

Modelling signal induction for detectors with resistive elements

GDD

D. Janssens^{1,*} on behalf of the CERN EP-DT-DD GDD team

Gas Detectors Development Group

¹ European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland * djunes.janssens@cern.ch

Introduction

Resistive detector designs utilize materials with finite conductivity to achieve enhanced robustness or improved their performance. We employ a Finite Element Method (FEM) approach in conjunction with Garfield++ [1] to simulate induced signals across a wide range of devices in this category:

2 Dynamic weighting potential

The works of W. Shockley [3] and S. Ramo [4] describe the induction of current on grounded electrodes from moving charge carriers by using static so-called weighting potentials, defined by removing the drifting charges and applying a constant voltage on the electrode under study while keeping all others grounded. Due to the medium's finite conductivity, these weighting potentials become time-dependent for geometries containing resistive materials [5,6].

- Multi-gap Resistive Plate Chambers (MRPCs) • µ-Resistive WELL
- Resistive Micromegas (ATLAS NSW MM, PICOSEC)
- Resistive Silicon Detectors (RSDs)
- 4D Diamond Sensor

3 Simulation methodology

We developed a numerical method to model the time dependence of the signals in resistive readout structures by employing a FEM solver [7]. Garfield++ then uses the resulting weighting potentials to calculate the signal on the electrodes induced by the drifting charge carriers [8].

Results

By employing an extended form of the Ramo-Shockley theorem, we studied the induced current response of various devices. These models were systematically validated against toy-model results and experimental data. Notably, a benchmark was conducted using the resistive strip MM [9], demonstrating strong agreement between simulations and experimental findings.

Fig. 6: Image of the test beam tracker at the CERN SPS H4 beamline for the measurement of the current average of the response resistive strip MM.

7: Comparison between the simulated and Fig. measured average induced current of three adjacent x-strips in a resistive strip MM.

Fig. 4: Time slices of the dynamic weighting potential cross-sections of an x-strip electrode in the xz-plane (left) and yz-plane (right).

Fig. 5: Induced current on the leading and neighboring x-strips due to the movement of the charges (prompt) and resistive material (delayed).

Conclusion

Through simulation and measurement, we have explored novel solutions in MRPCs, Micro Pattern Gaseous Detectors, and solid-state sensors incorporating resistive elements [10]. These studies can be employed to advance the design and optimization of future detectors and be tailored to meet the specific demands of HEP experiments.

References

[1] Garfield++, https://garfieldpp.web.cern.ch (2024) [2] G. Giacomini et al., JINST 14 (2019) 09, P09004 [3] W. Shockley, J. Appl. Phys. 9 (1938) 635 [4] S. Ramo, Proc. Ire. 27 (1939) 584

[5] E. Gatti et al., NIM in Phys. Res. 193 (1982) 651 [6] W. Riegler, NIM-A 535 (2004), 287-293 [7] COMSOL 6.2, https://www.comsol.ch (2024)

Resulting works

[8] D. Janssens et al., NIM-A 1040 (2022) 167227 [9] D. Janssens et al., JINST 18 (2023) 08, C08010 [10] D. Janssens, Ph.D. thesis, CERN-THESIS-2023-349

