Higgs Boson Property Measurements at the ATLAS Experiment

DISCRETE2024 Ljubljana 2-6th December 2024

Paul Thompson University of Birmingham On behalf of the ATLAS collaboration

The Higgs Boson

Discovered over 10 years ago. The LHC experiments have accumulated 140 fb⁻¹ in Run 2 ($\sqrt{s} = 13$ TeV *p*-*p* collisions) and recorded 180 fb⁻¹ in Run 3 ($\sqrt{s} = 13.6$ TeV *p*-*p*)

Search for and constrain physics beyond the standard model by making precise measurements of the fundamental properties of the Higgs boson:

- Measurements of single Higgs bosons:
 - mass, width, spin/CP
 - production cross sections
 - Coupling strengths to other particles
- Searches for multi-Higgs production
 - self-coupling
 - higher order couplings HHVV
- Searches for additional Higgs bosons
 - Motivated by models that solve SM's problems
 - Modify baryogenesis, provide DM candidate, solve strong CP problem,

Higgs Properties Highlights

Only time to cover a selection of results with a focus on the most recent preliminary and final ATLAS results

- Single Higgs boson measurements
 - Final result on VH production with $H \rightarrow b\bar{b}$ or $H \rightarrow c\bar{c}$ arXiv:2410.19611
 - Final result on $H \rightarrow \tau \tau$ arXiv:2407.16320
 - Preliminary off-shell measurement <u>ATLAS-CONF-2024-016</u>
- Search for additional Higgs bosons
 - Final result on search for $HHH \rightarrow 6b \text{ arXiv:} 2411.02040$
- First results from early Run 3 measurements
 - $H \to ZZ^* \to 4\ell$ and $H \to \gamma\gamma$ at $\sqrt{s} = 13.6$ TeV Eur. Phys. J. C 84 (2024) 78

And slightly older results, which do not have time to cover here but, relevant to the conference

- Higgs boson production in association with a top-quark pair and $H \rightarrow bb$ arXiv:2407.10904
- *H*(125) CP *H* → 4ℓ JHEP05(2024)105
- Study of top-Higgs CP properties with ttH and tH events with $H \rightarrow bb$ decays Phys. Lett B 849 (2024) 138469

VH with $H \rightarrow b\bar{b}$ or $H \rightarrow c\bar{c}$

Overview

- VH has the third highest production cross section
- Decay to $b\bar{b}$ is important as it has highest BR
 - Strong effect on Higgs decay width, need precise knowledge for general interpretations
- Can easily tag VH ($V \rightarrow$ leptons).
- \blacksquare Ideal production mode to study $H \to q \bar q$

- \blacksquare H \rightarrow $c\bar{c}$ decay, like all other 2nd gen. fermions, not yet observed:
- Much lower branching ratio than bb
- Difficult experimentally to identify *c*-initiated jets
- Large Z + c background

VH with $H \rightarrow bb$ or $H \rightarrow c\bar{c}$

Analysis approach

- Analysis of Run 2 dataset arXiv:2410.19611, supercedes previous
- 2D jet flavour tagging setup to separate c and b jet
- To better control fake b/c -jet contributions, include mixed-tag regions
- Split events by number of charged leptons produced by decay: 0, 1 or 2

4th December 2024

5/16

Paul Thompson (University of Birmingham)

Higgs Boson Property Measurements @ATLAS

Data

Dihosor

Toolbh

Multile

04 06 08

BDT... output

VH. H → bb (u=0.92)

Single top, t-/s-char

nts / 0.2

VH with $H ightarrow b ar{b}$ or $H ightarrow c ar{c}$

Selection of results

- Big improvements over results in previous analysis
- 23% (10%) better precision on total WH (ZH), $H \rightarrow b\bar{b}$ signal strength
- First 5 σ observation of $WH, H \rightarrow b\bar{b}$ process
- Additional simplified template cross section (STXS) bins at lowest/highest p^V_T plus N_{jets}

- Limit on $H \rightarrow c\bar{c}$ signal strength improved by a factor of 3 wrt first full Run 2 result
- Similar improvement on constraint of modified coupling strength κ_c

$H \rightarrow \tau \tau$ Measurement

Overview

- Final Run 2 data arXiv:2407.16320, supercedes JHEP 08 (2022) 175
- $H \rightarrow \tau \tau$ decay has largest BR of all leptonic H decays
- Most significant decay mode for VBF STXS (+ $\simeq 15\%$ wrt previous)
- Now VBF measurement in 8 kinematic regions including first for $p_T^H > 200 \text{ GeV}$

Analysis uses BDT e.g. to distinguish ggF from VBF

$H \rightarrow \tau \tau$ measurement

Cross section measurements

F - 13 TeV 140

MM confidence la

Hart Adding vs p^H + Obs Lin

с_{чй},

- Also measured unfolded differential fiducial cross sections in VBF enhanced regions
- Split events into four bins of e.g. $\Delta \phi_{ii}^{\text{signed}}$ or p_T^H , fit $m_{\tau\tau}$
- Overall good agreement with different generators
- Standard Model Effective Field Theory (SMEFT) interpretation based on differential cross section measurements
- Most stringent constraint to date on CP-odd dim-6 operator $H^{\dagger}H\tilde{W}^{n}_{\mu\nu}W^{n\mu\nu}(c_{H\tilde{W}})$ from shape of $\Delta\phi^{\text{signed}}_{ii}$

