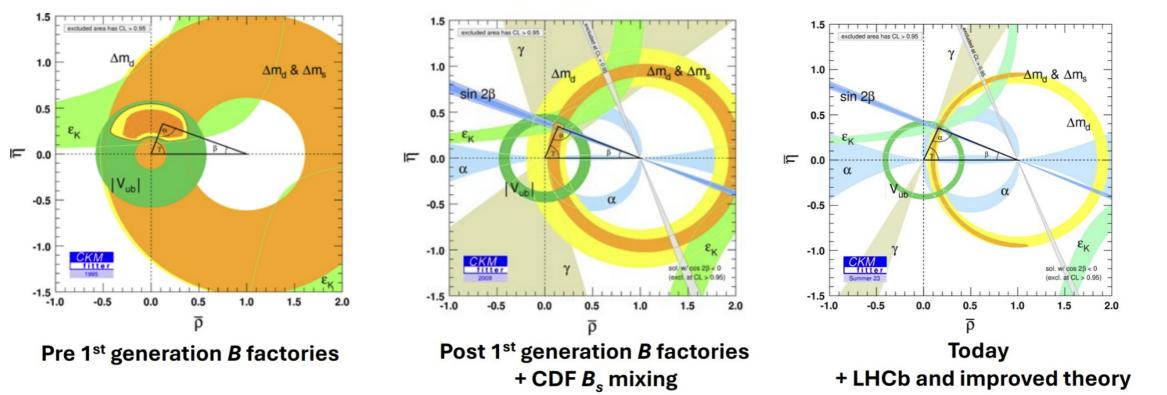
Studies of CP violation at Belle and Belle II

Radek Žlebčík on behalf of the Belle II collaboration

December 3, 2024 DISCRETE 2024 Ljubljana, Slovenia

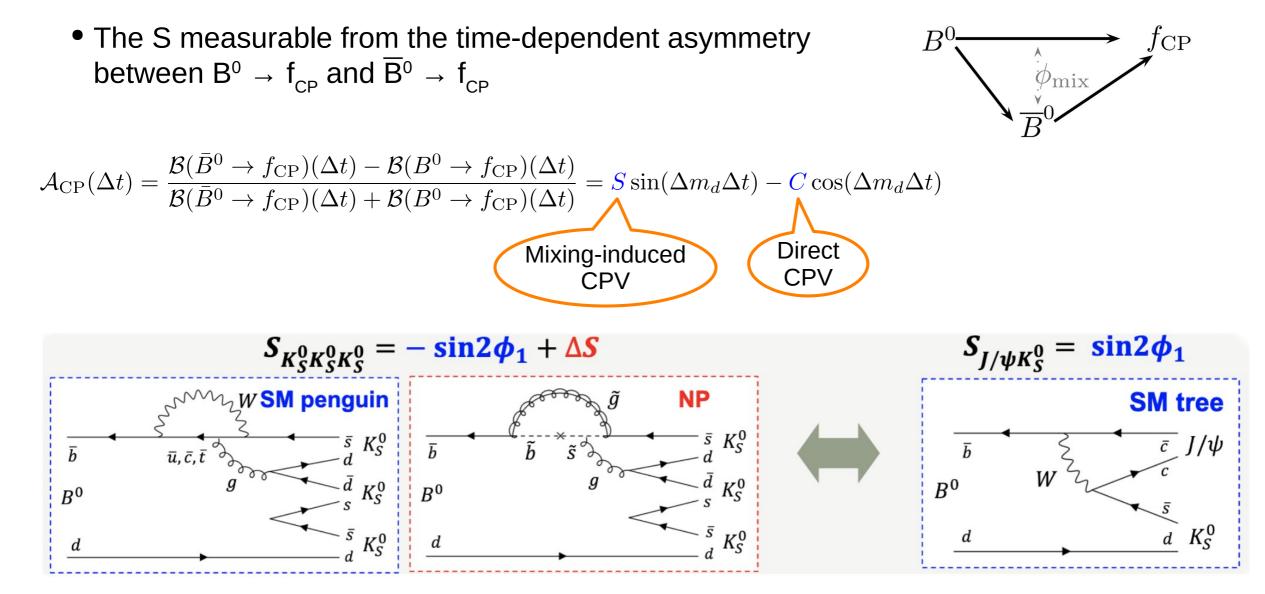


Unitarity triangle : 30 years of development

• Unitarity Triangle constructed from CKM matrix has angles and sides which are well-defined (physics) quantities

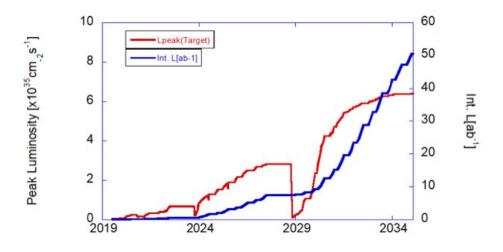
 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

