Probing low-reheating scenarios with minimal freeze-in DM (at the volcano Cumbal)

Óscar Zapata

Universidad de Antioquia, Medellín, Colombia.

December 2, 2024

COMEHP 2024

Based on 241X.XXXXX, in collaboration with: N. Bernal & C.S. Fong

- Introduction:
 Introduction:
 Introduction:
 Introduction:
- ² Setups:
 - ${\tt I}{\tt S}$ "The minimal freeze-in model"
 - ${\ensuremath{\mathbb R}}$ Reheating dynamics
- 3 Minimal freeze-in during reheating:
 - \blacksquare Radiation domination
 - \blacksquare Kination domination
- Conclusions

Evidence for dark matter is abundant and compelling

- Galactic rotation curves
- Cluster and supernova data
- Bullet cluster
- Weak lensing
- CMB anisotropies
- Big bang nucleosynthesis

DM: massive, neutral, stable.

Despite of this evidence the nature of DM is still unknown.

Evidence for dark matter is abundant and compelling

- Galactic rotation curves
- Cluster and supernova data
- Bullet cluster
- Weak lensing
- CMB anisotropies
- Big bang nucleosynthesis

DM: massive, neutral, stable.

Despite of this evidence the nature of DM is still unknown.

WIMP mechanism

Weekly Interacting Massive Particles $\chi + \chi \iff SM + SM$

- $\checkmark\,$ Reach thermal equilibrium
- ✓ At $T \gg m_{\chi}$, same rates for production and annihilation of DM.

•
$$\Omega_{\chi} h^2 \sim \frac{3 \times 10^{-27} \text{cm}^3/\text{s}}{\langle \sigma_{\chi} v \rangle}.$$

$$\label{eq:gamma_states} \begin{split} \checkmark & \mbox{For } \Omega_\chi h^2 \sim 0.1 \Rightarrow \\ & \langle \sigma_\chi v \rangle \approx 3 \times 10^{-26} \mbox{cm}^3/\mbox{s} = 1 \mbox{pb} \cdot \mbox{c}. \end{split}$$

The WIMP miracle

$$\begin{split} \sigma_{\chi} &\sim \frac{g^2}{m_{\chi}^2} = 1 \text{pb}, \\ m_{\chi} &\sim \alpha_{\text{an}} (T_{\text{eq}} M_{\text{P}})^{1/2} \sim 100 \text{ GeV}, \\ g_{\chi} &\sim g_{weak} \sim 0.1. \end{split}$$

 Self-interactions are too small to have relevant impacts on structure formation.

> The chemical frezee-out has also played a role in the abundance of light elements as well as the CMB radiation, both in stark agreement with current observations. $_{4}$

Challenges on the WIMP paradigm

It is not free of challenges, both at th. and exp. levels

- \star May need some degree of fine tuning.
- \star The null results have lead to more and more constraints.

★ Direct searches have already excluded simplified WIMP models where the SM gauge portal is the unique channel.

★ DD substantially constrains the DM mass region to lie around the Higgs resonance or above the TeV scale.

$$\mathcal{V} \supset \frac{1}{2}M_S S^2 + \frac{1}{2}\lambda_{Sh} S^2 H^{\dagger} H$$

 $\begin{array}{ll} \mathrm{LZ} \Rightarrow & M_S \gtrsim \mathbf{3} \, (6) \ \mathrm{TeV}, \\ & \lambda_{Sh} \gtrsim \mathbf{0.4} \, (3). \end{array}$

Freeze-in mechanism (Hall+ 2011)

Solution FIMPs: χ never reache thermal equilibrium with SM.

✓ Ω_χ is set by:

$$\begin{split} \mathrm{SM} + \mathrm{SM} &\to \chi, \\ \mathrm{SM} + \mathrm{SM} &\to \chi + \chi. \end{split}$$

✓ m_{χ} ranges over several orders of magnitude.

 \thickapprox Testing the through direct detection or collider experiments might be highly challenging.

BUT recent developments have shown this to be increasingly feasible.

Minimal freeze-in model (Hall+ 2011, Chu/Hambye 2011)

① A U(1)' gauge extension with very light gauge boson \hat{X}_{μ} .

