{\Lambda} \mathbf{Tr} \left[\Sigma X^{\mu\nu} \right] B_{\mu\nu} - \frac{\tilde{C}}{\Lambda} \mathbf{Tr} \left[\Sigma X^{\mu\nu} \right] \tilde{B}_{\mu\nu}$$

• SSB of SU(N) $\rightarrow \Sigma_a = v_a + \phi_a$: **Scalar Mixing** and low energy operators:

$$-\frac{\epsilon_a}{2}X^{\mu\nu}_a B_{\mu\nu} - \frac{\tilde{\epsilon}}{2}\phi^a X^{\mu\nu}_a \tilde{B}_{\mu\nu}$$

• Introduction of a SU(N) Non Abelian Dark Sector $\sum_{k=1}^{\infty} Z_a : Scalar fields in the adjoint of SU(N) <math>X_a^{\mu}: N^2 - 1$ gauge bosons

• Dim. 5 operators: **EFT description**
$$-\frac{C}{\Lambda} \operatorname{Tr} [\Sigma X^{\mu\nu}] B_{\mu\nu} - \frac{\tilde{C}}{\Lambda} \operatorname{Tr} [\Sigma X^{\mu\nu}] \tilde{B}_{\mu\nu}$$

• SSB of SU(N) $\rightarrow \Sigma_a = v_a + \phi_a$: **Scalar Mixing** and low energy operators:

$$-\frac{\epsilon_a}{2}X^{\mu\nu}_a B_{\mu\nu} - \frac{\tilde{\epsilon}}{2}\phi^a X^{\mu\nu}_a \tilde{B}_{\mu\nu} -$$

- Kinetic Mixing parameters **naturally** small
- New source of **CP-violation**

EDM

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2} d \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2} d \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$

• No exp. evidence of EDMs

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2}d \overline{\psi}\sigma^{\mu\nu}\gamma_5\psi F_{\mu\nu}$

- No exp. evidence of EDMs
- Flavor blind model means $d_i = \frac{m_i}{m_k} d_k$

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2} d \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$

- No exp. evidence of EDMs
- Flavor blind model means $d_i = \frac{m_i}{m_k} d_k$

• eEDMs is the most sensitive to CPV

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2} d \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$

- No exp. evidence of EDMs
- Flavor blind model means $d_i = \frac{m_i}{m_k} d_k$

- eEDMs is the most sensitive to CPV
- CPV in the SM predicts: $d_e^{eq} = 10^{-35} e \ cm$ [Ema et al. (2022)]

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2} d \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$

- No exp. evidence of EDMs
- Flavor blind model means $d_i = \frac{m_i}{m_k} d_k$

- eEDMs is the most sensitive to CPV
- CPV in the SM predicts: $d_e^{eq} = 10^{-35} e \ cm$ [Ema et al. (2022)]
- Possible exp. deviations hint at New Physics

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2} d \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$

- No exp. evidence of EDMs
- Flavor blind model means $d_i = \frac{m_i}{m_k} d_k$

Upper bound on $|d_e|$ (e · cm)

- eEDMs is the most sensitive to CPV
- CPV in the SM predicts: $d_e^{eq} = 10^{-35} e \ cm$ [Ema et al. (2022)]
- Possible exp. deviations hint at New Physics

JILAeEDM	4.1 x 10 ⁻³⁰	[Roussy et al. (2023)]
ACMEIII	~1 x10 ⁻³⁰	[Hiramoto et al. (2023)]
YBF	~1 x 10 ⁻³¹	[Fitch et al. (2021)]
BaF(EDM ³)	~1 x 10 ⁻³³	[Vutha et al. (2018)]

- CPV int. of fermions with EM fields
- QFT description: $\mathcal{L} = -\frac{i}{2} d \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$

- No exp. evidence of EDMs
- Flavor blind model means $d_i = \frac{m_i}{m_k} d_k$

Upper bound on $|d_e|$ (e · cm)

• eEC	DMs is the m	ost sensitive to CPV	
-------	--------------	----------------------	--

- CPV in the SM predicts: $d_e^{eq} = 10^{-35} e \ cm$ [Ema et al. (2022)]
- Possible exp. deviations hint at New Physics

JILAeEDM	4.1 x 10 ⁻³⁰	[Roussy et al. (2023)]
ACMEIII	~1 x10 ⁻³⁰	[Hiramoto et al. (2023)]
YBF	~1 x 10 ⁻³¹	[Fitch et al. (2021)]
BaF(EDM ³)	~1 x 10 ⁻³³	[Vutha et al. (2018)]

Expect significant improvements of the current JILAeEDM sensitivity in the coming years!

