

Probing global symmetries with top quark and Higgs boson at CMS

DISCRETE conference, Ljubljana - 04/12/2024

Nicolas Chanon for the CMS Collaboration, IP2I Lyon CNRS/IN2P3

Lorentz, CPT, CP and baryogenesis

Standard model electroweak baryogenesis:

 $\eta_{SM} = (n_b - n_{\bar{b}})/n_\gamma \approx 10^{-27}$

Observation: $\eta = (n_b - n_{\bar{b}})/n_{\gamma} \approx 6 \times 10^{-10}$

Beyond SM electroweak baryogenesis:

- Additional scalars may ensure 1st order electroweak phase transition
- A new source of CP violation is required

CPT baryogenesis:

- CPT violation
- Induces baryon number violation at thermal equilibrium

CPT theorem: a QFT a preserving Lorentz invariance must also preserve CPT symmetry. **CPT violation implies Lorentz violation** for local QFT theories [Greenberg 2002]

top and Higgs in searches for...

CPT from top/antitop mass difference PLB 770 (2017) 50-71, arXiv:2403.01313

top/antitop mass difference

Difference of nominal top quark masses is not allowed within local quantum field theories

Experimental method, CMS at 8 TeV

- ttbar production in lepton/ antilepton+jets decay channels
- top/antitop reconstruction with a kinematic fit
- Many systematics cancel out in the difference

Source	Uncertainty in Δm_t (MeV)
Jet energy scale	7 ± 16
Jet energy resolution	7±11
b vs. b jet response	51 ± 1
Signal fraction	27 ±2
Background charge asymmetry	11.9 ± 0.1
Background composition	28 ±1
Pileup	9.1 ± 0.3
b tagging efficiency	24 ±7
b vs. $\overline{\mathbf{b}}$ tagging efficiency	11 ±7
Method calibration	3± 53
Parton distribution functions	9 ±3
Total	91

Interpretation of this measurement: PRL 133, 221601 (2024), talk N. Sherrill on Tuesday

Searches for violation of Lorentz invariance with tt

Physics briefing

PLB 857 (2024) 138979

Paper just published

Lorentz transformation:

 $x^{\mu} \mapsto x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$

- Lorentz boosts

- Rotations

Lorentz-violating Standard Model Extension (SME):

- Motivated by String theory or Loop quantum gravity
- Add all Lorentz-violating operators to the SM Lagrangian
- Tested in many sectors, but only once with top quarks (D0, <u>PRL 108 (2012) 261603</u>))

$$\mathcal{L}_{\text{SME}} = \frac{1}{2} i \bar{\psi} (\gamma^{\nu} + c^{\mu\nu} \gamma_{\mu} + d^{\mu\nu} \gamma_{5} \gamma_{\mu}) \overleftarrow{\partial_{\nu}} \psi - m_{\text{t}} \bar{\psi} \psi$$

- SME coefficients: constant matrices (Lorentz-violating)

Indicate preferential directions in spacetime

Report the measurement in the **Sun-centered frame**:

CMS frame is rotating daily around the earth Z-axis,
 => modulation of the top-antitop cross section with sidereal time

Rotation period of the earth lasts ~23h 56min 4s (UTC time ~UNIX time), or 24h, 86400 s (sidereal time)

Searches for violation of Lorentz invariance with tt

PLB 857 (2024) 138979

Selection:

- Dilepton final state: **eµ**
- Leading lepton pT>25 GeV, subheading pT>20 GeV
- ≥ 2 jets with pT>30 GeV and |η| < 2.4</p>
- Among which ≥ 1 b jet (deepCSV tagger)

w⁺ ^v ^b/_b ttbar signal
t w⁺ ^v ^b/_b
main
background:
single top tW

Discriminant observable: number of b jets (good separation between ttbar and tW), in bins of sidereal time

Dedicated MC corrections in bins of sidereal time:

- Integrated luminosity,
- Pileup distribution,
- Trigger efficiencies
- Other corrections are treated independently of sidereal time bin

Searches for violation of Lorentz invariance with tt PLB 857 (2024) 138979

Direct fit of normalised differential ttbar cross section

- Uncertainty is around 2.2% in each time bin
- Statistical uncertainty accounts for ~0.9%

