Cascade topologies in rare charm de ey: & melicardens for CP violation

Vniver§itatõjīdValència

Eleftheria Solomonidi, IFIC (U. Valencia/CSIC)

In collaboration with Luiz Vale Silva

DISCRETE 2024, Ljubljana

INSTITUT DE FÍSICA C O R P U S C U L A R

Why is charm interesting?

The CKM matrix is (generally) well probed from various exp. processes: lots of processes,

only 4 independent parameters

Charm is the only weakly decaying up-type quark bound in hadrons

 \rightarrow Can still perform complementary CKM tests from the charm sector (in the future...)

Otherwise, assuming good control over CKM matrix:

- \rightarrow Can look for rare processes where there is more room for NP to show up:
 - $b \rightarrow s\mu\mu$, $b \rightarrow svv$, $s \rightarrow dvv$, ... [lots of work there!]

In this search,

different NP scenarios can be explored by starting off from the charm quark

"No stone left unturned" approach

Rich experimental programme (LHCb, Belle II, BESIII, future facilities,...)

CP violation in $D^0 \rightarrow \pi + \pi$ -

Measurement (LHCb 2019 + 2022):

$$A_{\rm CP}^{\rm direct}(\pi^-\pi^+) = (23.2 \pm 6.1) \times 10^{-4}$$

Also Khodjamirian, Petrov '17 Data-driven approach [Pich, ES, Vale Silva '23]: & Lenz , Piscopo, Rusov '23 agree

 $A_{\rm CP}^{\rm direct}(\pi^-\pi^+) \approx 3 \cdot 10^-$

Assumptions:

- Long distance effects encoded in the final-state interactions (FSI)
- Inelastic rescattering between isospin-0 pion and kaon pairs (and them only)

Scrutinising the assumption of two-channel FSI: we find it is **impossible to explain the CP** asymmetry

Kubis et al: In other environments, **third channel of 4 pions is important**; couples to $\pi\pi$, KK through resonances

Those resonances are found around the mass of the D-meson ($f_0(1500), f_0(2020)$) \rightarrow could be important in the charm case

 \mathcal{H}_{eff}

D

 $(\overline{s}c)_{V-A}(\overline{u}s)_{V-A}$

. . .

D

Rare decays $D^0 \rightarrow \pi^+\pi^-l^+l^-$

Experiment: [LHCb 1707.08377 and 2111.03327] $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ decay rates & plenty of angular observables (5 kin. variables)

Also recently $D^0 \rightarrow \pi^+\pi^- e^+ e^-$ (& $\Lambda_c \rightarrow p\mu\mu$)

Theory: In charm, $c \rightarrow u$ II decays only driven by long-distance QCD (very effective GIM mechanism) d/s Lepton pair created from the electromagnetic decay of a vector meson d/s/bd/s/b[Fajfer, ES, Vale Silva '23] SM prediction for the differential decay rates d/s & SM-dominated angular observables, estimations of SM null tests in presence of NP Z/γ [Gisbert, Hiller, Suelmann '24] More general fit of data to low-energy EFT in presence of NP dΓ/dm 150 otal Results (found in both works): good description of data, improvement when including S-wave. Ø But: S-wave 100 LHCb 9/fb data Some observables have tensions; NP cannot be the explanation _ Overall large correction of the normalisation 50 _ Bounds on NP coefficients not competitive to other processes, yet

 \rightarrow This motivates us to study further those decays; they are a *QCD* laboratory (Hiller/Suelmann)

and a blank canvas for NP discovery in some observables

Eleftheria Solomonidi Cascade topologies in rare charm decays & CP violation 04

0.6

0.8 $m(\pi^+\pi^-)$ [GeV]

Theoretical approach to $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$

Hadronic decays $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ & how they may help

Large Br (~ 7 * 10⁻³)

Amplitude analyses available [CLEO 1703.08505, BES-III 2312.02524]

Approach:

Total amplitude = Sum_i (intermediate state amplitude i)

x (complex coefficient i)

- Essentially the same idea implemented in the rare-decay approach [normalisation& phase]
- The same intermediate topologies of $D \rightarrow \pi \pi \mu \mu$ are present in the 4-body hadronic decays
- (In this model) the long-distance QCD effects for a given intermediate state should be *comparable* between the hadronic and the rare decays (as they are assigned in the same $D \rightarrow RV$ vertex) [roughly; more topologies present in $D \rightarrow 4\pi$]

Both amplitude analyses (CLEO, BES-III) find the largest contribution to the Br to come from the cascade topology $D^0 \rightarrow a_1^+$ (1260)($\rightarrow \rho(\rightarrow \pi + \pi -) \pi +$) π -

Partially explained because it comes with C1=1.2, compared to C2=~-0.4

Is then the cascade topology also important in the rare decays?

