

LHCb Experiment at CERN

Run / Event: 311053 / 14371358974

Data recorded: 2024-11-22 15:15:32 GMT

Asymmetries in hadronic charm decays at LHCb

Luca Balzani On behalf of LHCb collaboration DISCRETE 2024, Ljubljana 04.12.2024

technische universität dortmund

Emmy Noether-Programm

Introduction

the only way to study mixing and CPV with up-type quarks

The Charm sector offers a unique environment to search for New Physics and is

Originates from contributions from amplitudes

Measuring asymmetries

- Experimentally

$$A_{raw}(X_c \to f) = \frac{N(X_c \to f) - N(\overline{X_c} \to \overline{f})}{N(X_c \to f) + N(\overline{X_c} \to \overline{f})} \approx \frac{A_{CP}}{A_{CP}} + \frac{A_D(f)}{A_D(f)} + \frac{A_P(X_c)}{A_P(X_c)}$$

A precise knowledge of nuisance asymmetries is required

• With neutral mesons, mixing plays a role \rightarrow time dependence

Charm mesons slow mixing rate

Time independent direct CP violation

Asymmetries in hadronic charm decays at LHCb

Luca Balzani

• Measurement of time integrated CP asymmetries $\rightarrow A_{CP}(X_c \rightarrow f) = \frac{\Gamma(X_c \rightarrow f) - \Gamma(\overline{X_c} \rightarrow \overline{f})}{\Gamma(X_c \rightarrow f) + \Gamma(\overline{X_c} \rightarrow \overline{f})}$

Production asymmetries Detection effects $\frac{A_D(f|p_T,\eta)}{\varepsilon(f) + \varepsilon(\bar{f})} = \frac{\varepsilon(f) - \varepsilon(\bar{f})}{\varepsilon(f) + \varepsilon(\bar{f})} \left| \frac{A_P(X_c|\sqrt{s}, p_T, \eta)}{A_P(X_c|\sqrt{s}, p_T, \eta)} = \frac{\mathscr{P}(pp \to X_c) - \mathscr{P}(pp \to \bar{X}_c)}{\mathscr{P}(pp \to X_c) + \mathscr{P}(pp \to \bar{X}_c)} \right|$

 $A_{CP}(D^0 \to f, t) \approx a_{CP}^{\text{dir}} + \frac{t}{\tau_{D^0}} \Delta Y_f$ Asymmetry of the effective decay widths

Measurements highlights

$$\Delta A^{CP} = \underbrace{A^{CP}(K^+K^-) - A^{CP}(\pi^+\pi^-)}_{\text{Evaluation}} = (-15.4 \pm 2)$$

Exploit nuisance asymmetries cancellation:

Asymmetries in hadronic charm decays at LHCb

04.12.2024

4

CPV in multi-body charm decays

Local CP asymmetry can be enhanced

$$A_{\text{raw}}^{i,X} = \frac{N_{+}^{i,X} - N_{-}^{i,X}}{N_{+}^{i,X} + N_{-}^{i,X}}, \text{ in bin } i \text{ where } X = S, C$$

$$D_s^+ \to K^+ K^- \pi^+$$
 control channel (C)

Cabibbo favoured \rightarrow no CPV expected

CP asymmetry significance tested in each bin

$$\mathcal{S}^{\,i}_{\Delta_{CP}} = \frac{\Delta A^{i}_{CP}}{\sigma_{\Delta A^{i}_{CP}}} \qquad \underbrace{ \text{Test statistic assuming}}_{\text{CP symmetry}} \chi^{2}(\mathcal{S}_{A}) = \frac{1}{2} \sum_{\substack{i \in \mathcal{S}_{A}}} \frac{1}{2} \sum_{\substack{i \in$$

No evidence for global CPV $\rightarrow p$ -value for CP conservation 8.1 %

Luca Balzani

Asymmetries in hadronic charm decays at LHCb

arXiv:2409.01414

CPV in multi-body charm decays

- The $\overline{K}^*(892)^0$ and $\phi(1020)$ resonances are clearly visible in the Dalitz plot
- The strong phase varies around resonances **JHEP 06** Phase space integrated CPV may be canceled (2013) 112
- New observables Bins around resonances $A_{CP|S} = \frac{1}{2} \left[\left(\Delta A_{\text{raw}}^{\text{top-left}} + \Delta A_{\text{raw}}^{\text{bottom-right}} \right) - \left(\Delta A_{\text{raw}}^{\text{top-right}} + \Delta A_{\text{raw}}^{\text{bottom-left}} \right) \right]$ $A_{CP|S}^{\phi\pi^+} = (0.95 \pm 0.43 \pm 0.26) \times 10^{-3}$ $A_{CP|S}^{\overline{K}^{*0}K^{+}} = (-0.26 \pm 0.56 \pm 0.18) \times 10^{-3}$

No evidence for CPV around the resonances

Luca Balzani

- Meson produced in D^0 flavour eigenstate
- Doubly Cabibbo Suppressed (DCS) and mixing amplitudes are of the same order

Time evolution

$$i\frac{\partial}{\partial t} \left(\frac{D^0(t)}{\overline{D}^0(t)} \right) = \left($$

Luca Balzani

Asymmetries in hadronic charm decays at LHCb

Off-shell transitions

On-shell transitions

• Off-diagonal M elements are sensitive to new physics contributing in the mixing box

