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Standard Model at very high energy
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Figure 1: Running of the quartic Higgs coupling for mH = 115 GeV and mt =
165, 170, 175, 180 and 185 GeV [αs(mZ) = 0.118]. Absolute stability [λ > 0] is still possible
if mt < 166 GeV. The hatched region indicates the metastability bound.

of the functions fg, ft are plotted in Fig. 2, whereas fh is given in Eq. (4.61). The L terms
cancel the µ dependence of λ in the leading semi-classical term. If one chooses a value of
µ ∼ 1/R, such that L ∼ 0, the typical correction to the action is of O(g4t /λ

2) ∼ 10, to be
compared with the leading term of order 100.

In previous analyses (see e.g. Ref. [12]) a full one-loop computation of the tunnelling
rate was never performed, and the semi-classical result was improved by considering only
quantum corrections to the effective potential, or to the running of λ. This procedure
leads to a correct estimate of the leading logarithmic corrections to the action, but the
finite terms of the calculation are not under control. Within this approximation the use
of two-loop RGE equations does not improve the accuracy of the calculation. On the
other hand, a consistent implementation of two-loop RGE equations for λ(µ) is possible
starting from Eq. (3.2).

In Fig. 1 we plot the evolution of λ(µ) as obtained by integrating the two-loop RGE
equations of λ, the top Yukawa coupling gt and the three gauge couplings gi [13] for
mH = 115 GeV and some reference values of the pole top mass mt.1 For comparison we
also show the lower bound on λ derived from Eq. (3.2), imposing the condition p < 1 and
assuming VU = (1010 yr)4. As can be noticed, the evolution of λ crosses the metastability

1The initial values of λ and and gt have been related to the values of mH and mt using the matching
conditions given in [14] and [15], respectively. The discussion about the uncertainties involved in this
estimate of λ(µ) is posponed to Section 5.
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Vacuum decay rate
[T. Banks, C. M. Bender, T. T. Wu, ’73; S. R. Coleman, ’77; C. G. Callan, S. R. Coleman, ’77]
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Vector spherical harmonics (?)
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Tensor product states
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FIG. 2. Decomposition of a 4-vector field Aµ(x̂) under
SO(4). The diagonal modes D±

j with jA = jB appear in
double copies, except for (0, 0). The off-diagonal multiplets
with jA = jB±1 correspond to the transverse modes T ±

j , and
appear as single copies. Blue circles with l = 3 exemplify how
the L2 eigenspace gets distributed within the (jA, jB) lattice.

the diagonal modes D
±

j , corresponding to (j/2, j/2)j±1

(note D�

0 is zero); they have eigenvalue j(j+2) under J2,
and degeneracy dDj ⌘ dim

� j
2 ,

j
2

�
= (j + 1)2. These are

the same total angular momentum quantum numbers as
the NGB scalars, hence the fluctuation operator matrix
mixes these states. We identify the multiplets having
jA = jB ± 1 with the transverse modes [21], and call
them T

±

j for ((j ± 1)/2, (j ⌥ 1)/2)j . Their J2 eigenvalue
is (j + 1)2, while the degeneracy factor is

dTj ⌘ dim

✓
j ± 1

2
,
j ⌥ 1

2

◆
= j (j + 2) . (7)

FIG. 2 summarizes the group theoretical construction
and there D

±

j correspond to the diagonal circles, where
the two overlapping circles are distinguished by the eigen-
values of L2. The T

±

j correspond to the lower and upper
off-diagonal circles, respectively.

We decompose Aµ(x) as a sum of radial functions times
a basis of vector fields,

Aµ(x) =
X

jA,jB ,l,mA,mB

AjAjBmAmB

l (⇢)V jAjBmAmB

l;µ (x̂) , (8)

where the real field Aµ is expanded with complex basis,
without affecting the degeneracy, as follows
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This choice has the virtue of containing familiar ob-
jects that are in direct correspondence with the group
theory construction of FIG. 2. The (�̃µ)msA

msB
ma-

trices correspond to the (1/2, 1/2) object that ensures
the proper transformation under rotations, and are given

by �̃µ = " · �µ, where " is the two-dimensional Levi-
Civita symbol, �1,2,3 are the usual Pauli matrices, and
�4 = diag(i, i). The entries of �̃ are ordered such that
ms = 1/2 comes before ms = �1/2. CjA,mA

lAmlA
sAmsA

denote
the SU(2)A Clebsch-Gordan coefficients (and the same
for B). These are non-zero only when |2jA,B � l| = 1,
mA = mlA + msA and mB = mlB + msB . We shall
suppress the m indices from here on for brevity; they
label the states with the same fluctuation operator and
their summation only appears as the degeneracy factor.
Then, the non-zero components of V jAjB
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j
2
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2
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and V
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2

l=j;µ , corresponding to the basis of D±

j and T
±

j .
These components are eigenfunctions of J2, with the
eigenvalues quoted earlier for D