2023

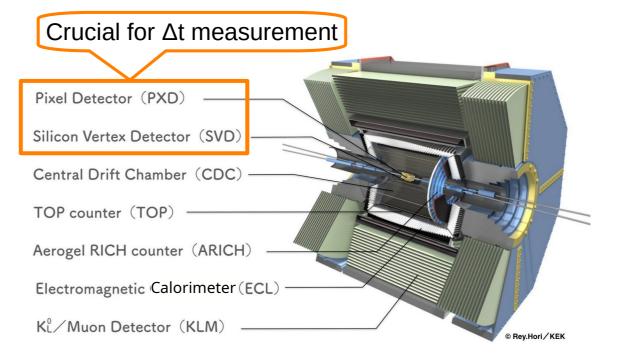


2009

6 ways of (over)constraining the Apex of the Unitarity Triangle

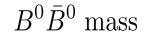

1995

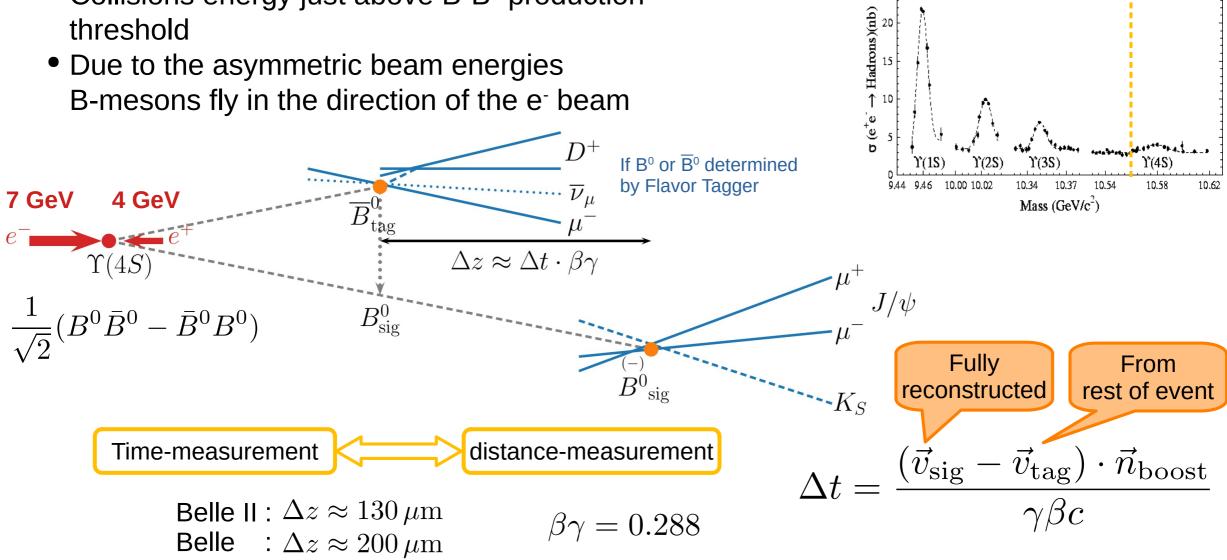
CP violation in interference of mixing and decay