Weak phases (CPV observables)

$$\phi_f^M \sim \arg(M_{12})$$

$$\phi_f^{\Gamma} \sim \arg(\Gamma_{12})$$

Phys. Rev. D 103, 053008

- The ratio between $D^0 \to K^+ \pi^-$ and $D^0 \to K^- \pi^+$ is sensitive to both mixing and CPV $R^+_{K\pi}(t) \equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\Gamma(\overline{D}{}^0(t) \to K^+\pi^-)}$ $R_{K\pi}^+(t) \equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\overline{\Gamma(\overline{\Sigma}} \to C^+)}$ $R^{\pm}_{\kappa\pi}(t) = R_{\kappa\pi}(1 \pm A_{\kappa\pi}) + \sqrt{R_{\kappa\pi}}$
- Expanding these ratios up to second order in x_{12} and v_{12} $c_{K\pi} = y \cos \delta x \sin \delta$,

$$\begin{split} R_{K\pi}^{\pm}(t) \approx R_{I} & \Delta c_{\kappa\pi} = (|p/q| - 1) \left(y \cos \delta - x \right) \\ c_{\kappa\pi}' &= \left(x^{2} + y^{2} \right) / 4, \\ \Delta c_{\kappa\pi}' &= \left(|p/q| - 1 \right) \left(x^{2} + y^{2} \right) / 2. \end{split}$$

Mixing observables
$$\begin{aligned} & \mathsf{CP \, even} \end{aligned}$$

Luca Balzani

$$\frac{R_{K\pi}^{-}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}}{(1 \pm A_{K\pi})(c_{K\pi} \pm \Delta c_{K\pi})(t/\tau_{D^{0}})(t/\tau_{D^{0}})(t/\tau_{D^{0}})^{2}}$$

 $(\sin \delta) - \phi (x \cos \delta + y \sin \delta)$, $t + (c'_{K\pi} \pm \Delta c'_{K\pi}) t^2$

CP odd **CPV** observables

Asymmetries in hadronic charm decays at LHCb

- $R_{K\pi}^{\pm}(t)$ is fitted simultaneously for the two final states
- Direct determination of mixing and CPV parameters

arXiv:2407.18001

Mixing in double-tagged decays

Mixing and CPV parameters in double-tagged decays

$$\overline{B} \to D^*(2010)^+ \mu^- X$$
$$\downarrow D^*(2010)^+ \to D^0 \pi$$

- Complementary to the prompt analysis
 - Higher low decay time sensitivity
 - Fewer statistics

Luca Balzani

Asymmetries in hadronic charm decays at LHCb

Summary and outlook

- LHCb continues to be deeply involved in investigations on asymmetries in the Charm sector
- LHCb is still releasing cutting edge results with data from Run 2 (2015-2018)

- Measurements still statistically limited \rightarrow New detector operating at higher luminosity and efficiency
- The 2024 data taking just ended record

New CPV in multi-body decays and mixing parameters measurements released

ding 9.6 fb⁻¹
$$\rightarrow$$

New high-precision measurements on the way!

Asymmetries in hadronic charm decays at LHCb

Backup

The LHCb detector during LHC run 2

LHCb is a forward spectrometer \rightarrow Optimal for charm physics in $pp (\sqrt{s} \sim \text{TeV})$ collisions $\sigma(pp \to c\overline{c}X) \approx 20 \times \sigma(pp \to bbX)$ **Tracking stations**

Luca Balzani

Asymmetries in hadronic charm decays at LHCb

JINST 3 S08005

Additional materia for multi-body CPV

on the Dalitz plot region region it is measured in, ΔA_{raw}^{global} is defined

- In the absence of CPV $\Delta A_{
m raw}^{
m global}$ corresponds to the production asymmetries difference

Asymmetries in hadronic charm decays at LHCb

• To ensure production asymmetry cancellation, and assuming A_P does not depend

04.12.2024

14

- Combining this result with previous results from LHCb [Phys. Rev. D 97, 031101]

Mass plots double-tagged analysis

Luca Balzani

Asymmetries in hadronic charm decays at LHCb

Alternative mixing parametrisation

 $\bar{R}^{\pm}(t) \approx R_D(1 \pm A_D) + \sqrt{R_D(1 \pm A_D)}(c_{K\pi} \pm \Delta c_{K\pi}) \left(\frac{t}{\tau_{D^0}}\right) + (c'_{K\pi} \pm \Delta c'_{K\pi}) \left(\frac{t}{\tau_{D^0}}\right)^2$

$$R_{D} = \frac{R_{D}^{+} + R_{D}^{-}}{2},$$

$$c_{K\pi} = \frac{y'^{+} + y'^{-}}{2},$$

$$c'_{K\pi} = \frac{1}{2} \left[\frac{(x'^{+})^{2} - x_{L}^{-}}{2} \right],$$

$$A_{D} = \frac{R_{D}^{+} - R_{D}^{-}}{R_{D}^{+} + R_{D}^{-}},$$

$$\Delta c_{K\pi} = \frac{y'^{+} - y'^{-}}{2},$$

$$\Delta c'_{K\pi} = \frac{1}{2} \left[\frac{(x'^{+})^{2} - x_{L}^{-}}{2} \right],$$

Asymmetries in hadronic charm decays at LHCb

Luca Balzani

 $\frac{(x'^{+})^2}{4} + \frac{(x'^{-})^2 + (y'^{-})^2}{4} \Big],$

 $\frac{+(y'^{+})^2}{4} - \frac{(x'^{-})^2 + (y'^{-})^2}{4} \right]$

04.12.2024

17