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74 Dynamic weighting potential

Resistive detector designs utilize materials with finite The works of W. Shockley [3] and S. Ramo [4] constant voltage on the electrode under study
conductivity to achieve enhanced robustness or Iim- describe the induction of current on grounded while keeping all others grounded. Due to the
proved their performance. We employ a Finite Element electrodes from moving charge carriers by using medium's finite conductivity, these weighting
Method (FEM) approach in conjunction with Garfield++ static so-called weighting potentials, defined by potentials become time-dependent for geometries
[1] to simulate induced signals across a wide range of removing the drifting charges and applying a  containing resistive materials [5,6].

devices in this category:
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» Multi-gap Resistive Plate Chambers (MRPCs)
u-Resistive WELL

Resistive Micromegas (ATLAS NSW MM, PICOSEC)
Resistive Silicon Detectors (RSDs)
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Fig. 2. Extended form of the
Ramo-Shockley theorem applied v, o
to a resistive detector geometry. >

Fig. 1. Resistive
Epitaxial layer — p' silicon detector [2].
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We developed a numerical method to model the  Garfield++ then uses the resulting weighting By employing an extended form of the Ramo-Shockley
time dependence of the signals in resistive  potentials to calculate the signal on the electrodes theorem, we studied the induced current response of
readout structures by employing a FEM solver [7].  induced by the drifting charge carriers [8]. various devices. These models were systematically

validated against toy-model results and experimental
data. Notably, a benchmark was conducted using the
resistive strip MM [9], demonstrating strong agreement
between simulations and experimental findings.
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Fig. 6: Image of the
test beam tracker at
the CERN SPS H4
beamline for the
measurement of the
average current
response of the
resistive strip MM.
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measured average induced current of three adjacent
X-strips in a resistive strip MM.
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. . incorporating resistive elements [10]. These studies
Fig. 4. Time slices of the dynamic weighting Fig. 5. Induced current on the leading and can be employed to advance the design and
potential cross-sections of an x-strip electrode in  neighboring x-strips due to the movement of the optimization of future detectors and be tailored to
the xz-plane (left) and yz-plane (right). charges (prompt) and resistive material (delayed). meet the specific demands of HEP experiments.