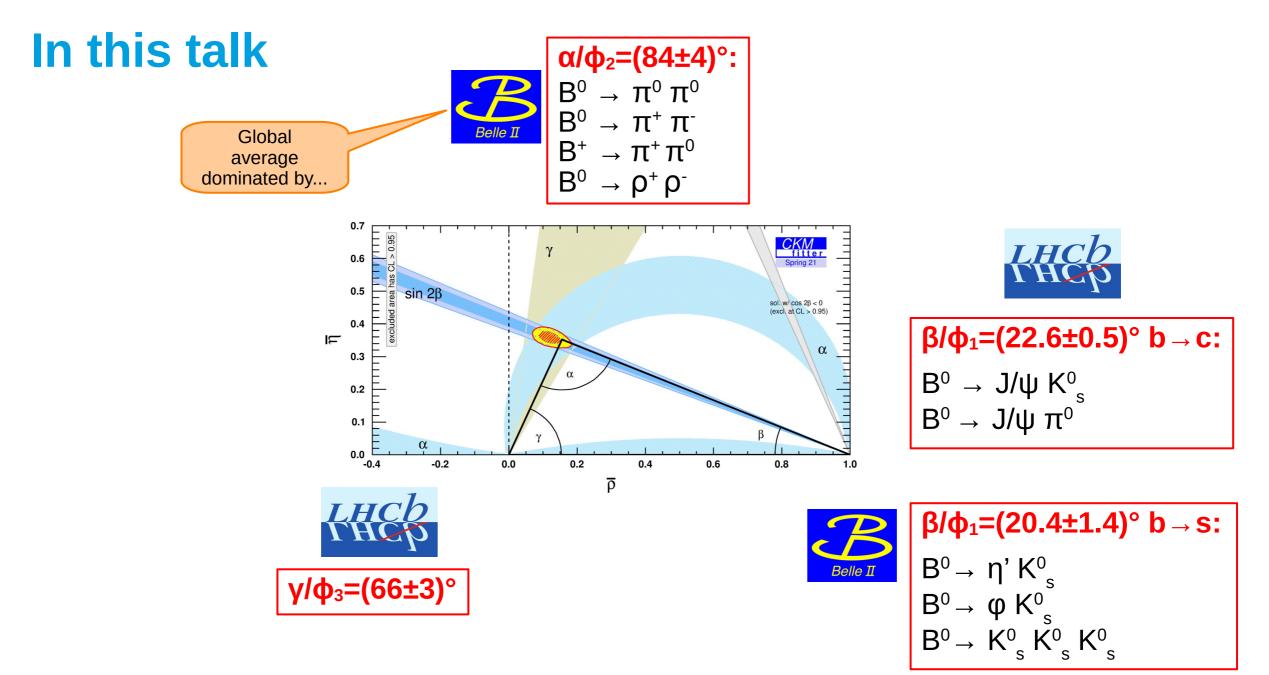

Belle2 & SuperKEKB status

- 550 fb⁻¹ of integrated luminosity collected so far (most analyses based on 365 fb⁻¹ of Run 1 4S data)
- World record instantaneous luminosity 0.47x10³⁵ cm⁻² s⁻¹
 - \rightarrow target 6x10³⁵ cm⁻² s⁻¹

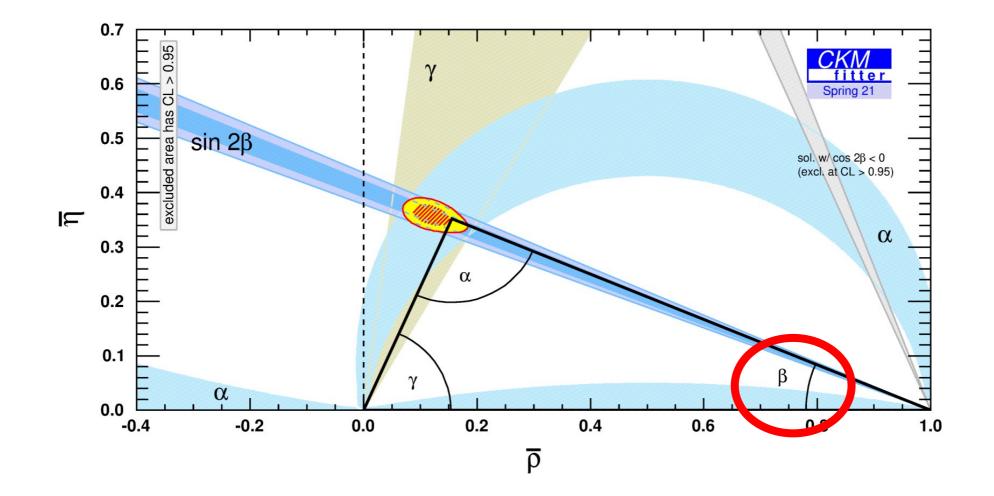
Frequent beam instabilities has resulted in smaller integrated luminosity, and even to preventive turn-off of PXD in 2024


→ Most of the 2024 runtime dedicated to accelerator studies



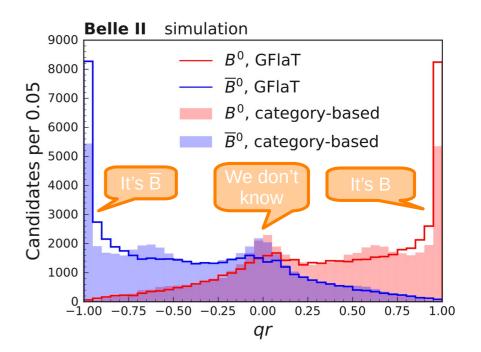


Measuring time-dep. CPV at Belle II


- Collisions energy just above B⁰B⁰ production threshold
- Due to the asymmetric beam energies B-mesons fly in the direction of the e⁻ beam