Treatment of the systematics with sidereal time:

- Uncertainty in pileup, luminosity stability and linearity, trigger: evaluated as a function of sidereal time, treated as correlated: subdominant
- Other experimental systematics treated as **uncorrelated,** to let the fit find their impact on each time bin in data: **dominant**
- SM theory, background norm, other luminosity uncertainties treated as **uniform**: **cancel** almost completely in the ratio

Searches for violation of Lorentz invariance with tt PLB 857 (2024) 138979

- Time modulation calculated in bins of sidereal time and number of b jets
- 4 directions tested: XX, XY, XZ, YZ
- 4 families of coefficients: c, d, cL, CR

- No significant deviation
- Improved precision by up to a factor
 ~100 relative to D0

- Spacetime isotropy of special relativity tested at the 0.1-0.8% level with top quarks at the LHC

CP violation in top-gluon coupling PRD 100, 072002 (2019)

CP-odd triple product asymmetry (<u>JHEP 06 (2023) 081</u>, <u>JHEP 07 (2023) 023</u>): similar sensitivity to the top quark chromoelectric moment

CP violation in top-Z/γ coupling JHEP 03 (2020) 056, JHEP 12 (2021) 180, JHEP 05 (2022) 091

CP violation in top-Higgs coupling (WW/тт) JHEP 07 (2023) 092

ttH,H→WW/тт (multilepton channel):

- Best expected sensitivity, wrt other channels
- 2 leptons of same sign (2 ℓ ss), 3 ℓ , 2 ℓ ss+1 τ _h (hadronic tau)
- Jets faking leptons, charge mis-assignment: from data
- Signal extraction with DNN against SM background, and BDT targeting CP-violation

CP violation in top-Higgs coupling (bb) arXiv:2407.10896 submitted to JHEP

New: ttH,H→bb paper with combination

- Measuring signal strength below SM expectation: $\mu_{t\bar{t}H} = 0.33 \pm 0.26$

- ttH,H→bb channel improves slightly the expected sensitivity to CP-violation
 However the measured low signal
- strength weakens the observed sensitivity to CP-violation

Conclusions and perspectives

Search for CPT asymmetry with top quarks

- Most precise top/antitop mass difference, precision 0.21 GeV, at CMS with 8 TeV
- Would be interesting to perform again at 13 TeV with ttbar

Search for violation of Lorentz invariance with top quarks

- First search for violation of Lorentz invariance with ttbar at the LHC, with the SME
- Measured differential normalised cross section with sidereal time
- Spacetime anisotropy: special relativity tested at the 0.1-0.8% level with top quarks

Search for CP violation in top quark-vector boson coupling:

- **top-gluon:** from spin correlation or CP-odd triple products: precision of 0.2-0.3 TeV⁻²
 - N.B.: Spin correlation used for top quark quantum entanglement (arXiv:2409.11067)
- **top-Z/y**: large improvements in sensitivity arise from tty final state, precision \sim 0.4 TeV⁻²

Search for CP violation in top quark-Higgs boson coupling:

- Combination of ttH final states: $H \rightarrow \gamma \gamma, ZZ, WW/\tau\tau, bb$
- Exclude an observed (expected) CP fraction of >0.85 (0.6) at 95% CL
- Expected sensitivity improved with H→bb, however measured signal strength is low, thus the observed sensitivity is degraded

Back-up slides

Top quark sector in the SME

Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

LIV lagrangian related to top quark:

- SME coefficients $c_{\mu\nu}$ are violating particle Lorentz invariance
- $c_{\mu\nu}$ trace is Lorentz-invariant, and its antisymmetric part can be absorbed elsewhere in the Lagrangian: consider $c_{\mu\nu}$ as symmetric and traceless

Define:

$$e: \quad c_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} + (c_R)_{\mu\nu}], \quad d_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} - (c_R)_{\mu\nu}]$$

Top pair production in the Lorentz-violating SME

Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LHC EFT WG - 17

Lorentz-violation with top quarks: previous bounds

Rev.Mod.Phys. 83: 11 (2011)

- Lorentz-violation tested in many sectors,
- Before CMS-PAS-TOP-22-007: only one actual measurement with top quarks at collider: precision O(10%)