⁽²⁾ A Dirac fermion χ with a U(1)' charge e' and no SM charges; the SM does not transform under U(1)'.

③ The hidden and visible sectors are connected through the kinetic mixing term with the SM hypercharge gauge boson \hat{A}_{μ} .

$$\mathcal{L}_{D} = -\frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu} + \frac{1}{2} m_{\gamma'}^{2} \hat{X}_{\mu} \hat{X}^{\mu} + \frac{\epsilon_{Y}}{2} \hat{X}_{\mu\nu} \hat{B}^{\mu\nu} + \bar{\chi} (i \partial \!\!\!/ - m_{\chi}) \chi - e' \hat{X}_{\mu} \bar{\chi} \gamma^{\mu} \chi \,.$$

After the EWSB, the mass basis becomes (with $\epsilon \equiv \epsilon_Y \cos \theta_W$)

$$\hat{A}_{\mu} = A_{\mu} + \epsilon A'_{\mu}, \ \hat{X}_{\mu} = A'_{\mu} - \epsilon \, \tan \theta_W \, Z_{\mu}, \ \hat{Z}_{\mu} = Z_{\mu},$$

which in turn leads to

$$\mathcal{L}_D \supset \frac{1}{2} m_{\gamma'}^2 A'_{\mu} A'^{\mu} - \epsilon \, e \, A'_{\mu} J^{\mu}_{\rm EM} - e' \left(A'_{\mu} - \epsilon \tan \theta_W \, Z_{\mu} \right) \, \bar{\chi} \gamma^{\mu} \chi \,.$$

with canonical kinetic terms for both SM and dark photons.

In-medium (plasma) effects

 ${\tt ISS}$ SM photons gain a thermal

mass $m_{\gamma} \sim e T$.

Solution $m_{\gamma}^{\alpha} \sim \sqrt{\epsilon} m_{\gamma}$.

$$\begin{aligned} \mathcal{L}_D^{\mathrm{IM}} &\supset \frac{1}{2} \, m_{\gamma'}^2 \, \tilde{A}'_{\mu} \, \tilde{A}'^{\mu} + \frac{1}{2} \, m_{\gamma}^2 \, \tilde{A}_{\mu} \, \tilde{A}^{\mu} + e \left(\tilde{A}_{\mu} + \frac{\epsilon \, m_{\gamma'}^2}{m_{\gamma'}^2 - m_{\gamma}^2} \, \tilde{A}'_{\mu} \right) J_{\mathrm{EM}}^{\mu} \\ &+ e' \left(\tilde{A}'_{\mu} - \frac{\epsilon \, m_{\gamma}^2}{m_{\gamma'}^2 - m_{\gamma}^2} \, \tilde{A}_{\mu} - \epsilon \, \tan \theta_W \, Z_{\mu} \right) \overline{\chi} \, \gamma^{\mu} \, \chi \,. \end{aligned}$$

For $m_{\gamma'} \leq 10^{-21}$ MeV and $m_{\gamma} \sim 0.1 T$, $m_{\gamma} \gg m_{\gamma'}$ in the early universe or in stellar environments, resulting in a suppressed coupling of $J_{\rm EM}^{\mu}$ to the DP by $\epsilon (m_{\gamma'}/m_{\gamma})^2$.

 \square the DP production in the early universe is negligible and the stellar constraints are also correspondingly relaxed.

Probing the minimal freeze-in model

For the case of scattering with electrons:

Dark matter abundance via freeze-in

A $\chi,\bar{\chi}$ relic population is generated through:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = \langle \sigma_{\chi} v \rangle_{\bar{f}f \to \chi\chi} n_{f,\text{eq}}^2 + \langle \Gamma_{Z \to \chi\chi} \rangle n_{Z,\text{eq}} + \langle \Gamma_{\gamma * \to \chi\chi} \rangle n_{\gamma *,\text{eq}}.$$

- ① SM fermion annihilations and Z-boson decays for $m_{\chi} \gtrsim m_e$.
- ⁽²⁾ Plasmon decays are the unique source of DM for $m_{\chi} < m_e$.