Π-

Cascade decay: qualitative picture (kinematics)

 $a_{_1}{}^{_+}$ carries the momentum of the $\pi^{_+}$ AND of the lepton pair

- \rightarrow its momentum is a function of the kinematical variables p²=m($\pi\pi$), q²=m($\mu\mu$) and cos θ h (dihadron angle)
- \rightarrow no clear resonant peak in the p² distribution, but DOES contribute over a wide range of energies

 \rightarrow typical ρ -resonant peak in the q² distribution (will be added on top of the quasi-two-body topologies)

Differential distribution: preliminary results

Need: $D \rightarrow \pi$ form factors, a_1 decay constant, $a_1 \rightarrow \rho \pi$ coupling: take the combination of these from the amplitude analysis of the $D \rightarrow 4\pi$ decays

Add the rest of the Q2B contributions as per our last work

New: overall normalisation is NOT a free parameter;

the cascade component is NOT fitted

 \rightarrow Without a need for rescaling, the cascade decay predicts

the points which previously showed large tensions

- \rightarrow Large percentage of the total branching fraction from cascade
- \rightarrow At low p² some adjustments needed;

interference effects between cascade and S, P-wave Q2B

- \rightarrow Also contributes to the ang. observables I8, I9
- (some previous tensions might be alleviated)

Implications for CP violation in $D \rightarrow PP$

[Roig, ES, Vale Silva, in preparation]

Data-driven approach (with multi-channel Omnes dispersion relations) requires as input the phases and inelasticities of each channel present; OK for $\pi\pi$ and KK, data available (up to around the mass of the D)

3rd channel in this approach is unfeasible: 4-body final state, no data available for 4 pions over invariant mass

 \rightarrow Some model-dependent approach needed [Kubis et al.]; approximate the 4 π channel as a two-body one

If $D^0 \rightarrow a_1^+ \pi^-$ is the predominant contribution to $D \rightarrow 4\pi$ then the focus should be on it (and not e.g. $\rho\rho$)

In this endeavour, $D \rightarrow \pi\pi II$ serves as an extra cross-check for how the $a_1 \pi$ works: how big are inelastic effects? how does it compare to other processes with a_1 decays?

Open question: how to incorporate both $a_1 \pi$ and the non-negligible component $\rho\rho$ in the effective description of the 4π

Conclusions

Long-distance contributions are crucial in most weak decays of the charm mesons

But because of this, many processes are complementary for checking how QCD works in charm

Modelling $D \rightarrow \pi\pi II$ with Q2B topologies still shows discrepancies with the data that cannot be explained with NP

Analyses of $D \rightarrow 4\pi$ show a very sizeable contribution of the intermediate cascade decay with $a_1(1260)$

We include the same topology in the $D{\rightarrow}\,\pi\pi\mu\mu$

<u>Results</u>: description of $D \rightarrow \pi\pi II$ data **improves significantly** when including the cascade

in the differential distribution over $m(\pi\pi)$ and the overall prediction for the Br; angular observables to be checked but promising

 $a_1 \pi$ might be the best way to quantify CP violation in D $\rightarrow \pi\pi$, D $\rightarrow KK$ in the presence of a 3rd rescattering channel

Ultimate goal: combining all the processes, probe NP in charm with more certainty

(see if "LHCb discovered NP in 2019" [U. Nierste] !)

BACKUP

Fair agreement with $m(\pi\pi)$ data

Significant improvement with S-wave inclusion (~20% of total Br)

Fit prefers suppression of $D \rightarrow \sigma \phi$ - similar to $D^0 \rightarrow \pi^+ \pi^- K^+ K^-$

- considered region
- Relative phases important for fitting in the inter-resonant region
- Different phases there result in <u>different</u> predictions for the high-energy region (important for future NP searches)

using [LHCb Phys.Rev.Lett. 119 (2017) 18, 181805]

Overall normalisation factor (1 in perfect naive factorisation) around 1.8

Setup of 4-body decays

$\langle I_i angle$								
i	S-wave	Null test	WCs					
1	\checkmark		$C_9^{\text{eff}:S} (C_9^{\text{eff}:P})^*$					
2	\checkmark		$C_9^{\text{eff}:S} (C_9^{\text{eff}:P})^*$					
4^{\dagger}	×		$ C_9^{\mathrm{eff}:P} ^2$					
5^{\dagger}	×	yes	$\operatorname{Re}\left[C_9^{\text{eff}:P} C_{10}^*\right]$					
7^{\dagger}	×	yes	$\operatorname{Re}\left[C_9^{\text{eff}:P} C_{10}^*\right]$					
8^{\dagger}	×		$ C_{9}^{\text{eff}:P} ^{2}$					