±

j and T
±

j . Each compo-
nent is an eigenfunction of L2 that acts only on YlmlA

mlB
.

Fluctuation operator decomposition. Let
us decompose (3) using the scalar and gauge basis
functions in (4) and (8). When (3) acts on (Aµ,'),
it splits into an infinite number of blocks with the
same jA, jB ,mA and mB : (A00

1 ,'0) for j = 0, and
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2
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j ), (A
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2

j ) for j > 0. The
first two indicate 2⇥ 2 or 3⇥ 3 fluctuation matrices that
mix the D

±

j modes with the NGB, and the last two are
those for the T

±

j modes that do not mix.
With this decomposition, the prefactor in (2) factorizes

into A
(A,') = A

(D,')
A

(T ). The first term, A(D,'), was
already computed correctly in the previous literature [6,
16, 17]. Therefore we only deal with the second one:

A
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2

4
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j
3
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The factor of 2 in the exponent 2dTj comes from the two
transverse modes T

±

j having the same fluctuation oper-
ator, given by S00(T )

j = ��j + g2h2/4, where �j=l =

@2
⇢ + 3⇢�1@⇢ � l(l + 2)⇢�2. There are no zero modes to

worry about in (10), so there is no prime in the determi-
nant at the numerator.

• In previous calculations [6, 16, 17], the degener-
acy factor for the transverse modes, T ±

j , was erro-
neously equal to (j + 1)2. The correct one, as we
have shown in (7), is dTj = j(j+2). This leads to a
slightly different result for the prefactor A

(T ). We
will shortly revise that calculation.

• For the diagonal modes D
±

j , our basis functions
have one-to-one correspondence to the ones given
in [6], which are then used in [16–18]. We differ
for the transverse modes T

±

j . In the supplemental
material we show that their basis functions are lin-
early dependent and do not span the entire space.
Despite the degeneracy factor and completeness is-
sues, the operator S00(T )

j in [6, 16, 17] is correct.

Labeling convention
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FIG. 2. Decomposition of a 4-vector field Aµ(x̂) under
SO(4). The diagonal modes D±

j with jA = jB appear in
double copies, except for (0, 0). The off-diagonal multiplets
with jA = jB±1 correspond to the transverse modes T ±

j , and
appear as single copies. Blue circles with l = 3 exemplify how
the L2 eigenspace gets distributed within the (jA, jB) lattice.

the diagonal modes D
±

j , corresponding to (j/2, j/2)j±1

(note D�

0 is zero); they have eigenvalue j(j+2) under J2,
and degeneracy dDj ⌘ dim

� j
2 ,

j
2

�
= (j + 1)2. These are

the same total angular momentum quantum numbers as
the NGB scalars, hence the fluctuation operator matrix
mixes these states. We identify the multiplets having
jA = jB ± 1 with the transverse modes [21], and call
them T

±

j for ((j ± 1)/2, (j ⌥ 1)/2)j . Their J2 eigenvalue
is (j + 1)2, while the degeneracy factor is

dTj ⌘ dim

✓
j ± 1

2
,
j ⌥ 1

2

◆
= j (j + 2) . (7)

FIG. 2 summarizes the group theoretical construction
and there D

±

j correspond to the diagonal circles, where
the two overlapping circles are distinguished by the eigen-
values of L2. The T

±

j correspond to the lower and upper
off-diagonal circles, respectively.

We decompose Aµ(x) as a sum of radial functions times
a basis of vector fields,

Aµ(x) =
X

jA,jB ,l,mA,mB

AjAjBmAmB

l (⇢)V jAjBmAmB

l;µ (x̂) , (8)

where the real field Aµ is expanded with complex basis,
without affecting the degeneracy, as follows

V jAjBmAmB

l;µ (x̂) =
X

mlA
,mlB

,msA
,msB

CjAmA
l
2mlA

1
2msA

CjBmB
l
2mlB

1
2msB

(�̃µ)msA
msB

YlmlA
mlB

(x̂) .