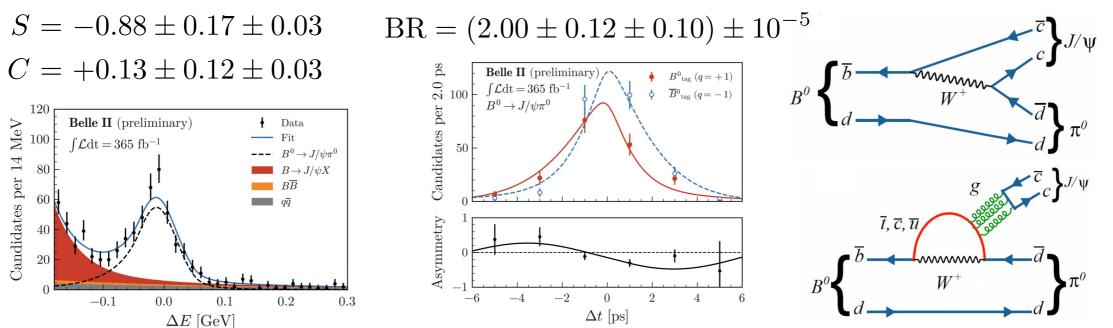
φ₁ = β

GNN-based Flavor tagger and $B^0 \rightarrow J/\psi K^0_s$


- The Graph Neural Network based Flavor tagger leads to ~20% gain in the effective statistics compared to category-based FT
- FT tested in $B^0 \rightarrow J/\psi \ K^{0}_{s}$, the golden channel for the S~sin $2\phi_1$ measurement

 $S = +0.724 \pm 0.035 \pm 0.009$ $C = -0.035 \pm 0.026 \pm 0.029$

Latest LHCb result <u>Phys.Rev.Lett. 132 (2024) 2</u> $S = +0.726 \pm 0.014$


Important validation of time-dep. CPV machinery, already more precise than BaBar. Phys.Rev.D 110 (2024)

 $\varepsilon_{\text{tag}}^{\text{eff}}$ (CB) = (31.7 ± 0.5 ± 0.4)% $\varepsilon_{\text{tag}}^{\text{eff}}$ (GFIaT) = (37.4 ± 0.4 ± 0.3)%

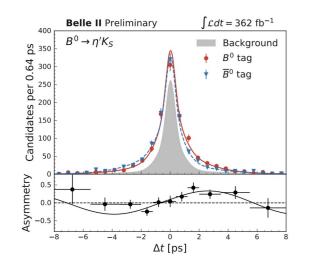
$CPV \ in \ B^0 \ \rightarrow \ J/\psi \ \pi^0$

- Color suppressed $b \rightarrow ccd$ tree-level decay
 - \rightarrow loop contribution plays a role
- Important input to correct for the penguin contamination in the B⁰ \rightarrow J/ ψ K⁰_s (tree only: S=-sin 2 $\phi_1 \sim$ -0.71)

The world's most precise measurement of this mode (higher precision than Belle)

PhysRevD.98.112008

arXiv:2410.08622


203±17 (J/ $\psi \rightarrow \mu\mu$) 186±16 (J/ $\psi \rightarrow ee$)

$\varphi_1 = \beta \ from \ Penguin \ b \rightarrow s \ transitions$

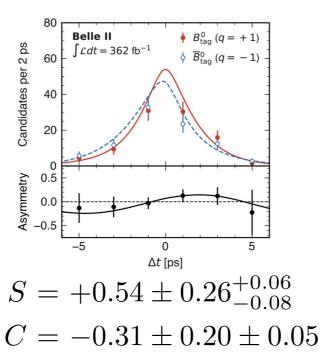
arXiv:2402.03713

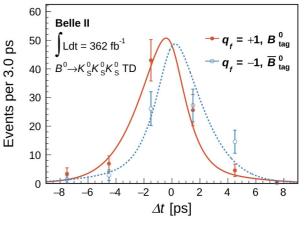
 $B^0 \rightarrow ~\eta'~K^0_{\ s}$

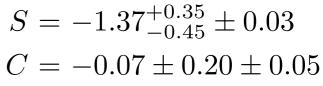
- $\eta' \rightarrow \eta(\rightarrow \gamma \gamma) \pi^{+} \pi^{-}$ $\eta' \rightarrow \rho \gamma$
- ~800 signal events