$5^{\dagger} \times \text{yes} \text{Re} \left[C_9^{\text{eff}:P} C_{10}^* \right]$	$\langle I_i \rangle_+$			
$7^{\dagger} \times \text{yes} \text{Re} \begin{bmatrix} C_{9}^{\text{eff}:P} C_{10}^{*} \end{bmatrix}$	i	S-wave	Null test	WCs
$8^{\dagger} \times C_9^{\text{eff}:P} ^2$	1^{\dagger}	0		$ C_9^{\text{eff}:S} ^2, C_9^{\text{eff}:P} ^2$
	2^{\dagger}	0		$ C_9^{\text{eff}:S} ^2, C_9^{\text{eff}:P} ^2$
	3^{\dagger}	×		$ C_9^{\mathrm{eff}:P} ^2$
2 1	4	\checkmark		$C_9^{\operatorname{eff}:S} \left(C_9^{\operatorname{eff}:P} ight)^*$
$\frac{3}{2}\langle I_{2}\rangle = \frac{1}{2} \left[\operatorname{Re}\left(\mathcal{F}_{\mathbf{P}}\mathcal{F}_{+}^{*}\right) \operatorname{Im}\rho_{2}^{+} - \operatorname{Im}\left(\mathcal{F}_{\mathbf{P}}\mathcal{F}_{+}^{*}\right) \operatorname{Re}\rho_{2}^{-} \right] \right]$	5	\checkmark	yes	$C_9^{\text{eff}:S} C_{10}^* + C_{10} (C_9^{\text{eff}:P})^*$
$2 \begin{bmatrix} -3/2 \\ 2 \end{bmatrix} \begin{bmatrix}$	6^{\dagger}	×	yes	$\operatorname{Re}\left[C_{9}^{\operatorname{eff}:P}C_{10}^{*} ight]$
2 г	7	\checkmark	yes	$C_9^{\text{eff}:S} C_{10}^* + C_{10} (C_9^{\text{eff}:P})^*$
$\langle I_{9} \rangle_{\pm} = - \left[\operatorname{Re}(\mathcal{F}_{\pm} \mathcal{F}_{\pm}^{*}) \operatorname{Im} \rho_{2}^{\pm} + \operatorname{Im}(\mathcal{F}_{\pm} \mathcal{F}_{\pm}^{*}) \operatorname{Re} \rho_{2}^{\pm} \right] \left[\left[\operatorname{Re}(\mathcal{F}_{\pm} \mathcal{F}_{\pm}^{*}) \operatorname{Re} \rho_{2}^{\pm} \right] \right] \left[\operatorname{Re}(\mathcal{F}_{\pm} \mathcal{F}_{\pm}^{*}) \operatorname{Re} \rho_{2}^{\pm} \right] \left[\operatorname{Re}(\mathcal{F}_{\pm} \mathcal{F}_{\pm}^{*}) \operatorname{Re}(\mathcal{F}$	8	\checkmark		$C_9^{\operatorname{eff}:S} \left(C_9^{\operatorname{eff}:P}\right)^*$
$3 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 $	9^{\dagger}	×		$ C_9^{\mathrm{eff}:P} ^2$

$$C_9^{\text{eff}:P}(\mu;q^2) \approx 8\pi^2 C_2(\mu) \left(\frac{f_{\rho^0}^2}{P_{\rho^0}(q^2)} B_{\rho^0}^{(P)} e^{i\delta_{\{\rho^0/\omega,\rho^0\}}} - \frac{f_{\phi}^2}{3P_{\phi}(q^2)} B_{\phi}^{(P)} e^{i\delta_{\{\rho^0/\omega,\phi\}}} \right)$$

No $D \rightarrow \rho \omega$ because of competing contributions $b_{\rho^0} \left(1 + a_\omega \underset{vs}{\operatorname{RBW}}_{\omega}(p^2)\right) \left(-\frac{1}{6}\right) \frac{f_\omega^2}{P_\omega(q^2)}$ $b_{\rho^0} \left(1 - a_\omega \operatorname{RBW}_{\omega}(p^2)\right) \frac{1}{6} \frac{f_\omega^2}{P_\omega(q^2)}$

Isospin & unitarity

 $A(D^0 \to \pi^+\pi^-) = -\frac{1}{\sqrt{2}} A_{\pi\pi}^{I=0} |e^{i\delta_{\pi\pi,0}} - \frac{1}{2\sqrt{2}} |A_{\pi\pi}^{I=2}|e^{i\delta_{\pi\pi,2}}$

The S-matrix is unitary

strong-interaction-driven

 $= \begin{pmatrix} S_0(\pi\pi \to \pi\pi) & S_0(\pi\pi \to KK) \\ S_0(KK \to \pi\pi) & S_0(KK \to KK) \end{pmatrix} \cdot \begin{pmatrix} A^*(D \to \pi\pi) \\ A^*(D \to KK) \end{pmatrix}$

