Lund plane based boosted top/boson taggers

COMHEP, December 5th 2024

Jean Pierre Cifuentes¹, Rafael Vinasco¹, Reina Camacho², Jad M. Sardain³, Carlos Sandoval¹, Mario Campanelli.⁴

1. Universidad Nacional de Colombia

2. LPNHE

- 3. The University of Arizona
- 4. UCL

What is the goal?

Use Lund plane variables as input for machine learning methods to develop a **boosted particles** (With a very high Pt) tagger for hadronically decaying **top/W/H**:

The Lund Jet Plane

• Each emission represented by a point in the **kT**-**emission angle** plane (log scale)

- ${old z}$ Momentum fraction of the branching,
- k_t Transverse momentum,
- ∆ Emission angle,

arXiv:1807.04758v2 [hep-ph]

The Lund Jet Plane

- Each emission represented by a point in the kT-emission angle plane (log scale)
- Hard scattering, collinear and large-angle emissions populate different regions of the plane.

arXiv:1807.04758v2 [hep-ph]

The Lund Jet Plane

- Each emission represented by a point in the kT-emission angle plane (log scale)
- Hard scattering, collinear and large-angle emissions populate different regions of the plane.
- Lund Plane is built by running back the **Cambridge-Aachen** jet clustering algorithm.

<u>arXiv:2312.16343</u>

Jet reconstruction algorithm, that clusters first the large angle contributions

The Lund Jet Plane as a graph!

Lund planes is made up as a set of vertices and their connection, so this is an ideal input for Graph Neural Networks!

10.1393/ncc/i2024-24112-2

Jet tagging using Lund plane

The Lund planes for the **top** (or **W** or **H**) and **QCD** jets already look quite different

-Use GNN where each node has 3 variables:

$${\cal T}^{\,(i)}=\{k_t,\Delta,z\}$$

arXiv:1807.04758v2 [hep-ph]

Implementation: LJP

ATL-PHYS-PUB-2023-017

The planes obtained for both signal and background describe the expected behavior in the hard/soft collinear region

W/Top tagging training:

The important (for us) is the Blue line LundNetNN

ATL-PHYS-PUB-2023-017

The Background rejection give us information about the performance of the tagger

Different MC generators

But the tagger has a downside: **MC modeling dependence**

It is important to study these differences in performance when changing the MC generators

Jet collection is used.

- Sherpa Lund
- Sherpa Cluster
- Herwig Dipole
- Herwig Angular

ATL-PHYS-PUB-2023-017

Ratio:

We see how the ratios between the Lund planes are quite **close to 1** in both cases, but slight differences are noted in the **low kt** region.

Ratio HistoLJP (250<Pt<500) (topSherpa / topPy8)

Lund Plane trimming using kt

Lund Plane trimming using kt

In order to study and reduce the modeling dependence, it was proposed to make cuts in the Lund plane, more specifically in the low Kt region.

Lund Plane trimming using kt

Performance comparison

Many information lost with the cut

It is necessary to investigate if making these kt cuts improves the MC modeling dependence.

Thanks!

And Backup...

Different MC generators:

Other samples with other mc generators

Samples (QCD) JETM2:

Sherpa-Lund: mc20 13TeV - Sherpa Lund - dijet (JZ[2:9])

Sherpa-Cluster: mc20 13TeV - Sherpa Cluster - dijet (JZ[2:9])

Herwig Dipole: mc20 13TeV - Herwig Dipole- dijet (JZ[2:8])

Documentation

Main Differences:

- → Hadronization Model:
 - Pythia8 and Sherpa Lund use the Lund model for hadronization.
 - Herwig and Sherpa Cluster uses the cluster model for hadronization.
- → Pythia, Sherpa and Herwig have a different hard scattering modeling.

Previous Results (R21)

Obtained by a group from: LPNHE/UNAL/AZ/UCL

The Lund plane tagger performs better than other tagger

ATL-PHYS-PUB-2023-017

It has a downside: MC modeling dependence

It is important to study these differences in performance when changing the MC generators

Classifier architecture

We use two layers for this shared MLP, each consisting of a linear layer followed by a batch normalization (BN) and a ReLU activation

- Six EdgeConv blocks
- Another MLP with 384 channels
- Read out information from all nodes in the graph
- Fully connected layer with 256 units and a dropout layer with a drop probability of 0.1

Data sets sizes

For some jets no node pass kt selection, so number of jets is reduced

ln(kt) cut = 2.8 ~~ 1.46 millions	1.49 nodes per graph	QCD=47.02% Top=99.54%
ln(kt) cut = 2.0 ~~ 1.96 millions	1.94 nodes per graph	QCD=65.05% Top=99.92%
ln(kt) cut = 1.0 ~~ 2.60 millions	3.60 nodes per graph	QCD=88.03% Top=99.98%
ln(kt) cut = 0.5 ~~ 2.79 millions	5.24 nodes per graph	QCD=94.95% Top=99.99%
ln(kt) cut = 0 ~~ 2.88 millions	7.44 nodes per graph	QCD=98.11% Top=99.99%
ln(kt) cut = -0.5 ~~ 2.91 millions	10.14 nodes per graph	QCD=99.92% Top=99.99%
ln(kt) NO cut ~~ 2.93 millions 38.36 nodes per graph		