(9)

This choice has the virtue of containing familiar ob-
jects that are in direct correspondence with the group
theory construction of FIG. 2. The (�̃µ)msA

msB
ma-

trices correspond to the (1/2, 1/2) object that ensures
the proper transformation under rotations, and are given

by �̃µ = " · �µ, where " is the two-dimensional Levi-
Civita symbol, �1,2,3 are the usual Pauli matrices, and
�4 = diag(i, i). The entries of �̃ are ordered such that
ms = 1/2 comes before ms = �1/2. CjA,mA

lAmlA
sAmsA

denote
the SU(2)A Clebsch-Gordan coefficients (and the same
for B). These are non-zero only when |2jA,B � l| = 1,
mA = mlA + msA and mB = mlB + msB . We shall
suppress the m indices from here on for brevity; they
label the states with the same fluctuation operator and
their summation only appears as the degeneracy factor.
Then, the non-zero components of V jAjB

l;µ are V
j
2

j
2

l=j±1;µ

and V
j±1
2

j⌥1
2

l=j;µ , corresponding to the basis of D±

j and T
±

j .
These components are eigenfunctions of J2, with the
eigenvalues quoted earlier for D

±

j and T
±

j . Each compo-
nent is an eigenfunction of L2 that acts only on YlmlA

mlB
.

Fluctuation operator decomposition. Let
us decompose (3) using the scalar and gauge basis
functions in (4) and (8). When (3) acts on (Aµ,'),
it splits into an infinite number of blocks with the
same jA, jB ,mA and mB : (A00

1 ,'0) for j = 0, and
(A

j
2

j
2

j+1, A
j
2

j
2

j�1,'j), (A
j+1
2

j�1
2

j ), (A
j�1
2

j+1
2

j ) for j > 0. The
first two indicate 2⇥ 2 or 3⇥ 3 fluctuation matrices that
mix the D

±

j modes with the NGB, and the last two are
those for the T

±

j modes that do not mix.
With this decomposition, the prefactor in (2) factorizes

into A
(A,') = A

(D,')
A

(T ). The first term, A(D,'), was
already computed correctly in the previous literature [6,
16, 17]. Therefore we only deal with the second one:

A
(T ) =

2

4
1Y

j=1

 
detS00(T )

j

det Ŝ00(T )
j

!2dT
j
3

5

�
1
2

. (10)

The factor of 2 in the exponent 2dTj comes from the two
transverse modes T

±

j having the same fluctuation oper-
ator, given by S00(T )

j = ��j + g2h2/4, where �j=l =

@2
⇢ + 3⇢�1@⇢ � l(l + 2)⇢�2. There are no zero modes to

worry about in (10), so there is no prime in the determi-
nant at the numerator.

• In previous calculations [6, 16, 17], the degener-
acy factor for the transverse modes, T ±

j , was erro-
neously equal to (j + 1)2. The correct one, as we
have shown in (7), is dTj = j(j+2). This leads to a
slightly different result for the prefactor A

(T ). We
will shortly revise that calculation.

• For the diagonal modes D
±

j , our basis functions
have one-to-one correspondence to the ones given
in [6], which are then used in [16–18]. We differ
for the transverse modes T

±

j . In the supplemental
material we show that their basis functions are lin-
early dependent and do not span the entire space.
Despite the degeneracy factor and completeness is-
sues, the operator S00(T )

j in [6, 16, 17] is correct.
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j , and
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the diagonal modes D
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j , corresponding to (j/2, j/2)j±1

(note D�

0 is zero); they have eigenvalue j(j+2) under J2,
and degeneracy dDj ⌘ dim
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= (j + 1)2. These are

the same total angular momentum quantum numbers as
the NGB scalars, hence the fluctuation operator matrix
mixes these states. We identify the multiplets having
jA = jB ± 1 with the transverse modes [21], and call
them T

±

j for ((j ± 1)/2, (j ⌥ 1)/2)j . Their J2 eigenvalue
is (j + 1)2, while the degeneracy factor is
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FIG. 2 summarizes the group theoretical construction
and there D

±

j correspond to the diagonal circles, where
the two overlapping circles are distinguished by the eigen-
values of L2. The T

±

j correspond to the lower and upper
off-diagonal circles, respectively.