Combination	Result	System	Ref.
$ c_t $	$< 1.6 \times 10^{-7}$	Astrophysics	[50]*
$(c_Q)_{XX33}$	$-0.12 \pm 0.11 \pm 0.02$	$t\bar{t}$ production	[256]
$(c_Q)_{YY33}$	$0.12 \pm 0.11 \pm 0.02$	"	[256]
$(c_Q)_{XY33}$	$-0.04 \pm 0.11 \pm 0.01$	"	[256]
$(c_Q)_{XZ33}$	$0.15 \pm 0.08 \pm 0.02$	"	[256]
$(c_Q)_{YZ33}$	$-0.03 \pm 0.08 \pm 0.01$	"	[256]
$(c_U)_{XX33}$	$0.1 \pm 0.09 \pm 0.02$	"	[256]
$(c_U)_{YY33}$	$-0.1 \pm 0.09 \pm 0.02$	"	[256]
$(c_U)_{XY33}$	$0.04 \pm 0.09 \pm 0.01$	"	[256]
$(c_U)_{XZ33}$	$-0.14 \pm 0.07 \pm 0.02$	"	[256]
$(c_U)_{YZ33}$	$0.01 \pm 0.07 \pm < 0.01$	"	[256]
d_{XX}	$-0.11 \pm 0.1 \pm 0.02$	"	[256]
d_{YY}	$0.11 \pm 0.1 \pm 0.02$	"	[256]
d_{XY}	$-0.04 \pm 0.1 \pm 0.01$	"	[256]
d_{XZ}	$0.14 \pm 0.07 \pm 0.02$	"	[256]
d_{YZ}	$-0.02\pm 0.07\pm < 0.01$	"	[256]
			L]

Indirect, isotrope, bound (*Phys. Rev.* D 97, 125016(2018)): from top-quark loop correction to photon propagator, using astrophysics photons

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LHC EFT WG - 18

Signal strength in other ttbar analyses

CMS Preliminary	$\sigma_{t\bar{t}}$ summary, $\sqrt{s} = 13 \text{ TeV}$ Jun 2021
$\begin{array}{c} \text{NNLO+NNLL PRL 110 (2013) 252004} \\ \textbf{m}_{top} = \textbf{172.5 GeV}, \ \alpha_{s}(\textbf{M}_{z}) = \textbf{0.118} \pm \textbf{0.001} \\ \textbf{scale uncertainty} \\ \textbf{scale} \oplus \text{PDF} \oplus \alpha_{s} \text{ uncertainty} \end{array}$	total stat σ _{tī} ± (stat) ± (syst) ± (lumi)
Dilepton e μ EPJC 79 (2019) 368, L _{int} = 35.9 fb ⁻¹ , 25 ns	▶ 803 ± 2 ± 25 ± 20 pb
Dilepton τ+e/μ JHEP 02 (2020) 191 L _{int} = 35.9 fb ⁻¹ , 25 ns	781 ± 7 ± 62 ± 20 pb
All-jets CMS-PAS TOP-16-013, L _{int} = 2.53 fb ⁻¹ , 25 ns	834 ± 25 ± 118 ± 23 pb
L+jets CMS-PAS TOP-20-001, L _{int} = 137 fb ⁻¹ , 25 ns *	₩ 791± 1±21±14 pb
	NNPDF3.0 JHEP 04 (2015) 040
	MMHT14 EPJC 75 (2015) 5
* Preliminary	CT14 PRD 93 (2016) 033006
	ABM12 PRD 89 (2015) 054028 $\left[\alpha_{s}(m_{z}) = 0.113\right]$
200 400 600	800 1000 1200 1400
$\sigma_{tar{t}}$	[pb]

Integrated luminosity with sidereal time

Integrated luminosity:

- Integrated luminosity can vary up to 20% per sidereal time bin
- Scale simulation yield for each sidereal time bin
- **Re-estimate luminosity uncertainties** as a function of time: cross-detector stability, luminometer linearity response

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LHC EFT WG - 20

Pileup with sidereal time

Pileup distribution:

- Nominal **pileup profile and associated uncertainty** (from the cross section for minimum bias events) does not cover for the pileup profile in time bins
- For each sidereal time bin: reweight pileup distribution and assign corresponding uncertainty