In *isospin-zero*, *spin-zero*, the strong S-submatrix is also unitary

KK)

$$A(D^{0} \to \pi^{0}\pi^{0}) = -\frac{1}{\sqrt{6}} (A_{\pi\pi}^{I=0}|e^{i\delta_{\pi\pi,0}} + \frac{1}{\sqrt{3}} |A_{\pi\pi}^{I=2}|e^{i\delta_{\pi\pi,2}}]$$

$$A(D^{+} \to \pi^{+}\pi^{0}) = \frac{\sqrt{3}}{2\sqrt{2}} |A_{\pi\pi}^{I=2}|e^{i\delta_{\pi\pi,2}}]$$

$$A(D^{0} \to K^{-}K^{+}) = \frac{1}{2} (A_{KK}^{I=1}|e^{i\delta_{KK,1}} - (A_{KK}^{I=0}|e^{i\delta_{KK,0}}))$$

$$A(D^{0} \to \overline{K}^{0}K^{0}) = \frac{1}{2} (-A_{KK}^{I=1}|e^{i\delta_{KK,1}} - (A_{KK}^{I=0}|e^{i\delta_{KK,0}}))$$

$$A(D^{+} \to \overline{K}^{0}K^{+}) = |A_{KK}^{I=1}|e^{i\delta_{KK,1}}$$

$$A(D^{+} \to \overline{K}^{0}K^{+}) = |A_{KK}^{I=1}|e^{i\delta_{KK,1}}$$

Both $\pi\pi$ and KK have an isospin-zero component

Isospin=1, 2: only KK, $\pi\pi$ channels respectively

Cascade topologies in rare charm decays & CP violation Eleftheria Solomonidi

$\begin{aligned} &\mathsf{Two-channel case} \\ |A(D \to \pi\pi)(s)| = A(s_0) \cdot exp\{\frac{s-s_0}{\pi}PV\int_{4M_{\pi}^2}^{\infty} dz \frac{\delta_1(z)}{(z-s_0)(z-s)}\} \\ & \mathsf{now \, becomes} \\ & \begin{pmatrix} \mathcal{A}(D \to \pi\pi) \\ \mathcal{A}(D \to KK) \end{pmatrix} = \Omega \cdot \begin{pmatrix} \mathcal{A}_{(\text{large } N_C)}(D \to \pi\pi) \\ \mathcal{A}_{(\text{large } N_C)}(D \to KK) \end{pmatrix} \end{aligned}$

 Ω is a 2-by-2 matrix that has to be found **numerically** by solving the two-channel dispersion relation

• In the language of hadronic matrix elements:

Non-diagonal Ω creates

$$\langle \pi \pi (I=0) | Q_i^s | D \rangle \neq 0 \langle KK(I=0) | Q_i^d | D \rangle \neq 0$$

The ACP measurements

$$A_{\rm CP}(f) \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to \overline{f})}$$

$$\Delta A_{\rm CP} = A_{\rm CP}(K^-K^+) - A_{\rm CP}(\pi^-\pi^+) = (-15.4 \pm 2.9) \times 10^{-4}$$
[LHCb 2019]
$$A_{\rm CP}(K^-K^+) = [6.8 \pm 5.4 \text{ (stat)} \pm 1.6 \text{ (syst)}] \times 10^{-4}$$

$$\downarrow$$

$$A_{\rm CP}^{\rm direct}(\pi^-\pi^+) = (23.2 \pm 6.1) \times 10^{-4}$$

How CP violation arises

Sources of CP violation

CP asymmetries in the rare decays

The unnormalised CP-asymmetric observables e.g. from the P-wave go as

$$\operatorname{Im}(\lambda_s \lambda_d^*) \operatorname{Im}(C_{9d}^P C_{9s}^{P*}) \tag{1}$$

where roughly

$$C_{9d}^{P} = \frac{e^{i\delta_{\rho\rho}}}{P_{\rho}(q^2)}$$
$$C_{9s}^{P} = \frac{e^{i\delta_{\rho\phi}}}{P_{\phi}(q^2)}$$

This on top of the resonance gives $3 \cdot 10^{-5}$ (from the CKM) x (up to 500).

On the other hand, the observables are normalised to the decay rates, which go as

$$|\lambda_d|^2 |C_{9d}^P + C_{9d}^S|^2$$

which gives $5 \cdot 10^{-2}$ (from the CKM) x (up to $5 \cdot 10^4$).

Thus the effect on top of the resonances is very small. On the contrary, away from the resonances there are some comparative enhancement patterns. Still because of the typical CKM suppression factor $6.4 \cdot 10^{-4}$ of charm decays the overall, normalised CP-asymmetrical observables are expected to be very small, less than per mille.

Figure 1: Generic CP-asymmetric observable A over generic CP-symmetric observable S/differential decay rate, as a function of the invariant mass of the dimuon. CKM factors included.

(2)

(3)