- One Dark boson and one Dark scalar mix with SM
- Dark Sector at the same energy scale: $v_D \sim m_{\phi} \sim M_X$

- One Dark boson and one Dark scalar mix with SM
- Dark Sector at the same energy scale: $v_D \sim m_{\phi} \sim M_X$

$$d_l = rac{Y_l}{8\pi^2 v_D} \epsilon^2 an \chi \; eta c_{ heta}^2 e \; f(M_X, m_{\phi}, m_h)$$

- One Dark boson and one Dark scalar mix with SM
- Dark Sector at the same energy scale: $v_D \sim m_{\Phi} \sim M_X$

$$d_l = \frac{Y_l}{8\pi^2 v_D} \epsilon^2 \tan \chi \ \beta c_\theta^2 \ e \ f(M_X, m_\phi, m_h)$$

- Scalar mixing parameter $\beta \lesssim 10^{-2}$ [T.Ferber et al. (2024)]
- Constraints on ε from colliders and beam dump exp.

- One Dark boson and one Dark scalar mix with SM
- Dark Sector at the same energy scale: $v_D \sim m_{\phi} \sim M_X$

$$d_l = \frac{Y_l}{8\pi^2 v_D} \epsilon^2 \tan \chi \ \beta c_\theta^2 \ e \ f(M_X, m_\phi, m_h)$$

- Scalar mixing parameter $\beta \lesssim 10^{-2}$ [T.Ferber et al. (2024)]
- Constraints on ε from colliders and beam dump exp.
- Sizeable eEDM for $\epsilon \sim 10^{-5} \div 10^{-3}$

SU(2) and thermal DM

SU(2) and thermal DM

SU(2)→U(1):

SU(2)→U(1):

SSB of SU(2) via $<\Sigma > \neq 0$ \longrightarrow unbroken U(1) \longrightarrow mCPs only small fraction of DM [McDermott et al., 2011]

SU(2)→U(1):

SSB of SU(2) via $\langle \Sigma \rangle \neq 0$ \longrightarrow unbroken U(1) \longrightarrow mCPs only small fraction of DM [McDermott et al., 2011] SU(2) $\rightarrow \emptyset$:

SSB of SU(2) via $\langle \Sigma \rangle \neq 0$ unbroken U(1) \longrightarrow mCPs only small fraction of DM [McDermott et al., 2011] SU(2) $\rightarrow \emptyset$: INDIRECT DETECTION: WIMP DM mass $\geq 30 \text{ GeV}$ [Planck,2018]

Standard WIMP scenario highly disfavored !

SSB of SU(2) via $< \Sigma > \neq 0$ — ur	nbroken U(1)	mCPs only small fraction of DM [McDermott et al., 2011]
	SU(2) → Ø :	
INDIRECT DETECTION:		DIRECT DETECTION:
WIMP DM mass \geq 30 GeV [Planck,2018]	→ ◆	Severe constrains ϵ for DM > few GeV

Standard WIMP scenario highly disfavored !

Inelastic Dark Matter:

Standard WIMP scenario highly disfavored !