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LHC EFT WG - 21

Trigger efficiency with sidereal time

Data/simulation differences in dilepton trigger efficiencies:

- Estimated using p_T^{mis} trigger in events with ≥ 1 b jet
- **Uncertainties** estimated from partitions of the data: uncertainty arising from the number of jets, and run era dependency

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LHC EFT WG - 22

Uncertainties and their correlation

Re-estimated as a function of sidereal time: correlated in sidereal time

Experimental syst. for which dependency in sidereal time is unknown: uncorrelated in sidereal time

SM theory and background normalisation uncertainties: uniform (and correlated) in sidereal time

MC stat.: correlated in sidereal time

Systematic uncertainty source	Correlation 2016–2017	Correlation time bins	Magnitude
Flat luminosity, year-to-year correlated part	100%	100%	0.6% (2016), 0.9% (2017)
Flat luminosity, year-to-year uncorrelated part	0%	100%	0.9% (2016), 1.4% (2017)
Time-dependent luminosity stability	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent luminosity linearity	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent pileup reweighting	100%	100%	0.3–5%
Time-dependent trigger efficiency, syst. component	0%	100%	0.5–1%
Time-dependent trigger efficiency, stat. component	0%	0%	0.5%
L1 ECAL prefiring	100%	0%	0.5%
Electron reconstruction	100%	0%	0.4%
Electron identification	100%	0%	1.2–2.2%
Muon identification, syst. component	100%	0%	0.3%
Muon identification, stat. component	0%	0%	0.5%
Muon isolation, syst. component	100%	0%	< 0.1%
Muon isolation, stat. component	0%	0%	0.2%
Phase-space extrapolation of lepton isolation	100%	100%	0.5–1%
Jet energy scale, year-to-year correlated part	100%	0%	0.8%
Jet energy scale, year-to-year uncorrelated part	0%	0%	1.4%
Parton flavor impact on jet energy scale	100%	100%	1.1%
b tagging	0%	0%	2–4%
Matrix element scale	100%	100%	0.3–6%
$PDF+\alpha_{S}$	100%	100%	0.1–0.4%
Initial- & final-state radiation scale	100%	100%	1–5%
Top quark $p_{\rm T}$	100%	100%	0.5–2.5%
Matrix element-parton shower matching	100%	100%	0.7%
Underlying event tune	100%	100%	0.2%
Color reconnection	100%	100%	0.3%
Top quark mass	100%	100%	0.5–3%
Single top quark cross section	100%	100%	30%
$t\bar{t}+X$ cross section	100%	100%	20%
Diboson cross section	100%	100%	30%
W/Z+jets cross section	100%	100%	30%
tt cross section *	100%	100%	4%
Single top quark time modulation *	100%	100%	2%
MC statistical uncertainty	0%	100%	0.1–1%

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LHC EFT WG - 23

Differential fit in 2016 and 2017

Comparison with SM expectations

- Alternative fit: Fit of each Wilson individually, others set to SM
- Correlation between coefficients of different directions is 0-4%