 $S = +0.67 \pm 0.10 \pm 0.04$ $C = -0.19 \pm 0.08 \pm 0.03$

Phys.Rev.D 108 (2023) 7

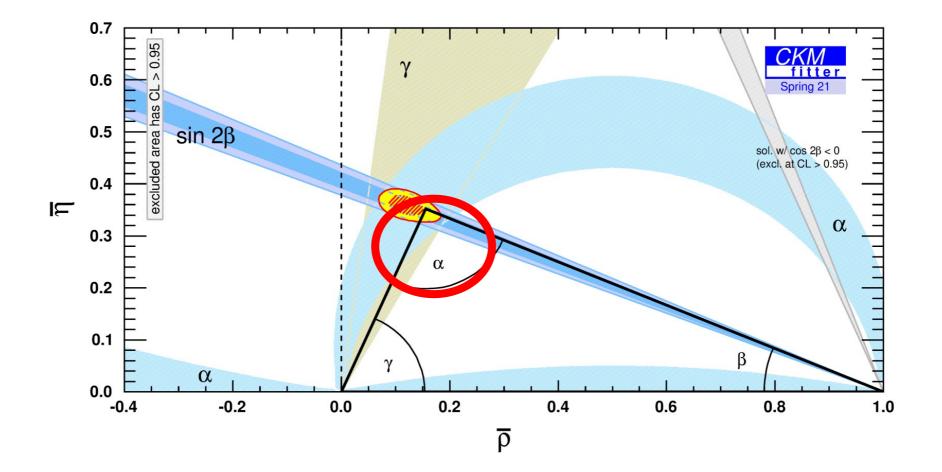

 $B^0 \rightarrow ~\phi~K^0_{\ s}$

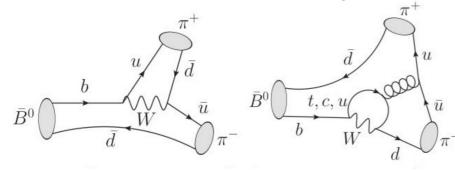

- Major challenge is from nonresonant $B^0 \rightarrow K^+ K^- K^0_S$ background with opposite CP
- ~160 signal events


Phys.Rev.D 109 (2024) 11

$$\mathbf{B}^{0} \rightarrow \mathbf{K}^{0}_{s} \mathbf{K}^{0}_{s} \mathbf{K}^{0}_{s}$$

- Major challenge is to reconstruct B^o vertex from three K^os "tracks"
- ~160 signal events

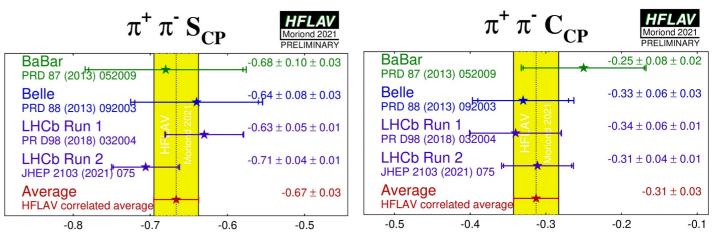



Results compatible with World Average, not at the Belle precision yet.

φ₂ **= α**

Experimental framework

• For $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow \pi^0 \pi^0$ the tree-level and loop contribution have similar size, but different phase



- Usage of Gronau-London isospin relations for $B \rightarrow \pi\pi$ to disentangle the effects (CKMfitter, UTfit)
 - $A^{+0} = A^{+-}/\sqrt{2} + A^{00}$ $\bar{A}^{+0} = \bar{A}^{+-}/\sqrt{2} + \bar{A}^{00}$ $|A^{+0}| = |\bar{A}^{+0}|$

Need for

- All branching fractions
- Direct CP asymmetries C⁰⁰ C⁺⁻

Projected Belle II sensitivity for α is 1% (currently 5%)

Can be also done with $B \rightarrow \rho \rho$

Time integrated $B^{\scriptscriptstyle 0} \ \rightarrow \ \pi^{\scriptscriptstyle 0} \ \pi^{\scriptscriptstyle 0}$

- Very difficult for LHCb, important constraint of penguin component
- Time-integrated analysis \rightarrow getting π^0 vertices is difficult
- BG e.g. from $B^+ \rightarrow \rho^+ (\rightarrow \pi^+ \pi^0) \pi^0$
- 4D unbinned fit in M_{bc}, ΔE, continuum suppression (C) and wrong tag probability (w)

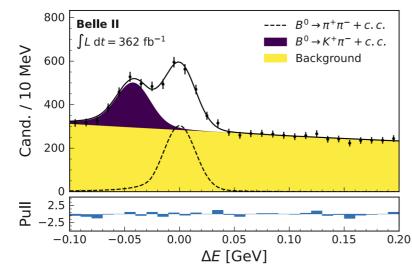
 $B = (1.26 \pm 0.20 \pm 0.11) \times 10^{-6}$ $A_{CP} = +0.06 \pm 0.30 \pm 0.06$

World average:

$$B = (1.59 \pm 0.26) \times 10^{-6}$$
$$A_{CP} = 0.30 \pm 0.20$$

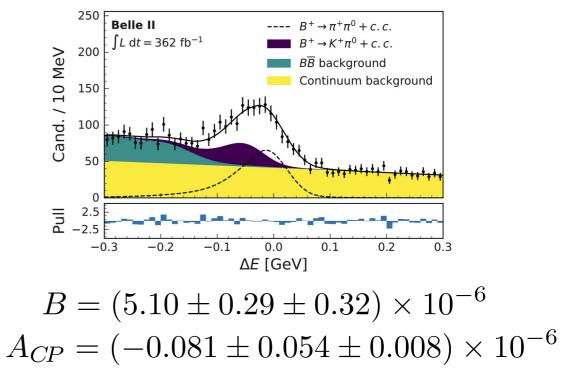
Belle II preliminary Candidates per 32 MeV Candidates per 4 MeV/c 50 L dt = 362 fb $L dt = 362 \text{ fb}^{-1}$ 60 50 40 30 Normalized residuals nalized duals 0.2 0.3 ∆E [GeV] $M_{\rm hc}$ [GeV/c²] 1.0 Belle II preliminary Belle II preliminary Candidates per 0.8 Candidates per L dt = 362 fb 60 $L dt = 362 fb^{-1}$ 50 50 Total fit result 40 $B^0 \rightarrow \pi^0 \pi^0$ 30 30 **BB** background 20 Continuun 20 10 Normalized residuals lormalized esiduals -10

