

EP

R&D

Thermalisation of HTS-based current leads using a single-stage GM cryocooler

Weronika Głuchowska^{1,2}, Philippe Benoit¹, Maciej Chorowski², Benoit Curé¹, Alexey Dudarev¹, Thomas Willem Hanhart^{1,3}, Matthias Mentink¹, and Michał Sajdak^{1,4}

> ¹CERN, Geneva, Switzerland ²Wrocław University of Science and Technology, Poland ³University of Twente, The Netherlands ⁴Cracow University of Technology, Poland

Corresponding email: weronika.gluchowska@cern

Demonstrator of the HTS current lead cooling

Motivation

Main components of the loop:

- Single-stage Gifford-McMahon cryocooler AL600
- Double-stage PT420
- Active thermal shields @50K
- Cryocooler-to-helium-gas heat exchanger
- 2 x 3kA current leads with integrated heat exchangers
- Cold circulator
- Measuring apparatus

Characteristics of the cooling circuit

Working fluid:

helium gas

Cryocooler-based cryogenic systems are an attractive alternative for LTS detector magnets. Such a solution requires a design oriented towards a significant reduction of heat input to the cold mass.

Current leads are one of the main heat sources for the cold mass. Hence, efforts are being made to design conduction-cooled HTS current leads together with an associated cryogenic circuit which intercepts heat at an intermediate temperature of 50K.

Goal

Design and optimisation of HTS-based current leads featuring

Operating pressure:	5 bara
Operating temperature	50 K
Cooling capacity @50K	340 W

- an operating current of 3kA
- Design of a remote cooling loop for the CLs operating with helium gas @50K.
- Design the heat exchangers constituting thermal interfaces between helium and the leads
- Intergration, assembly and test of the demonstrator

Thermal interface between helium gas and current leads

Geometry of the CL heat exchanger				
Overall length of the lead	1.2 m			
Length of the cooling channels	147 mm			
Manifold inlet diameter	16 mm			
Manifold number of holes	9			
Manifold single hole diameter	5 mm			
Single cut height	8 mm			
Cut width	1 mm			
Number of cuts	60			

Gas temperature distribution [3]

Characteristics of the current leads		Heat Exchanger HEX102		
Material:	Brass		Operating temperatures (GHe)	46.6 → 61.6 K
Current:	3 kA		Tcold	50 K
Dissipation:	151 W		Operating Pressure	5 bara
Outer diameter:	51/65		Mass flow	2 g/s

Design and optimisation of the current leads

Conclusion & Acknowledgement

- Design of the HTS current lead cooling system was done
- Thermal interface between cryocooler and helium gas was designed and manufactured, to be tested soon
- Optimized design of the 2 x 3 kA HTS current lead prepared
- Preparations for the test campaign are underway

We thank Thibaut Coiffet, Philippe Frichot, Marco Garlasche, Torsten Koettig, Allan Saillet, Patricia Tavares Coutinho Borges De Sousa, Anton Titenkow, and Igor Titenkov for the support and useful discussions.

References

[1] Martin N. Wilson, *Superconducting Magnets*, Clarendon Press, 1987 [2] COMSOL Multiphysics[®] [3] Ansys[®] Fluent, Release R2, 2022

Thermal interface between cryocooler and helium gas

Geometry of the HEX101	
Manufacturing technology:	EDM
Number of cooling channels:	2 x 52
Width of the cooling channel:	0.6 mm
Length of the cooling channel:	11 mm

Cooling channels Heat exchanger HEX101

Section view of the HEX101

Assembly of the heat exchanger with the AL600

Outlet He temperature [3]

Gas He

0.4

0.45

0.5

Heat transfer characteristics:

- Steady state is considered
- Mass flow of 2 g/s
- Operating static pressure of 5 bara
- Flow velocity of 1.22 m/s
- Laminar flow, Re= 1030
- Linear pressure drop of 4.7 mbar
- Inlet temperature of 60 K
- Outlet temperature of 43 K