Exp. Lin.+Quad

Ohe Lin +Ound

Parameter Value

$H^* \rightarrow ZZ \rightarrow 4\ell$ measurement

New measurement of the Higgs boson decay width

- Update of off-shell Higgs boson production analysis in 4ℓ final state: <u>ATLAS-CONF-2024-016</u>
- Off-shell large destructive interference between signal and background
- Event kinematics described by 14 variables from 4 leptons and any jets
- Using Neural Simulation-Based Inference (NSBI) method which uses unbinned nature to maximise statistical power of Run 2 dataset (+ 20%)
- Indirect measurement of Higgs boson decay width, assuming equal modifications to on-/off-shell couplings

Search for $HHH \rightarrow 6b$

Triple Higgs boson production

- *HHH* production is sensitive to self-coupling modifiers $\kappa_3(\kappa_\lambda)$ and, uniquely, to κ_4
- But: $\frac{\sigma_{HH}^{SM}}{\sigma_{HHH}^{SM}} \simeq 400$, and HH is not yet observed either
- But BSM physics can still produce a signal within reach of LHC (e.g. <u>"Two Real Scalar Model" TRSM</u>)

- First search for *HHH* at LHC, using 6*b* final state: <u>arXiv:2411.02040</u>
- Searching for events with 6 *b*-tagged jets, 3 pairs with $m_{jj} \simeq m_H$
- Consider following model scenarios:
 - SM-like *HHH* production ("non-resonant")
 - **TRSM** benchmark $h_i = X, h_j = S$ ("resonant")
 - Generic spin-0, ggF only, $m_X > m_S$ ("heavy resonant")
- Different Deep NNs trained to identify HHH events depending on signal hypothesis

Search for $HHH \rightarrow 6b$

Results

- No excess over background found
- 95% CL upper limit on $\frac{\sigma_{HHH}}{\sigma_{HHH}^{SM}}$ is \simeq 750
- First direct limits set on limits set on κ_4

- Considered TRSM benchmark model for $X \rightarrow SH \rightarrow HHH$
- Set limits on large range of masses, up to $(m_X, m_S) = (1500, 1000)$ GeV
- Example, wide-width heavy resonance signals upper limits in range 6.3 – 39 fb

 $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ at $\sqrt{s} = 13.6$ TeV

Eur. Phys. J. C 84 (2024) 78

- The data from the first year of Run 3 (2022) has been analysed:
 - 31.4 fb⁻¹ for the $H \rightarrow \gamma \gamma$ channel
 - 29.0 fb⁻¹ for the $H \rightarrow ZZ \rightarrow 4\ell$ channel
- The expected peaks in the invariant mass spectra are clearly visible
- Cross sections are measured in the fiducial region and extrapolated to inclusive cross sections assuming SM BRs and acceptance, allowing combination
- Statistical uncertainties dominate both cross section measurements

$H ightarrow ZZ^* ightarrow 4\ell$ at $\sqrt{s} = 13.6$ TeV

The plot with Higgs boson cross sections as a function of collision energy has been updated to incorporate measurements at the new centre-of-mass energy

Summary

- Presented a snapshot of ATLAS results on Higgs properties from precision measurements to searches
- Updates of Run 2 data analyses has led to significant improvements in precision
- First results from the Run 3 at a centre-of-mass energy of 13.6 TeV. The integrated luminosity of Run 3 exceeded that of Run 2 during this year's running (1.5 years to go)
- We continue to evolve the experimental and analysis techniques e.g. evolution of μ_{HH} limits in $HH \rightarrow bb\tau\tau$ as shown in recent High Luminosity LHC projection update
- Stay tuned for new ATLAS Higgs results along this exciting journey ...

ATL-PHYS-PUB-2024-016

Backup

VH with $H \rightarrow b\bar{b}$ or $H \rightarrow c\bar{c}$

	Resolved VH, $H \rightarrow b\bar{b}, c\bar{c}$			Boosted VH, $H \rightarrow b\bar{b}$		
Variable	0-lepton	1-lepton	2-lepton	0-lepton	1-lepton	2-lepton
m _H	~	~	\checkmark	~	\checkmark	~
$m_{j_1 j_2 j_3}$	~	~	\checkmark			
$p_{\mathrm{T}}^{f_1}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$p_{T}^{j_{2}}$	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$p_{T}^{j_{3}}$				~	\checkmark	~
$\sum p_T^{f_i}, i > 2$	~	~	\checkmark			
$bin_{D_{DL1r}}(j_1)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$bin_{D_{DL1r}}(j_2)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
p_{T}^{V}	$\equiv E_T^{miss}$	\checkmark	\checkmark	$\equiv E_T^{miss}$	\checkmark	\checkmark
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark		\checkmark	\checkmark	
$E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$			\checkmark			
$ \Delta \phi(V, H) $	~	~	~	~	\checkmark	~
$ \Delta y(V, H) $		\checkmark	\checkmark		\checkmark	\checkmark
$\Delta R(j_1, j_2)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\min[\Delta R(j_i, j_1 \text{ or } j_2)], i > 2$	\checkmark	\checkmark				
N(track-jets in J)				\checkmark	\checkmark	\checkmark
N(add. small-R jets)				\checkmark	\checkmark	\checkmark
colour ring				\checkmark	\checkmark	\checkmark
$ \Delta\eta(j_1, j_2) $	\checkmark					
$H_{\rm T}$ + $E_{\rm T}^{\rm miss}$	\checkmark					
m ^W _T		\checkmark				
m _{top}		\checkmark				
$\min[\Delta \phi(\ell, j_1 \text{ or } j_2)]$		\checkmark				
p_{T}^{ℓ}					\checkmark	
$(p_T^\ell - E_T^{\text{miss}})/p_T^V$					\checkmark	
$m_{\ell\ell}$			\checkmark			
$\cos \theta^*(\ell^-, V)$			\checkmark			\checkmark