С


126±20 signal events

World best measurement of B and C

w

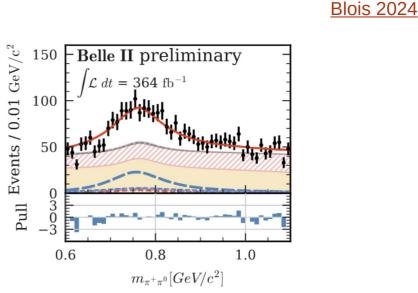

Time integrated $B^{0} \rightarrow \ \pi^{+} \ \pi^{-}$ and $B^{+} \rightarrow \ \pi^{+} \ \pi^{0}$

- All decay modes are still stat-dominated since the π^0 efficiency systematics will improve with more data
- Measurement of the $B^0 \rightarrow \pi^+\pi^-$ CP asymmetries in the pipe-line

~1500 $B^0 \to \ \pi^+ \ \pi^-$ events

~900 B⁺ \rightarrow $\pi^{+} \pi^{0}$ events

World best


 $B = (5.83 \pm 0.22 \pm 0.17) \times 10^{-6}$

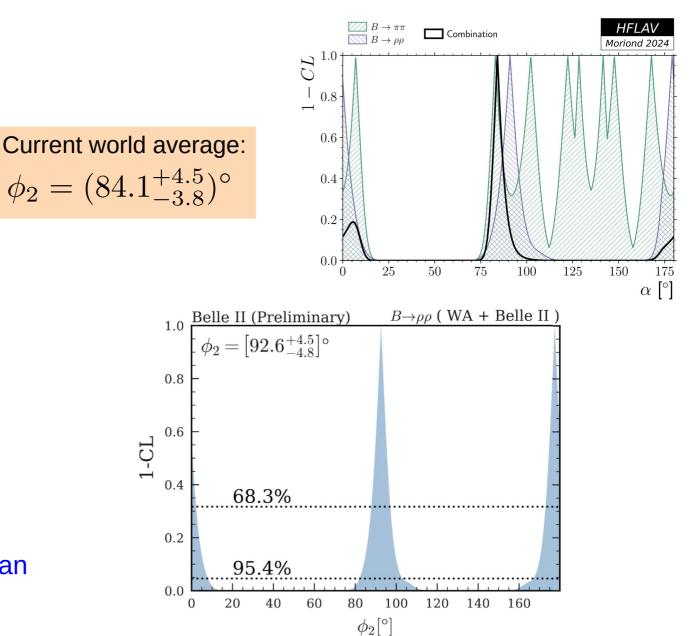
Phys.Rev.D 109 (2024) 1

Time-dependent CPV in $B^0 \rightarrow \rho^+ \rho^-$

- The P $_{\rightarrow}$ VV decay, i.e. full angular analysis needed for polarization extraction, notice $\rho^+ \rightarrow \pi^+ \; \pi^0$
- Two soft π^0 in the final state \rightarrow difficult for LHCb
- 6D time-dependent fit for signal extraction

	$\mathcal{B}(\mathbf{10^{-6}})$	f_L
Belle II	$29.0^{+2.3}_{-2.2} \ {}^{+3.1}_{-3.0}$	$0.921^{+0.024}_{-0.025} \ {}^{+0.017}_{-0.015}$
Belle	$28.3 \pm 1.5 \pm 1.5$	$0.988 \pm 0.012 \pm 0.006$
BABAR	$25.5 \pm 2.1 {}^{+3.6}_{-3.9}$	$0.992 \pm 0.024 \ \substack{+0.026 \\ -0.013}$

	S	С
Belle II	$-0.26 \pm 0.19 \pm 0.08$	$-0.02\pm0.12^{+0.06}_{-0.05}$
Belle	$-0.13 \pm 0.15 \pm 0.05$	$0.00 \pm 0.10 \pm 0.06$
BABAR	$-0.17\pm0.20^{+0.05}_{-0.06}$	$0.01 \pm 0.15 \pm 0.06$