Inelastic Dark Matter:

- Fermionic DS with at least 2 states (χ_H, χ_S)
- Mass splitting between χ_H and χ_S (DM)
- $\chi_S \chi_S \rightarrow SM$ fordibben (or higly suppressed)

 $\Delta m \gtrsim 1 \text{MeV}$ \longrightarrow Negligible D-D bounds

- Mass splitting between χ_H and χ_S (DM)
- $\chi_S \chi_S \rightarrow SM$ fordibben (or higly suppressed)

• 3 gauge fields X_i^{μ}

•

• 2 scalar fields in the adj. Σ_2^a , Σ_3^a

2 SU(2) doublets
•
$$\chi_L = (\chi_L^1, \chi_L^2)$$

• $\psi_R = (\psi_R^1, \psi_R^2)$

• 3 gauge fields X_i^{μ}

2 SU(2)

• 2 scalar fields in the adj. Σ_2^a , Σ_3^a

doublets
$$\chi_L = (\chi_L^1, \chi_L^2)$$

• $\psi_R = (\psi_R^1, \psi_R^2)$

- SSB and mass basis: Ψ_S, Ψ_H Dirac fields
- X_2^{μ}, X_3^{μ} mix with SM gauge bosons
- Off-diagonal current: $g_D X_2^{\mu} \overline{\Psi}_H \gamma_{\mu} \Psi_S$

- 3 gauge fields X_i^{μ}
- 2 scalar fields in the adj. Σ_2^a, Σ_3^a

2 SU(2) doublets
$$\chi_L = (\chi_L^1, \chi_L^2)$$

•
$$\psi_R = (\psi_R^1, \psi_R^2)$$

- SSB and mass basis: Ψ_S, Ψ_H Dirac fields
- X_2^{μ}, X_3^{μ} mix with SM gauge bosons
- Off-diagonal current: $g_D X_2^{\mu} \overline{\Psi}_H \gamma_{\mu} \Psi_S$

DM vs eEDM

- Freeze out via coannihilation $\Psi_S \Psi_H \rightarrow SM$
- $m_{\Psi_S} \sim m_{\Psi_H} < M_X ~\sim 1-10 \text{ GeV}$
- $\Omega_{\Psi}h^2 = 0.12$ for $\epsilon \sim 10^{-5} \div 10^{-3}$

Inelastic Dark Matter SU(2) model

- 3 gauge fields X_i^{μ}
- 2 scalar fields in the adj. Σ_2^a, Σ_3^a
- 2 SU(2) doublets $\chi_L = (\chi_L^1, \chi_L^2)$ $\psi_R = (\psi_R^1, \psi_R^2)$

- SSB and mass basis: Ψ_{S}, Ψ_{H} Dirac fields
- X_2^{μ}, X_3^{μ} mix with SM gauge bosons
- Off-diagonal current: $g_D X_2^{\mu} \overline{\Psi}_H \gamma_{\mu} \Psi_S$ ٠

DM vs eEDM

- Freeze out via coannihilation $\Psi_S \Psi_H \rightarrow SM$
- $m_{\Psi_S} \sim m_{\Psi_H} < M_X \sim 1-10 \text{ GeV}$
- $\Omega_{\Psi}h^2 = 0.12$ for $\epsilon \sim 10^{-5} \div 10^{-3}$

10-27 10-28 10-29 JILA eEDM ACME II 10-30 10-31 $\begin{bmatrix} \mathbf{m} & \mathbf{10}^{-32} \\ \mathbf{e} & \mathbf{c} \\ \mathbf{m} \end{bmatrix} \mathbf{10}^{-33}$ 10-34 10-35 10-36 10⁻³⁷ SM prediction 10-38 100 101 10-1 $m_{DM}[\text{GeV}]$

7

- 3 gauge fields X_i^{μ}
- 2 scalar fields in the adj. Σ_2^a, Σ_3^a
- 2 SU(2) doublets $\chi_L = (\chi_L^1, \chi_L^2)$ $\psi_R = (\psi_R^1, \psi_R^2)$

JILA eEDM

SM prediction

10-27

10-28 10-29

10-30

10-31

10-34 10-35

10-36 10⁻³⁷

10-38

10-1

 $\begin{bmatrix} \mathbf{d}_{e} & \mathbf{e} \\ \mathbf{e} \cdot \mathbf{c} \\ \mathbf{n}_{-33} \end{bmatrix} \mathbf{10}^{-33}$