Since $m_{\gamma'} < 10^{-21} \text{ GeV}$,

the freeze-in production is identical to the massless dark photon scenario and hence $m_{\gamma'}$ will not play a role in our analysis; the phenomenological relevant parameters are therefore m_{χ} and κ .

Dark matter abundance via freeze-in

Quantum statistical corrections amount to ~ 10% effects for $m_{\chi} \gtrsim 1$ MeV, while for $m_{\chi} \lesssim 1$ MeV when plasmon decays dominate, the effects decrease to around 2% for $m_{\chi} \sim 10^{-2}$ MeV.

Reheating

It is generally assumed that the reheating period is preceded by a cosmic inflationary epoch in which the inflaton ϕ slowly rolls along a plateau on its way to the minimum of the scalar potential.

- The cosmic reheating period (coherent oscillations around the minimum) can be approximated by different inflaton potentials $V(\phi)$.
- Monomial potentials ϕ^n for the inflaton during reheating.
- Such potentials can naturally arise from, for example, the α -attractor T-model

$$\begin{split} V(\phi) &= \lambda \, M_P^4 \left[\tanh\left(\frac{\phi}{\sqrt{6\,\alpha}\,M_P}\right) \right]^n \\ &\simeq \lambda \, M_P^4 \times \begin{cases} 1, & \phi \gg M_P, \\ \left(\frac{\phi}{\sqrt{6\,\alpha}\,M_P}\right)^n, & \phi \ll M_P. \end{cases} \end{split}$$

Reheating dynamics: evolution of ρ_{ϕ}

Post-inflationary oscillations of the inflaton ϕ at the bottom of $V(\phi)$,

$$V(\phi) = \lambda \, \frac{\phi^n}{\Lambda^{n-4}} \, .$$

Since $\rho_{\phi} \equiv \frac{1}{2} \dot{\phi}^2 + V(\phi)$ and $p_{\phi} \equiv \frac{1}{2} \dot{\phi}^2 - V(\phi)$, $w \equiv p_{\phi}/\rho_{\phi} = (n-2)/(n+2).$

EoM for the oscillating inflaton field

$$\ddot{\phi} + (3H + \Gamma_{\phi})\dot{\phi} + V'(\phi) = 0 \Rightarrow \frac{d\rho_{\phi}}{dt} + \frac{6n}{2+n} H \rho_{\phi} = -\frac{2n}{2+n} \Gamma_{\phi} \rho_{\phi} \,.$$

During reheating $a_I \ll a \ll a_{\rm rh}$

$$\rho_{\phi}(a) \simeq \rho_{\phi}(a_{\rm rh}) \left(\frac{a_{\rm rh}}{a}\right)^{\frac{6\,n}{2+n}} = \rho_{\phi}(a_{\rm rh}) \left(\frac{a_{\rm rh}}{a}\right)^{3(1+\omega)}$$
$$H(a) \simeq H(a_{\rm rh}) \times \begin{cases} \left(\frac{a_{\rm rh}}{a}\right)^{\frac{3}{2}(1+\omega)} & \text{for } a \le a_{\rm rh} \,, \\ \left(\frac{a_{\rm rh}}{a}\right)^2 & \text{for } a_{\rm rh} \le a \,. \end{cases}$$

At the end of the reheating, the energy densities of the inflaton and radiation are equal, $\rho_R(a_{\rm rh}) = \rho_{\phi}(a_{\rm rh}) = 3 M_P^2 H(a_{\rm rh})^2$.