SME coefficient	Others fixed to SM		Others floating		
(10^{-3} unit)	Expected	Observed	Expected	Observed	
$c_{L,XX} = -c_{L,YY}$	[-0.96; 0.96]	[-0.9; 1.03]	[-0.96; 0.96]	[-0.9; 1.03]	
$c_{L,XY} = c_{L,YX}$	[-0.97; 0.97]	[-1.92; 0.0]	[-0.97; 0.97]	[-1.94; -0.02]	
$c_{L,XZ} = c_{L,ZX}$	[-3.23; 3.23]	[-0.97; 5.49]	[-3.23; 3.23]	[-0.92; 5.54]	
$c_{L,YZ} = c_{L,ZY}$	[-3.24; 3.24]	[-4.61; 1.85]	[-3.24; 3.24]	[-4.64; 1.82]	
$c_{R,XX} = -c_{R,YY}$	[-1.7; 1.7]	[-1.65; 1.77]	[-1.7; 1.7]	[-1.66; 1.76]	
$c_{R,XY} = c_{R,YX}$	[-1.71; 1.71]	[0.09; 3.5]	[-1.71; 1.71]	[0.12; 3.52]	
$c_{R,XZ} = c_{R,ZX}$	[-5.78; 5.78]	[-9.36; 2.2]	[-5.78; 5.78]	[-9.45; 2.11]	
$c_{R,YZ} = c_{R,ZY}$	[-5.8; 5.8]	[-3.82; 7.76]	[-5.8; 5.8]	[-3.77; 7.82]	
$c_{XX} = -c_{YY}$	[-2.17; 2.17]	[-1.76; 2.62]	[-2.17; 2.17]	[-1.83; 2.55]	
$c_{XY} = c_{YX}$	[-2.18; 2.18]	[-4.23; 0.17]	[-2.18; 2.18]	[-4.31; 0.09]	
$c_{XZ} = c_{ZX}$	[-7.21; 7.21]	[-1.49; 13.07]	[-7.21; 7.21]	[-1.29; 13.27]	
$c_{YZ} = c_{ZY}$	[-7.24; 7.24]	[-11.05; 3.38]	[-7.24; 7.24]	[-11.21; 3.28]	
$d_{XX} = -d_{YY}$	[-0.61; 0.61]	[-0.6; 0.63]	[-0.61; 0.61]	[-0.59; 0.64]	
$d_{XY} = d_{YX}$	[-0.62; 0.62]	[-1.24; -0.01]	[-0.62; 0.62]	[-1.25; -0.02]	
$d_{XZ} = d_{ZX}$	[-2.07; 2.07]	[-0.68; 3.46]	[-2.08; 2.07]	[-0.65; 3.49]	
$d_{YZ} = d_{ZY}$	[-2.08; 2.08]	[-2.9; 1.25]	[-2.08; 2.08]	[-2.92; 1.23]	

Uncertainty in SME fits

Uncertainty for single top in the SME

- Formula for single top production in presence of non-null c or d SME coefficients are not known
- Evaluate an uncertainty arising from top quark decay in the SME, using single top processes
- Small impact on the total uncertainty

Translating UNIX to sidereal time

UTC time (~UNIX time): rotation period of the earth lasts ~23h 56min 4s (UTC) **Sidereal time:** rotation period of the earth is defined as 24h, 86400 s (sidereal)

top+Higgs processes

CMS-PAS-23-013 **New public note**

Combination and interpretation of differential Higgs => Im(cbH), Im(ceH), Im(cbW)