We decompose Aµ(x) as a sum of radial functions times
a basis of vector fields,

Aµ(x) =
X

jA,jB ,l,mA,mB

AjAjBmAmB

l (⇢)V jAjBmAmB

l;µ (x̂) , (8)

where the real field Aµ is expanded with complex basis,
without affecting the degeneracy, as follows
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This choice has the virtue of containing familiar ob-
jects that are in direct correspondence with the group
theory construction of FIG. 2. The (�̃µ)msA

msB
ma-

trices correspond to the (1/2, 1/2) object that ensures
the proper transformation under rotations, and are given

by �̃µ = " · �µ, where " is the two-dimensional Levi-
Civita symbol, �1,2,3 are the usual Pauli matrices, and
�4 = diag(i, i). The entries of �̃ are ordered such that
ms = 1/2 comes before ms = �1/2. CjA,mA

lAmlA
sAmsA

denote
the SU(2)A Clebsch-Gordan coefficients (and the same
for B). These are non-zero only when |2jA,B � l| = 1,
mA = mlA + msA and mB = mlB + msB . We shall
suppress the m indices from here on for brevity; they
label the states with the same fluctuation operator and
their summation only appears as the degeneracy factor.
Then, the non-zero components of V jAjB

l;µ are V
j
2

j
2

l=j±1;µ

and V
j±1
2

j⌥1
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l=j;µ , corresponding to the basis of D±

j and T
±

j .
These components are eigenfunctions of J2, with the
eigenvalues quoted earlier for D

±

j and T
±

j . Each compo-
nent is an eigenfunction of L2 that acts only on YlmlA

mlB
.

Fluctuation operator decomposition. Let
us decompose (3) using the scalar and gauge basis
functions in (4) and (8). When (3) acts on (Aµ,'),
it splits into an infinite number of blocks with the
same jA, jB ,mA and mB : (A00

1 ,'0) for j = 0, and
(A

j
2

j
2

j+1, A
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j�1,'j), (A
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j ), (A
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j ) for j > 0. The
first two indicate 2⇥ 2 or 3⇥ 3 fluctuation matrices that
mix the D

±

j modes with the NGB, and the last two are
those for the T

±

j modes that do not mix.
With this decomposition, the prefactor in (2) factorizes

into A
(A,') = A

(D,')
A

(T ). The first term, A(D,'), was
already computed correctly in the previous literature [6,
16, 17]. Therefore we only deal with the second one:

A
(T ) =
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4
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The factor of 2 in the exponent 2dTj comes from the two
transverse modes T

±

j having the same fluctuation oper-
ator, given by S00(T )

j = ��j + g2h2/4, where �j=l =

@2
⇢ + 3⇢�1@⇢ � l(l + 2)⇢�2. There are no zero modes to

worry about in (10), so there is no prime in the determi-
nant at the numerator.

• In previous calculations [6, 16, 17], the degener-
acy factor for the transverse modes, T ±

j , was erro-
neously equal to (j + 1)2. The correct one, as we
have shown in (7), is dTj = j(j+2). This leads to a
slightly different result for the prefactor A

(T ). We
will shortly revise that calculation.

• For the diagonal modes D
±

j , our basis functions
have one-to-one correspondence to the ones given
in [6], which are then used in [16–18]. We differ
for the transverse modes T

±

j . In the supplemental
material we show that their basis functions are lin-
early dependent and do not span the entire space.
Despite the degeneracy factor and completeness is-
sues, the operator S00(T )

j in [6, 16, 17] is correct.
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j , and
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the diagonal modes D
±

j , corresponding to (j/2, j/2)j±1

(note D�

0 is zero); they have eigenvalue j(j+2) under J2,
and degeneracy dDj ⌘ dim

� j
2 ,

j
2

�
= (j + 1)2. These are

the same total angular momentum quantum numbers as
the NGB scalars, hence the fluctuation operator matrix
mixes these states. We identify the multiplets having
jA = jB ± 1 with the transverse modes [21], and call
them T

±

j for ((j ± 1)/2, (j ⌥ 1)/2)j . Their J2 eigenvalue
is (j + 1)2, while the degeneracy factor is

dTj ⌘ dim
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= j (j + 2) . (7)

FIG. 2 summarizes the group theoretical construction
and there D

±

j correspond to the diagonal circles, where
the two overlapping circles are distinguished by the eigen-
values of L2. The T

±

j correspond to the lower and upper
off-diagonal circles, respectively.