- SSB and mass basis: Ψ_{S}, Ψ_{H} Dirac fields
- X_2^{μ}, X_3^{μ} mix with SM gauge bosons
- Off-diagonal current: $g_D X_2^{\mu} \overline{\Psi}_H \gamma_{\mu} \Psi_S$

DM vs eEDM

- Freeze out via coannihilation $\Psi_S \Psi_H \rightarrow SM$
- $m_{\Psi_S} \sim m_{\Psi_H} < M_X \sim 1-10 \text{ GeV}$
- $\Omega_{\Psi}h^2 = 0.12$ for $\epsilon \sim 10^{-5} \div 10^{-3}$
- Future eEDM sensitivities can probe the model

- Non-abelian Dark sector allows for kinetic portals with small ε
- Non-abelian Dark sector allows for a CP-violating phase in portals
- Scalar and kinetic mixing + CP-violation signals can be traced in EDMs
- Model of iDM can be probed by future searches for a permanent eEDM!

Thank you for your attention!

BACK UP

CP-violating portals to Dark Sectors

UV completion

- **EFTs** call for UV completion
- Heavy vector-like fermion charged under $SU(N) \otimes U(1)_Y$
- Physical phase χ in Yukawa-like scalar couplings ${\mathcal Y}$

UV Lagrangian:

Ψ

Σ

Ψ

199999999

A model for Inelastic Dark Matter

- 3 gauge fields X_i^{μ}
- SU(2) Dark group with matter content:

• 2 scalar fields in the adj.
$$\Sigma_2^a, \Sigma_3^a$$

• 2 Majorana SU(2) doublet $\begin{cases} \bullet & \chi_L = (\chi_L^1, \chi_L^2) \\ \bullet & \psi_R = (\psi_R^1, \psi_R^2) \end{cases}$

• Mass term:
$$\mathcal{L} \supset -m_D \overline{\chi_L} \psi_R - \sum_{i=1,2} Y_{D,i} \overline{\chi_L} \Sigma_i \psi_R - \sum_{i=1,2} Y_{L,i} \overline{\chi_L^c} i \sigma_2 \Sigma_i \chi_L - \sum_{i=1,2} Y_{R,i} \overline{\psi_R^c} i \sigma_2 \Sigma_i \psi_R + \text{h.c.}$$

 $- \frac{g_D}{2} \overline{\chi_L} \gamma_\mu \sigma^a X_a^\mu \chi_L - \frac{g_D}{2} \overline{\psi_R} \gamma_\mu \sigma^a X_a^\mu \psi_R.$ (C.2)

- SU(2) fully broken by: $\langle \Sigma_2 \rangle = (0, v_2, 0); \langle \Sigma_3 \rangle = (0, 0, v_3)$
- Dirac masses: $M_1 = m_D + vY_1 vY_2$; $M_2 = m_D + vY_1 + vY_2$
- Off-diagonal currents with X_2 and X_1 and inelastic dark matter scenario
- X_3 diagonal current suppressed by either small eps or large M_{X_3} .

CP-violating portals to Dark Sectors

Laboratory bounds

$$\sum_{f} \Gamma(\Psi_H \to \Psi_S f\bar{f}) = \sum_{f} \frac{4\epsilon^2 \alpha \alpha_D \delta_{\Psi}^5}{15\pi M_X^4}$$

- Small mass splitting: favoured for DM a and long life time
- δ_{ψ} > 2m_e to avoid too much long lifetime
- X to invisible searches: model independent constraints

Inelestic DM set up

Scatter plot parameters:

Parameter	Lower limit	Upper limit
$eta_{1,2}$	10^{-4}	10^{-2}
ϵ	10^{-6}	[102 - 106]
g_D	10^{-2}	1
$ an \chi$	10^{-2}	1
v_D	$1{ m GeV}$	$20{ m GeV}$
m_{ϕ}	$0.1{ m GeV}$	$50{ m GeV}$

• Random values of parameters of the model and $M\chi$ chosen to fulfill the relation above.

• eEDM computed with the formula slides 5