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WP1.2 Overview



/ Monolithic CMOS sensors for future tracking applications \

Wafer-scale stitched sensor
(ALICE ITS3)

TPSCo 65nm Design framework
(contribution to DRD7)

Novel concepts CMOS sensors
* Radiation tolerance

* Large area
* Fasttiming
* Low power

.
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Establish framework .

Agreement with TPSCo (only for ALICE ITS3)

Design infrastructure ﬁdem‘m”' et il iy
Design Kit, design flow, IP blocks, DFM (stitching)
TCAD sim ulation exploration o optimization
Define process modification for detection performance I
design | test design & test

Test structures ﬁ >

Transistors, detectors, simple blocks

MOSAI t MOSS

MOSS
Wafer-level ASIC for ITS3 o AUCE-specific |
Stitching, “conventional” architecture (outside WP1.2)

Novel pixel architectures MOSQ !
Event-driven, timing, low-power

Hybrid-To-Monolithic (H2M) H2M design test

Hybrid pixel architecture on monolithic:
Large surfaces at low cost
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WP1.2 second
phase (2024-28)

Establish framework
Frame contract with TPSCo

Design infrastructure
Design Kit, design flow, IP blocks, DFM (stitching)

TCAD simulation

Define process modification for detection performance

Test structures
Transistors, detectors, simple blocks, new technos, etc.

ASIC R&D for ITS3 and ALICE 3(?)

Stitching, “conventional” architecture

Novel pixel architectures

Event-driven, timing, low-power, large areas, etc.

Sensors with gain
SPADs, LGADs initially in 180nm TJ (DRD3)
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WP1.2

ER2 Composition:
IMIOSAIX (1.4 x 26 cm)
~20 Chiplets (1.5 x 1.5 mm) to be defined
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complition update,/maintenance, support
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exploration optimization
—— — >
design test design & test design & test
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MOSS MOSAI t MOSS
* — |
Cycles of design & test
MOST, H2M test
Cycles of design & test
>
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Recap: MLR1 and ER

a) CHIPLETS

22 May 2024

Establish framework
Agreement with TPSCo (only for ALICE ITS3)

Design infrastructure
Design Kit, design flow, IP blocks, DFM (stitching)

TCAD simulation

Define process modification for detection performance

Test structures
Transistors, detectors, simple blocks

Wafer-level ASIC for ITS3

Stitching, “conventional” architecture

Novel pixel architectures
Event-driven, timing, low-power

Hybrid-To-Monolithic (H2M)
Hybrid pixel architecture on monolithic:
Large surfaces at low cost
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WP1.2

TPSCo-65 ISC technology features
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TCAD Si m ulation exploration optimization
S I — - >
Define process modification for detection performance
design | test design & test

Test structures ﬁ >

Transistors, detectors, simple blocks

MOSAI t MOSS

MOSS
—— | Wafer-level ASIC for ITS3 # AUICE-specifc
b ) M O SS T E STl N G OV E RV I E W Stitching, “conventional” architecture (outside WP1.2)

Novel pixel architectures MOST et ‘
Event-driven, timing, low-power
Hybrid-To-Monolithic (H2M) H2M design . test .

Hybrid pixel architecture on monolithic:
Large surfaces at low cost
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Goals
Learn techniques to make wafer scale sensors
Study yield, constraints, powering, spread of parameters

Repeated units abutting on short edges

10 Repeated Sensor Units, 1 Endcap Left, 1 Endcap Right

Metal traces cross stitching boundaries for power distribution and
long range on-chip control and data transfer

Module integration on wafer scale die for the first time
1/20 power segmentation

Submitted Nov 2022, Received May 2023

|
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MOSS
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‘ 259 mm
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MOSS Layout

14 mm

T

HALF UNIT
TOP

HALF UNIT
BOTTOM

N 1 of $0'REPEATED UNITS
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Large Pixel Pitch
22.5 um

Investigate effects
of layout density



ER1 Wafers and MOSS Under Test

e 24 \Wafers manufactured
e 4 broken

» Tests before thinning and dicing
* Impedance tests (14 wafers)
* Functional tests (4 wafers)

Reserve; 2; 8%

Broken Disco;
2; 8%

* Tests after thinning, dicing and bonding

on carriers

e 82 full size MOSS under testing, 2 broken

* Many additional Single-Stitch MOSS

* A massive effort from ALICE community

22 May 2024
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Broken
Transport/Tower; 2; 8%

*4 wafers probed functionally.
14 wafers impedance probed
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e MOSS design fully functional