Reheating dynamics: evolution of ρ_{ϕ}

Post-inflationary oscillations of the inflaton ϕ at the bottom of $V(\phi)$,

$$V(\phi) = \lambda \, \frac{\phi^n}{\Lambda^{n-4}} \, .$$

Since $\rho_{\phi} \equiv \frac{1}{2} \dot{\phi}^2 + V(\phi)$ and $p_{\phi} \equiv \frac{1}{2} \dot{\phi}^2 - V(\phi)$, $w \equiv p_{\phi}/\rho_{\phi} = (n-2)/(n+2).$

EoM for the oscillating inflaton field

$$\ddot{\phi} + (3H + \Gamma_{\phi})\dot{\phi} + V'(\phi) = 0 \Rightarrow \frac{d\rho_{\phi}}{dt} + \frac{6n}{2+n}H\,\rho_{\phi} = -\frac{2n}{2+n}\,\Gamma_{\phi}\,\rho_{\phi}\,.$$

During reheating $a_I \ll a \ll a_{\rm rh}$

$$\rho_{\phi}(a) \simeq \rho_{\phi}(a_{\rm rh}) \left(\frac{a_{\rm rh}}{a}\right)^{\frac{6\,n}{2+n}} = \rho_{\phi}(a_{\rm rh}) \left(\frac{a_{\rm rh}}{a}\right)^{3(1+\omega)}$$
$$H(a) \simeq H(a_{\rm rh}) \times \begin{cases} \left(\frac{a_{\rm rh}}{a}\right)^{\frac{3}{2}(1+\omega)} & \text{for } a \le a_{\rm rh} \,, \\ \left(\frac{a_{\rm rh}}{a}\right)^2 & \text{for } a_{\rm rh} \le a \,. \end{cases}$$

At the end of the reheating, the energy densities of the inflaton and radiation are equal, $\rho_R(a_{\rm rh}) = \rho_{\phi}(a_{\rm rh}) = 3 M_P^2 H(a_{\rm rh})^2$.

Reheating dynamics: evolution of ρ_R

The evolution of ρ_R is governed by the Boltzmann equation

$$\frac{d\rho_R}{dt} + 4 H \rho_R = +\frac{2n}{2+n} \Gamma_\phi \rho_\phi \,.$$

 \Rightarrow During reheating ρ_{ϕ} is transferred to the $\rho_R \sim T^4$.

During cosmic reheating, the behavior of the background is uncertain.

$$T(a) = T_{\rm rh} \times \begin{cases} \left(\frac{a_{\rm rh}}{a}\right)^{\alpha} & \text{for } a_I \leq a \leq a_{\rm rh}, \\ \left(\frac{g_{\star s}(T_{\rm rh})}{g_{\star s}(T)}\right)^{\frac{1}{3}} \frac{a_{\rm rh}}{a} & \text{for } a_{\rm rh} \leq a, \end{cases}$$

 \mathbb{F} $T_{\rm rh}$ denotes the SM temperature $a = a_{\rm rh}$ (reheating temperature).

For $T < T_{\rm rh}$ the Universe begins to be dominated by SM radiation. It must satisfy $T_{\rm rh} > T_{\rm BBN} \simeq 4$ MeV.

For $\alpha > 0$, at the beginning of reheating, the thermal plasma reaches a temperature $T_{\text{max}} \equiv T(a_I) > T_{\text{rh}}$.

For After reheating (when $a > a_{\rm rh}$), $T(a) \propto 1/a$ as expected in an era where the SM entropy is conserved.

Reheating scenarios

IF $(\omega = 0, \alpha = 3/8)$: massive inflaton $(\rho_{\phi} \sim a^{-3})$ decaying with a constant decay width into SM particles.

 $\alpha = 1$ (kination): ρ_{ϕ} is diluted faster than free radiation ($\omega > 1/3_{0.5}$

FIMP during instantaneous reheating

Assuming that DM is produced solely through the FIMP mechanism:

$$rac{d\left(n\,a^{3}
ight)}{da} = rac{a^{2}}{H}\left\langle\sigma v
ight
angle n_{\mathrm{eq}}^{2}\,.$$

FIMP during non-instantaneous reheating

FIMP during non-instantaneous reheating

FIMP during kination

FIMP during kination

■ We have explored the impact of a non-instantaneous reheating phase on the parameter space of the minimal freeze-in DM scenario.

■ We considered cases where the inflaton energy density scales as non-relativistic matter or faster than radiation, as in kination.

^{ISF} Our main finding is that low reheating scenarios with reheating temperatures $T_{\rm rh} \leq 1$ TeV are already strongly constrained by current experiments and could be fully probed up to $T_{\rm rh} \leq 10$ TeV by future and planned experiments.