We decompose Aµ(x) as a sum of radial functions times
a basis of vector fields,

Aµ(x) =
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jA,jB ,l,mA,mB

AjAjBmAmB
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l;µ (x̂) , (8)

where the real field Aµ is expanded with complex basis,
without affecting the degeneracy, as follows
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This choice has the virtue of containing familiar ob-
jects that are in direct correspondence with the group
theory construction of FIG. 2. The (�̃µ)msA

msB
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trices correspond to the (1/2, 1/2) object that ensures
the proper transformation under rotations, and are given

by �̃µ = " · �µ, where " is the two-dimensional Levi-
Civita symbol, �1,2,3 are the usual Pauli matrices, and
�4 = diag(i, i). The entries of �̃ are ordered such that
ms = 1/2 comes before ms = �1/2. CjA,mA

lAmlA
sAmsA

denote
the SU(2)A Clebsch-Gordan coefficients (and the same
for B). These are non-zero only when |2jA,B � l| = 1,
mA = mlA + msA and mB = mlB + msB . We shall
suppress the m indices from here on for brevity; they
label the states with the same fluctuation operator and
their summation only appears as the degeneracy factor.
Then, the non-zero components of V jAjB
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and V
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l=j;µ , corresponding to the basis of D±

j and T
±

j .
These components are eigenfunctions of J2, with the
eigenvalues quoted earlier for D

±

j and T
±

j . Each compo-
nent is an eigenfunction of L2 that acts only on YlmlA
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.

Fluctuation operator decomposition. Let
us decompose (3) using the scalar and gauge basis
functions in (4) and (8). When (3) acts on (Aµ,'),
it splits into an infinite number of blocks with the
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first two indicate 2⇥ 2 or 3⇥ 3 fluctuation matrices that
mix the D
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j modes with the NGB, and the last two are
those for the T
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j modes that do not mix.
With this decomposition, the prefactor in (2) factorizes

into A
(A,') = A
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(T ). The first term, A(D,'), was
already computed correctly in the previous literature [6,
16, 17]. Therefore we only deal with the second one:
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The factor of 2 in the exponent 2dTj comes from the two
transverse modes T

±

j having the same fluctuation oper-
ator, given by S00(T )

j = ��j + g2h2/4, where �j=l =

@2
⇢ + 3⇢�1@⇢ � l(l + 2)⇢�2. There are no zero modes to

worry about in (10), so there is no prime in the determi-
nant at the numerator.

• In previous calculations [6, 16, 17], the degener-
acy factor for the transverse modes, T ±

j , was erro-
neously equal to (j + 1)2. The correct one, as we
have shown in (7), is dTj = j(j+2). This leads to a
slightly different result for the prefactor A

(T ). We
will shortly revise that calculation.

• For the diagonal modes D
±

j , our basis functions
have one-to-one correspondence to the ones given
in [6], which are then used in [16–18]. We differ
for the transverse modes T

±

j . In the supplemental
material we show that their basis functions are lin-
early dependent and do not span the entire space.
Despite the degeneracy factor and completeness is-
sues, the operator S00(T )

j in [6, 16, 17] is correct.
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Results

log10[γ × Gyr Gpc3] = − 871+35+175+209
−37−253−330

Δmh Δmt Δαs

mh = 125.20 ± 0.11 GeV

mt = 172.57 ± 0.29 GeV

αs = 0.1180 ± 0.0009

Our correction =~6% of gauge boson contribution

log10[γprev × Gyr Gpc3] = − 877

[S. Chigusa, T. Moroi, YS, ’17 & ’18]

[P. Baratella, M. Nemevšek, YS, K. Trailović, L. Ubaldi, ’24]

The decay rate is computed using ELVAS

with the correct T-mode degeneracy

Results

SM parameters [PDG 2024]
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Summary

• The computation of the prefactor is important for the precise determination of vacuum 
decay rates. (Otherwise we would have exp(~70) of uncertainty) 

• In the previous studies, the degeneracy of the gauge transverse modes was wrongly 
counted. In addition, the original “basis” functions were neither independent or complete. 

• We provide the correct degeneracy factor and a complete orthogonal basis set. Our 
discussion is general and applicable to any 4D gauge determinant. 

• The vacuum decay rate in the standard model is updated and the change of the rate is 
about 10^6.