* Design concepts and methodology validated
I\/l OSS * Block level yield and local defect rate under study

* Faults probability seems negligible with respect to power shorts

F un Ct IONd | Te StS * No evidence of yield difference between the two layout densities

* Facts learned and proposed improvements to be used in the
ER2 engineering prototype (MOSAIX)

22 May 2024 francois.vasey@cern.ch 12



WP1.2

MOSS Testing — Powering Yield

« Dominant failure mode: short circuits between power nets CERN-LHCC-2024-003 / ALICE-TDR-021
Powering tests from chips of the first three wafers tested.
. Long and intense investigations. Finding: unexpected inter- The chips were thinned, diced, glued and bonded before testing.
metal vertical shorts

1-BOT
2-TOoP

* Related to manufacturing. el
* Wafer to wafer variations. “§ b
* Followed-up with foundry. Expected to disappear or reduce with new ssor

6-TOP
6-B0OT

metal stack and mitigation by layout

* Results before and after thinning and dicing consistent aror

* ->Noyield reduction due to wafer post processing

Wafer 23

Thermal Imaging reveals shorts Optical Microscope SEM image of metal-to-metal short
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MOSS Characterization with Beams -

| ALICE ITS3 beam test preliminary |
:vgti:d@ CERN PS August 2023, 10 GeV/c hadro
. . . Foled .
* Sensor performance characterization ongoing

* Based on laboratory measurements and multiple beam tests A 200

with Full MOSS and Single-Stitch MOSS £ "
* Studying detection efficiency, FHR, position resolution and £ ZOOE

tuning operating settings <
* Compare 6 variants of pixels x 2 process splits x Non-irradiated

and NIEL |rradiated Samples —10- Hit x-coordinate correlation between MOSS 100

and reference ALPIDE telescope
_15 ;;{"_'R;eguonlo.‘; i2:Region Re éi'o‘hB ‘ 0
. -15 -10 -5 0 5 10
° Xmoss (Mmm)
Cross sections of SEU and SEL events Hit Map (1 HRSU, 4 resione)

* Beam tests Wlth S|ng|e Strtch MOSS Z_ALICE ITS3 beam testpre.'imina, MOS5 @ CERN PS August 2023, 10 GeV/c hadrons, plotted on 29 Aug 2023 50
* SEUs as expected . ' L 40
+ Indications of sensitivity to SEL, will investigate £ | zz;

to localize and mitigate -2 N

_ Region 0 . - Regi(l)n 1 Region 3 0

~15 ~10 5 10
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R1 test results

c) MOST TESTING OVERVIEW

Establish framework
Agreement with TPSCo (only for ALICE ITS3)

Design infrastructure
Design Kit, design flow, IP blocks, DFM (stitching)

TCAD simulation

Define process modification for detection performance

Test structures
Transistors, detectors, simple blocks

Wafer-level ASIC for ITS3

Stitching, “conventional” architecture

Novel pixel architectures

Event-driven, timing, low-power

Hybrid-To-Monolithic (H2M)
Hybrid pixel architecture on monolithic:
Large surfaces at low cost
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design | test design & test
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ALICE-specific
(outside WP1.2)
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MOST chip -

= 2"dstitched chip on the ER1 run: 2.5 mm x 259 mm
= 10 repeated sensor units:
= 18 um pitch, very densely designed pixel matrix

= Conservatively designed global power distribution + high granularity power
switches to switch off faulty parts

= Asynchronous, hit-driven readout, low power consumption + timing information.
= Measurements at CERN and at NIKHEF within the ALICE experiment.




MOST powering up measurements -

" First measurements with early setup, new proximity board setup now coming online
= 9 MOST bonded
= All impedances have been measured and all chips were power-ramped.

= 3 xDVDD trip with 50 mA compliance

= 1 xAVDD trip with 50 mA compliance

= 1 xDVDD trip on first ramp, ramps after that OK

= 4+1°good ramps

4 x respond to slow control

= More chips are being prepared for testing (carriers + glueing + wire bonding).
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MOST Sequential power release

12 ~

11 1
= Nothing anomalous observed so far 10 1

=  No chip found which cannot be fully
powered once passing the initial ramp

Current (mA)

-> in line with vertical shorts observed

Digital Domain

= 1] digital switch per 352 pixels 0 0o 00 100 200 250
2560 total
= 1 analog switch per 256 pixels ]
3520 total 10 -
g
E 8
= Pixels next to powered down pixels behave 3
normally from an electrical point of view N Analog Domain
(only tested so far on split without low dose 4]
de§20|\/||?ﬂ%gzl4ant in the plXEl matFIX). francois.vasey@cern.ggo 1000 1500 2000 2500 3000 3500 18