Class	Operator	Wilson coefficient			138 fb ⁻ ' (13 IeV)
$\mathcal{L}_{6}^{(1)} - X^{3}$	$\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	C _W	c _{HG} ×10 ^{−3}	3	
$c^{(3)}$ $\mu^4 D^2$	$(D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$	c _{HD}	с _{нв} ×10 ⁻³	3	
$\mathcal{L}_6^{(0)} - H^4 D^2 \qquad (H^\dagger H) \Box$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	$c_{H\square}$	c _{HWB} ×10 ^{−3}	3	
	$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c_{HG}	Re(c _{bH}) ×10 ⁻²	2	
$\mathcal{L}^{(4)}_{\epsilon} - X^2 H^2$	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	c_{HB}	с _{нw} ×10 ⁻²	2	=
6	$H^{T}HW^{\mathfrak{l}}_{\mu\nu}W^{\mathfrak{l}\mu\nu}$	c_{HW}	Re(c _{tB}) ×10 ⁻²	2	
	$H^{i}\sigma^{i}HW^{i}_{\mu\nu}B^{i\mu\nu}$	C_{HWB}	Im(c _{bH}) ×10 ⁻¹		=
	$(H^{\dagger}H)(\bar{Q}Hb)$	$\operatorname{Ke}(c_{bH})$ $\operatorname{Im}(c_{bH})$	с _{Нbox} ×10 ⁻¹	1	
	$(H^{\dagger}H)(\bar{O}Ht)$	$\operatorname{Re}(c_{bH})$	c _{Hd} ×10 ^{−1}	1 -===	
$\mathcal{L}_{6}^{(5)} - \psi^{2} H^{3}$	$(H^{\dagger}H)(\bar{I} \circ H)$	$\operatorname{Re}(c_{eH})$	c ⁽¹⁾ _{Ho} ×10 ⁻¹		====
0,	$(11 11)(l_p e_r 11)$	$\operatorname{Im}(c_{eH})$	c ⁽³⁾ _{Ho} ×10 ⁻¹	1 =	•
	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}uH)$	$\operatorname{Re}(c_{uH})$	c ⁽³⁾ _{HI} ×10 ⁻¹	1	
	$(Q\sigma^{\mu\nu}T^{\mu}t)HG^{\mu}_{\mu\nu}$	$\operatorname{Re}(c_{tG})$	с _{Ни} ×10 ⁻¹	1	
(6)	$(Q0^{\mu\nu}t)HB$	$\operatorname{Re}(c_{bB})$	c _{II} ^(′) ×10 ^{−1}	1	
$\mathcal{L}_6^{(6)} - \psi^2 X H$	$(Q_{\ell}, \iota)_{IID_{\mu\nu}}$	$\operatorname{Re}(c_{HM})$	 Re(c _{tG}) ×10 ^{−1}	1	=
	$(Q\sigma^{\mu\nu}b)\sigma^{\iota}HW^{\iota}_{\mu\nu}$	$Im(c_{bW})$ $Im(c_{bW})$	Re(c _{tH}) ×10 ⁻¹	1	
	$(\bar{Q}\sigma^{\mu\nu}t)\sigma^i\tilde{H}W^i_{\mu\nu}$	$\operatorname{Re}(c_{tW})$	Re(c _{tW}) ×10 ⁻¹		
	$(H^{\dagger}i\overleftrightarrow{D}_{u}H)(\overline{l}_{v}\gamma^{\mu}l_{r})$	$c_{Hl}^{(1)}$	c _W ×10 ⁻¹	1 -==	=:
	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{n}\sigma^{i}\gamma^{\mu}l_{r})$	$c_{\mu l}^{(3)}$	Re(c _{bB}))	
	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{n}\gamma^{\mu}q_{r})$	$c_{\mu_{\alpha}}^{(1)}$	Im(c _{eH}))	
	$(H^{\dagger}i\overset{\mu}{D}^{i}H)(\bar{a}_{\mu}\sigma^{i}\gamma^{\mu}a_{\mu})$	$C_{12}^{(3)}$	Re(c _{eH})) ===	===
$f^{(7)} - 4b^2 H^2 D$	$(H^{\dagger}; \overrightarrow{D}, H)(\overrightarrow{0}, \alpha^{\mu}O)$	$c^{(1)}$	C _{Hb}	p	• • • • • • • • • • • • • • • • • • • •
$\mathcal{L}_6 \varphi \prod \mathcal{D}$	$(\Pi \ i \ D_{\mu}\Pi)(Q_{p}\gamma, Q_{r})$ $(\Pi^{\dagger}; \overleftrightarrow{D} \ i \ U)(\bar{Q}, \tau^{\dagger}; \eta, Q)$	\mathcal{L}_{HQ}	CHD		
	$(\Pi^{r} I D^{r}_{\mu} \Pi)(Q_{p} \partial^{r} \gamma^{r} Q_{r})$	\mathcal{C}_{HQ}	C _{He}		
	$(H^{\dagger} I D_{\mu} H)(u_{p} \gamma^{\mu} u_{r})$	c_{Hu}	C _{HI}		-
	$(H^{\prime} \iota D_{\mu} H)(d_{p} \gamma^{\mu} d_{r})$	c _{Hd}	c ⁽¹⁾		
	$(H^{\dagger}i \overset{D}{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	c_{He}	c ⁽³⁾		
	$(H^{\dagger}i \overset{D}{\smile}_{\mu}H)(b\gamma^{\mu}b)$	c_{Hb}	Im(c _{bW}) ×10		
(0)	$(H^{\dagger}i\dot{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	c _{Ht}	Re(c _{bW}) ×10	Combination 95% CL	
$\mathcal{L}_6^{(8a)} - (\bar{L}L)(\bar{L}L)$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	c'_{ll}	Re(c _{uH}) ×10	Combination Best fit Combination expected 95% Cl	<u></u>
			c _{Ht} ×10 ²	Combination expected 53 % OL Combination expected 68% CL Combination expected Best fit	
			-	15 -10 -5 0 Baramete	5 10