Towards Detector Agnostic Fast Simulation

<u>Piyush Raikwar¹, Renato Cardoso¹, Vijay Ekambaram³, Kristina Jaruskova¹, </u> Jayant Kalagnanam², Peter McKeown¹, Nam Nguyen², Dalila Salamani¹, Mudhakar Srivatsa², Sofia Vallecorsa¹, Kyongmin Yeo², Anna Zaborowska¹ ¹CERN ²IBM Research, NY USA ³IBM Research, India

Simulation

Fast Simulation

Generating these showers with a Machine Learning (ML) model while retaining sufficient accuracy.

What's different?

Most prior ML-based fast simulation methods are detector dependent - such a tailored design requires considerable amounts of **compute** and **manpower**.

Our approach: adopt a **detector agnostic** fast simulation scheme.

Accurate but computationally expensive, especially for calorimeter showers.

Make FastSim readily adaptable without access to ML expertise.

(a) Generic scoring method

Collect energy independent of the readout geometry by constructing a *physics-inspired* detector agnostic mesh to contain showers.

To achieve an appropriate detector response, the incident angles $\varphi \& \theta$, and the energy of the primary particle are also recorded for each shower.

Experiments

Pretraining on Par04 & ODD (Open Data Detector) and adaptation on FCCeeALLEGRO.

Pretraining

(b) Generalizable model

Utilize knowledge from multiple detectors to learn generalized shower characteristics. This is accomplished by **training once** on multiple geometries, then adapting to the desired geometry.

We use a transformer-based diffusion model for higher accuracy and higher diversity.

Takeaway

We present an easy to use detector agnostic ML model for fast simulation. It is based on a transformer architecture and a diffusion process. Preliminary results indicate up to ~25x faster training time while requiring ~50% less data to achieve the same performance.