Pixel Groups



MOST Pulsing & readout

1004 | oyt —— OUT[0O] o
—— ouT[e]
—— 0uT[@] —0UT[O]
. 0 ety — Discriminated Signal
* All 256 readout lines work across the
full length of the chip/across all stitches % __ |
§ . 1101 1/011/0,0/1 011 0/00/0/0/1 10201010 001/0]1 10_9\2_(3201
. —200—_ L_w
* About 300 ns delay between pixels - "NT]
pulsed at the left and at the right of the  _ ||~ Ll L
chip (right is near input and output) 25 30 35 4 200 205 300 305 310 31
0 50 100 0 250 300 350 400
Tim S
e Chip is functional, including front ends, \\Ve ~
pixel address is sometimes only oy g o e =g g
transmitted partially due to a £ e —
marginality in the design. — N
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Establish framework >
Agreement with TPSCo (only for ALICE ITS3)
: t t Design infrastructure ﬁdeﬁ"m il update, maintenance
e E I g I I S a l I S Design Kit, design flow, IP blocks, DFM (stitching) -
TCAD Simulation exploration - optimization
Define process modification for detection performance I - >
Test structures s N desig) & vt
a ) I\/I O SA I X STAT U S Transistors, detectors, simple blocks ~
MOSS MOSAL t MOSS
—_— Wafer-level ASIC for ITS3 ALICE-specific
Stitching, “ i - i (outside WP1.2)
g, “conventional” architecture
. - MOST test
Novel pixel architectures
Event-driven, timing, low-power :
Hybrid-To-Monolithic (H2M) H2M design - test .
Hybrid pixel architecture on monolithic: -
Large surfaces at low cost
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WP1.2

ALICE ITS3 Layout and MOSAIX

97,82
78,256

58,692

19,564

R (azimuthal direction)
folded around beam-pipe

Layer O: 3 segments
Layer 1: 4 segments
Layer 2: 5 segments

259,992
Z-axis (equatorial direction) beam length

265,992

S B LN

Repeated
Sensor Unit
(RSU)
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MOSAIX Architecture

SUPPLIES——
/0SS «—

SUPPLIES—»,
/0S +—»1

SUPPLIES——
/0SS «——
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MOSAIX Summary

MOSAIX Design

* Prototype and study phases completed

* Architectural and Detailed specifications completed
* Done three Shared Brain Sessions Technical Reviews
* Done ALICE MOSAIX engineering Specification Design Review

* Detailed design of blocks progressing in parallel, completion of a large set expected by end of June
* Some components on critical path or expected late (end of July)

Ahead:

* Migration to new metal stack. Depend on release of PDK and DDK by the foundry (June)
* Complete design entry
* Full chip verification and sign-off phase

MOSAIX design to be completed by July 2024, then sign-off and reticle integration
* A collective effort: CERN, BNL, INFN, IPHC, MIT, Nikheff, RAL, ...

Targeting ER2 submission by end of October 2024

WP1.2
= R&D



FR2 design status

b) DESIGN FRAMEWORK

Establish framework

Frame contract with TPSCo

Design infrastructure
Design Kit, design flow, IP blocks, DFM (stitching)

TCAD simulation

Define process modification for detection performance

Test structures

Transistors, detectors, simple blocks, new technos, etc.

ASIC R&D for ITS3 and ALICE 3(?)

Stitching, “conventional” architecture

Novel pixel architectures

Event-driven, timing, low-power, large areas, etc.

Sensors with gain
SPADs, LGADs initially in 180nm TJ (DRD3)
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TPSCo65 Design framework

* TPSCo. offers a mixed-signal design kit:
* PDK (Physical Design Kit) for analog designs
 DDK (Digital Design Kit) for digital designs
* |P blocks (std cells, I/O pads, SRAM/ROM compilers, eFuses)

 CERN has a collection of tested in-house macrocells, custom std cells,
custom DRC/LVS decks & RTL2GDS workflow

* These tools are to be made available to the community for MPR2
* Digital flow based on CERN ASIC support flow
* Early access is already possible

* Modified process enables optimized sensor performance




CERN RTL2GDS workflow

* The workflow consists of:
* Template scripts for digital on top implementation (flowkit from Cadence is used)
» Bookkeeping of tech and design files (tmake tool, https://cern.ch/tmake)
* Possibility to triplicate the design using the TMRG tool (https://cern.ch/tmrg)
* Versioning of Open-Access library via ClioSoft SOS

