
To streamline analysis and reduce the need for storage resource, experiments may offer 
common, centrally produced data sets containing only a fraction of all available physics 

objects, while still covering up to 80% [2, 3] of the analysis use cases. 

Data set joins open up the possibility for the remaining use cases to use custom event data 
without having to duplicate the common data.

Florine de Geus (University of Twente, CERN) 
Vincenzo Eduardo Padulano (CERN)

Jakob Blomer (CERN)
Philippe Canal (FNAL)

Ana-Lucia Varbanescu (University of Twente)

Advanced Data Set 
Composition with RNTuple

[1]  J. Blomer, P. Canal, A. Naumann, and D. Piparo, “Evolution of the ROOT Tree I/O,” EPJ Web Conf., vol. 245, 2020, doi: 10.1051/epjconf/202024502030.
[2]  K. Ehatäht, “NANOAOD: a new compact event data format in CMS,” EPJ Web Conf., vol. 245, p. 06002, 2020, doi: 10.1051/epjconf/202024506002.
[3]  J. Schaarschmidt et al., “PHYSLITE - A new reduced common data format for ATLAS,” EPJ Web of Conf., vol. 295, p. 06017, 2024, doi: 10.1051/epjconf/202429506017.

Contact and more information
florine.de.geus@cern.ch

https://root.cern

Event A B
...

1997

1998

1999

...

Event A B
...

982

983

984

...

Event C
...

982

984

...

1997

1998

1999

2000

2002

2003

...

Event A B C

984

RNTuple [1] is ROOT’s next-generation columnar 
data format and I/O subsystem, aiming at:
•  Less disk and CPU usage;
•  Efficient use of modern hardware and object 

stores;
•  Modern and robust interfaces.

The RNTupleProcessor is a work in progress, aiming to:

•  Provide a low-level interface to iterate over events;
•  Enable joins and vertical concatenations;
•  Serve as a backend for RDataFrame and other analysis frameworks.

A crucial design aspect are the composition rules that determine the 
order in which data sets are processed (i.e., horizontally, vertically or a 
combination). This will significantly influence processing performance.

Other questions to consider include:

•  How to make the composition rules transparent to the user? 
•  How to deal with data distributed across multiple files?
•  How to deal with distributed analysis?

The RNTupleProcessor

Joining a primary and a secondary RNTuple requires the construction of 
an index for the secondary data set. This index maps one or more field 
values to entry numbers and is used to find entries corresponding to the 
ones in the primary data set.

Questions to consider include:

•  How to handle one-to-many relations?
•  What is the best representation for the index?
•  Should the index be stored (and if so, how)?

Joins with RNTuple

CommonEvents

Event A B
...

1997

1998

1999

...

CustomEvents

Event C
...

1999

1997

1998

...

Event A B C
...

1997

1998

1999

...

CustomEvents

Event C
...

1997

1999

...

Event A B C
...

1997

1998 -
1999

...

joined with

Events between two data sets may be out 
of order. This can happen when data sets 
are produced and written in parallel.

Events may be missing from one data set. 
This can happen when (additional) filters 
have been applied.

joined with(primary)

(secondary)

(secondary)

The RNTupleProcessor provides an 
iterator over the composed data sets, 

representing a view on the current entry.


