

Exploring the novel nLGAD concept

Veronika Kraus^{1,3}, Marcos Fernández², Michael Moll³, Sebastian Pape^{3,4}, Moritz Wiehe³

Low Gain Avalanche Detectors

Semiconductor detectors with signal amplification: Gain layer creates strong electric field → avalanche multiplication → good Signal-to-Noise ratio and timing capabilities

The traditional LGAD

Implemented as $n^{++}-p^{+}-p$

Showing outstanding performance when detecting high-energy charged particles

Exchanging the conductivity type of all LGAD layers to $p^{++}-n^+-n$

> Difference in multiplication mechanism for holes and electrons

Good option for HL-LHC and future detectors

Detection performance is optimized for low penetrating particles

Characteristics

Of interest for high energy physics and R&D: first ever tests in such a structure!

Impact ionization, donor removal ↔ acceptor removal (e.g.: relevant for compensated LGADs) and many more things to learn

TPA-TCT Measurements

Working principle Two Photon Absorption – Transient Current Technique:

• Laser ($\lambda = 1550$ nm) induces generation of charge carriers

- Thickness 275 μm
- Active area 1.3 mm x 1.3 mm • Resistivity > $1 k\Omega cm$

- Exemplary IV characteristic: temperature dependence of the breakdown voltage indicates dependence of impact ionization in the n^+ gain layer
- 2 photons produce one electron-hole pair (E_{photon} < E_{gap})
- Point-like energy deposition in focal point
- 3D spatial resolution $(1 \mu m \times 1 \mu m \times 10 \mu m)$

TPA-TCT signal at the corresponding position of the charge profile (below) and nLGAD gain for two bias voltages (right).

TCT with UV Laser

Outlook & Acknowledgment

Working principle SPA-TCT:

- UV laser ($\lambda = 375$ nm) at CERN-SSD TCT+ setup
- Single Photon Absorption (SPA-TCT): continuous energy deposition along beam $(E_{photon} \geq E_{gap})$
- Gain measurements of nLGADs with Gain (UV) > Gain (Infrared, $\lambda = 1064$ nm) compared to traditional LGADs due to inverted conductivity type

Future plans:

- Proton (IRRAD, CERN) and neutron (JSI, Ljubljana) irradiation
- Study donor removal (↔ acceptor removal for HEP) applications)

Thanks to the Instituto de Microelectrónica de **Barcelona (IMB-CNM) for providing the samples!**

Affiliations ¹ Technische Universität Wien, ² IFCA, ³ CERN, ⁴ Technische Universität Dortmund

Contact veronika.kraus@cern.ch

Sources: nLGAD publication Gain measurements on NLGAD detectors (2023), Jairo Villegas et al.