» Set of signoff checks to perform
* Guidance on custom DRC/LVS decks for yield and latchup immunity improvements
* Power analysis signoff
e SEE simulations for radiation hard designs

* Documentation

* The goal is to empower the user with a workflow capable of rapid digital design prototyping, guiding the
user from start to finish.

e Support to be deployed through CERN-ASIC-Support framework, as contribution to DRD7.6 Work Package

22 May 2024 francois.vasey@cern.ch 26
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WP1.2 Conclusions
& Outlook

ER2 Composition:
MOSAIX (1.4 x 26 cm)
~20 Chiplets (1.5 x 1.5 mm) to be defined

WP1.2

ER3
e »
o ML ER1 o ER2 _ MPR2 . LS?‘: MPR3
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o N
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Test Stru Ctu res design test design & test design & test \

ﬁ > >
Transistors, detectors, simple blocks, new technos, etc.
MOSS MOSAI t MOSS

ASIC R&D for ITS3 and ALICE 3(?) —

Stitching, “conventional” architecture

Novel pixel architectures MOST, H2M e R |

> - - »

Event-driven, timing, low-power, large areas, etc.

Sensors Wlth gain Cycles of design & test .
KSPADS, LGAD:s initially in 180nm TJ (DRD3) /
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TPSCo65 Design framework

* A wide variety of digital standard cells are available:

* 8 track, high density [custom]
* |low-VT, 1.2V
* tapless, allows reverse bias
* targets in-pixel logic
e 12 track & 13 track
* low-VT and super-low-VT, 1.2 V

* 13 track, DFM [custom]
e DFM, low-VT, 1.2V
* targeted to comply DFM rules

* 13 track, DFM [custom]
* DFM, low-leakage, low-VT, 1.2V
* tapless, allows reverse bias

* 22 track (not shown)
* HV, 3.3V compatible

* targets 1.8-3.3V power domains

22 May 2024
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RSU Architecture

12 RSU per segment
12 TILEs per RSU

TILE

|

Pixel Matrix

SWITCHES

stitched backbone

= Periphery |

SWITCHES

TILEs can be switched on, biased and e

read out independently
One TILE is 1/864=0.116% of LO acceptance
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SWITCHES

Periphery

Pixel Matrix

Unit bias
Unit bias

Pixel Matrix

Periphery

SWITCHES

SWITCHES

Periphery

Pixel Matrix

Unit bias
Unit bias

Pixel Matrix

Periphery

[ stitched backbone

stitched backbone
SWITCHES

SWITCHES

| srv |

WP1.2

R&D

Periphery Periphery Periphery
%) %)
L |
o . I o " I o o
Pixel Matrix 8 Pixel Matrix g Pixel Matrix
2 2

444 * 156 pixels / TILE
20.8 um * 22.8 um

Unit bias Unit bias Unit bias
Unit bias Unit bias Unit bias
%) ")
| w
T I
Pixel Matrix | © Pixel Matrix | ©'  Pixel Matrix
= =
@) 0]
Periphery Periphery Periphery
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WP1.2

MOSAIX Architecture
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WP1.2
= R&D

TPSCo65 Design framework

e Custom LVS & DRC rule decks available and integrated into Calibre

N EE I e
b
well spacing

FAKE SOFT CONN (ASSUMING N-SUB)

—————— e

NO CHECK FOR REAL SOFT CONNS (THROUGH PSUB) ) floating wells
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MOST Pulsing

=  Pulsing
=  Analog: charge injection

= Digital: bypassing frontend

= |nitially some pixels did not respond to

charge injection, see right, now fixed, was

biasing issue

=  For all tested chips, all 256 global
transmission lines (M4) are functional.

Measuregents Nicolas Tiltmann
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1-PC
2- Low-voltage PSU

3- Mercury+ PE1 base board
4- Mercury+ AA1 SoC module
5- Proximity board

6- MOST carrier board

7- MOST chip under cover

——

Bkl

MOST test setup development

Base board

e Mercury+ PE1 base board

e Mercury+ AA1 SoC Module

e USB connection to PC

® FMC connection to Proximity board e Needs
FX3 + MOST firmwares

Proximity board

e 1 x DAC63004 for VDD supplies

* 2 x AD5668 for bias supplies

* 1 x AD7091R for current monitoring
¢ VDD regulators + Digital buffers

® FMC connection to base board

Firmware/software development Younes Otarid (several elements from ALICE)

Carrier and proximity board design (Marcel Rossewij Nikhef)
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