TTRACT **3D Printed Pipes including Sensors and Heaters** for Thermal Management in Space and on Earth

<u>C. Manoli²</u>, L. Kiener¹, J. Rouvinet¹, S. Khan¹, N. Blondiaux¹, L. Salamin¹, D. Novo¹, P. Petagna², F. Montredon³, C. Marro³, A. Renecorail⁴, S. Eyrignoux⁴, C. Rodrigues^{5,6}, J. Magalhães⁵, A. Pereira⁵, J. Ventura⁵, H. Saudan¹

¹CSEM SA, Systems, Neuchâtel, Switzerland, ²CERN, Experimental Physics – Detector Technology, Meyrin, Switzerland, ³Thales Alenia Space, Cannes, France, ⁴LISI Aerospace Additive Manufacturing, Ayguemorte-les-Graves, France, ⁵Faculty of Sciences of the University of Porto, Porto, Portugal, ⁶inanoEnergy, Porto, Portugal

Introduction

The Advanced Heat Exchange Devices (AHEAD) project utilises Additive Manufacturing (AM) technology to develop metal 3D printed pipes including temperature sensors, heaters directly integrated into the pipe. Thanks to a patented design [1] and an initial study during the project SWaP [2], AHEAD is targeting to improve and overcome the limitations of current methods of monitoring fluid properties on thermal management systems.

Key Enabling Technology (KET) Bricks

The first phase of the project concentrates on designing, manufacturing and testing the KET bricks that are illustrated in Fig. 1. and those are: **1.** AM pipe segments

AM Start, Stop and Resume

AM **Start – Stop** challenges:

- Precise build plate setup and minimized distortion
- Common reference between CAD and the machine

2. AM electrical feedthrough and connector

3. Aerosol Jet Printed (AJP) temperature sensor and heater integration **4.** Commercial of the shelf (COTS) temperature sensor integration

Figure 1. Architecture of the two use-cases in terms of Key Enabling Technology Bricks, AJP version (right), COTS version (left)

In order to incorporate the elements into the pipe:

- AM LPBF (Laser Powder Bed Fusion) process is being stopped
- The build plate is moved for:
- the **casting** of the feedthrough
- the **integration** of the elements
- > The build plate is being placed back to the printer to:
 - to **resume** the LPBF process
 - machine the mechanical interface

In between all these steps, proper cleaning and inspection is being performed.

- Anticipation of **AJP needs**
 - build plate size, best stop height, mechanical interfaces
- Respect **cleanliness** specification

AM **Resume** challenges:

- Precise build plate setup after the integration of sensors
- Clean and clear **layer** to start
- Monitoring the temperature in **AJP area**
- Geometrical and material **quality after resume**

Figure 3. Illustration of the AM Start – Stop – Resume manufacturing process

AM electrical connector feedthrough

Resin **specifications & casting** challenges:

- **Low viscosity** for easy casting
- **CTE matching** between resin and stainless steel
- Resin **sufficient adhesion** to stainless steel
- Good **chemical compatibility** with the refrigerant (CO₂)
- Leak tight and resistant to the operational pressure and temperature

Figure 4. Casted feedthrough (left) and leak, thermal and pressure test results (right)

AJP and COTS sensors

Capability to **develop**:

RTDs with similar properties to

Capability to **integrate**:

- **Passive/active** elements:

[1] H. Saudan, L. Kiener. Method for manufacturing a 3D electromechanical component having at least one embedded electrical conductor. European patent 3740382 B1, 2022-05-25 [2] C. Manoli, N.R. Hendricks, J. Noël, P. Petagna, and S. Lani. (2021). Smart Wall Pipes and ducts (SWaP). Public deliverable for the ATTRACT Final Conference

Pt100/1000

- Heaters to locally heat the fluid
- Multilayers of **dissimilar materials**
- Metals, semiconductors, insulators, epoxies, organic & biological materials

Sensors

- Heaters
- Light sources
- Combinations of the above

EP R&D Day, CERN Geneva, Switzerland, 22 May 2024