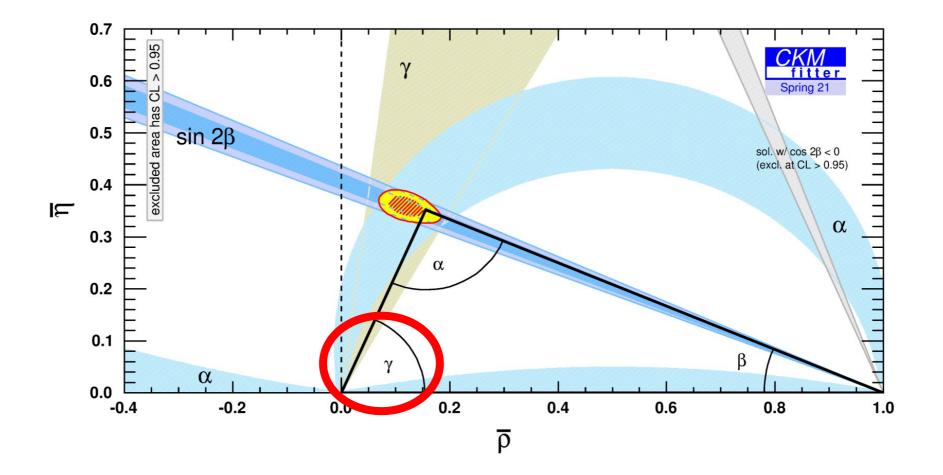

All parameters are measured with precision better than BaBar but worse than Belle \rightarrow extract ϕ_2 using new data

Impact on the ϕ_2/α

- The world average of ϕ_2 is dominated by B factories and $B \rightarrow \pi\pi \& B \rightarrow \rho\rho$ decay modes
- The B $\rightarrow \rho \rho$ only world average: $\phi_2 = (91.5^{+4.5}_{-5.4})^{\circ}$
- The B \rightarrow pp only world average (+ Belle II B⁰ \rightarrow p⁺p⁻) $\phi_2 = (92.6^{+4.5}_{-4.8})^{\circ}$

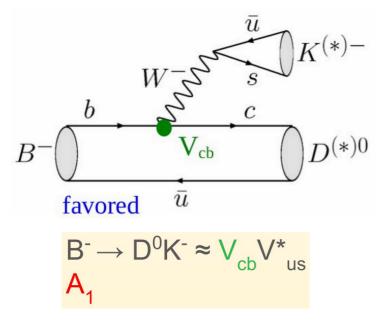
7% improvement in the ϕ_2 precision. The fit dominated by $S(\rho^+\rho^-)$ and $S(\rho^0\rho^0)$, both only measured at B factories.

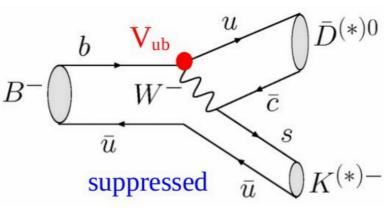
The ρ -based estimate is slightly higher than π -based but still consistent within 2σ .

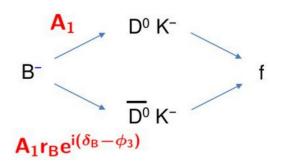


Conclusion

- Broad CPV physics program at Belle II
 - → **Precise** measurements of Unitarity Triangle angles
 - \rightarrow CPV in **rare** b \rightarrow s decays sensitive to New Physics
- The Run I Belle II dataset similar to BaBar but often the precision is better:
 - \rightarrow Smaller interaction region
 - \rightarrow Better vertex resolution
 - \rightarrow The GNN-based B flavor tagging
- After LS1 (Spring 2024) Belle II continues in data taking
 - \rightarrow Exceeding Belle statistics in one or two years




φ₃ = γ

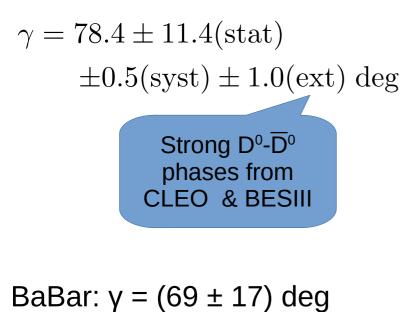

Combined Belle & Belle II fit

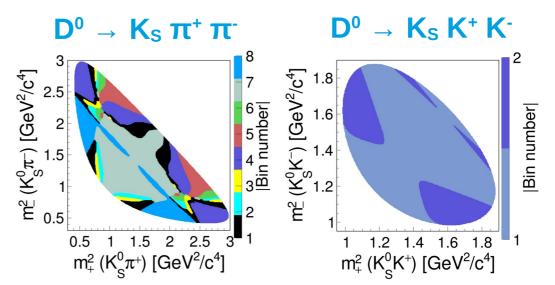
• Interference between $b \rightarrow c\overline{u}s$ and $b \rightarrow u\overline{c}s$

$$B^{-} \rightarrow \overline{D}^{0} K^{-} \approx V_{ub} V_{cs}^{*}$$
$$A_{1} r_{B} e^{i(\delta_{B}^{-} \phi_{3})}$$

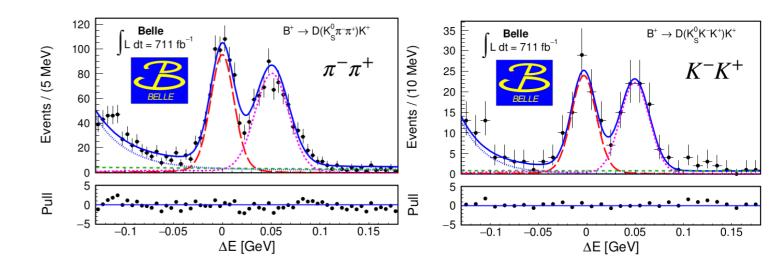
JHEP 10 (2024) 143

- The amplitude ratio $r_{\rm B}$ and strong phase $\delta_{\rm B}$ are model dependent
 - \rightarrow There are several methods of determining γ


B decay	D decay	Method	Data set $(Belle + Belle II)[fb^{-1}]$
$B^+ \to Dh^+$	$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189
$B^+ \to Dh^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ \to Dh^+$	$D \to K_{ m s}^0 K^- \pi^+$	GLS	711 + 362
$B^+ \to Dh^+$	$D ightarrow K_{ m s}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128
$B^+ \to Dh^+$	$D \to K^0_{\rm s} \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \to D^* K^+$	$ \begin{split} D^* &\to D\pi^0, D \to K^0_{\rm S}\pi^0, K^0_{\rm S}\phi, K^0_{\rm S}\omega, \\ K^-K^+, \pi^-\pi^+ \end{split} $	GLW	210+0
$B^+ \to D^* K^+$	$D^* \to D\pi^0, D\gamma, D \to K^0_{\rm S}\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0


JHEP 02 (2022) 063

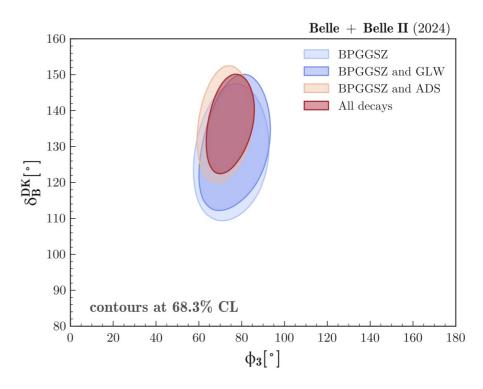
$B^+ \rightarrow D^0 \left(K_S \ h^+ \ h^- \right) \ h^+$


- Model-independent BPGGSZ method using Dalitz-binned D^o amplitudes:
 - \rightarrow NN-based K_s reconstruction
 - → Considering h= π , K

$$A_{B^+}\left(m_{-}^2, m_{+}^2\right) \propto A_{\bar{D}}\left(m_{-}^2, m_{+}^2\right) + r_B^{DK} e^{i\left(\delta_B^{DK} - \phi_3\right)} A_D\left(m_{-}^2, m_{+}^2\right)$$

Bins from BESIII & CLEO

DISCRETE2024 | 3 December 2024 | Radek Žlebčík


Combined Belle & Belle II fit: Results

- Fitted combined likelihood with 18 free parameters, inputs:
 - \rightarrow 45 Belle/Belle II data points
 - \rightarrow 14 "external inputs" (D decays)
- Consistent results for various methods and various decay modes, good fit quality (chi2/ndf = 38 / 41)
- Small correlations between Φ_{3} and the strong phases δ_{B} & amplitude ratios r_{B}

Belle II result: $\Phi_3 = (75.2 \pm 7.6)^\circ$

LHCb result: $\Phi_3 = (64.6 \pm 2.8)^{\circ}$

B decay	D decay	Method	Data set (Belle + Belle II)[fb^{-1}]
$B^+ \to Dh^+$	$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189
$B^+ \to Dh^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ \to Dh^+$	$D \to K^0_{ m s} K^- \pi^+$	GLS	711 + 362
$B^+ \to Dh^+$	$D ightarrow K_{ m s}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128
	$D \to K^0_{\rm S} \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \to D^* K^+$	$ \begin{split} D^* &\to D\pi^0, D \to K^0_{\rm S}\pi^0, K^0_{\rm S}\phi, K^0_{\rm S}\omega, \\ K^-K^+, \pi^-\pi^+ \end{split} $	GLW	210+0
$B^+ \to D^* K^+$	$D^* \to D\pi^0, D\gamma, D \to K^0_{\rm S}\pi^-\pi^+$	BPGGSZ $(m.d.)$	605 + 0

JHEP 10 (2024) 143