Variables associated with the declustering

$$y = \ln \frac{E + p_z}{E - p_z}$$
 $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$

$$\Delta \equiv \Delta_{ab}, \quad k_t \equiv p_{tb} \Delta_{ab}, \quad m^2 \equiv (p_a + p_b)^2,$$

 $z \equiv \frac{p_{tb}}{p_{ta} + p_{tb}}, \quad \kappa \equiv z\Delta, \quad \psi \equiv \tan^{-1} \frac{y_b - y_a}{\phi_b - \phi_a},$

• The Declustering algorithms tries to go inside the hadronization history in order to determine where each emission is coming from.

Contributions at NLO:

$$\bar{\rho}_{2}^{(k_{t})}(\Delta,\kappa) \simeq -4C_{F}^{2}\ln^{2}\frac{\Delta}{\kappa} + \mathcal{O}\left(L\right) \xrightarrow{} \text{Kt algorithm}$$

$$\bar{\rho}_{2}^{(\text{anti-}k_{t})}(\Delta,\kappa) \simeq +8C_{F}C_{A}\ln^{2}\frac{\Delta}{\kappa} + \mathcal{O}\left(L\right) \xrightarrow{} \text{Anti-Kt algorithm}$$

$$\bar{\rho}_{2,\text{rc}}^{(\text{C/A})}(\Delta,\kappa) = \bar{\rho}_{1}(\Delta,\kappa) 4\pi b_{0}\ln\frac{1}{\kappa} + \mathcal{O}\left(1\right) \xrightarrow{} \text{C/A algorithm}$$

Jet-algorithm sequences

$$d_{ij}=\min{(k_{ti}^{2p},k_{tj}^{2p})rac{\Delta_{ij}^2}{R^2}}$$

Kt (p=2)

Anti-Kt (p=-2)

C/A (p=0)

R₂₂ code implementation

Calibrated UFO jet collection is used.

Samples:

mc20_13TeV.3647[2,12].Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ[2,12]WithSW.deriv.DAOD_JETM2

mc20_13TeV.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.deriv.DAOD_JETM2

///mc20_13TeV.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.deriv.DAOD_JETM2

R₂₂ code implementation

Other samples with other mc generators

Samples (QCD):

Sherpa-Lund:

mc20_13TeV.364686.Sherpa_CT10_CT14nnlo_CSShower_Lund_2to2jets_JZ[1:9]W.deriv.DAOD_JETM2.e6997_s 3681_r13144_p5548

Sherpa-Cluster:

mc20_13TeV.364677.Sherpa_CT10_CT14nnlo_CSShower_2to2jets_JZ[1:9]W.deriv.DAOD_JETM2.e6997_s3681_r1 3144_p5548

Herwig Dipole:

mc20_13TeV.364902.H7EG_Matchbox_dipole_jetjetNLO_JZ[1:9]WithSW.deriv.DAOD_JETM2.e7482_s3681_r1314 4_p5548

Comparison of Pt distribution

Ratio HistoLJP (qcdPy8 / qcdHerwigDipole)

Lund plane comparison:

Sherpa-Lund: 10 In(Kt) hist2D Entries 2543315668 Mean x 2.395 -0.8735 Mean y 8 Std Dev x 1.018 Std Dev y 1.372 6 2 0 -2 0 8 9 10 In(1/DeltaR) 2 3 5 6 4

Lund plane comparison:

Sherpa-Cluster:

10 (Kt) hist2D 3694405699 Entries Mean x 2.400 Mean y -0.8848 8 Std Dev x 1.027 Std Dev y 1.379 6 -2 0 2 3 5 6 7 8 9 10 In(1/DeltaR) 4 10

Herwig-Dipole

Disconnected Graphs in the Old Code

id=0 pt=1983.15 pt1=1083.78 idp1=-1 pt2=900.001 idp2=1		
id=1 pt=900.001 pt1=894.165 idp1=2 pt2=5.83737 idp2=-1		
id=2 pt=894.165 pt1=836.74 idp1=3 pt2=57.4251 idp2=4		
id=3 pt=836.74 pt1=836.74 idp1=3 pt2=1.13144e-19 idp2=-1		
id=4 pt=57.4251 pt1=47.887 idp1=-1 pt2=9.53886 idp2=6		
id=5 pt=836.74 pt1=625.917 idp1=7 pt2=210.838 idp2=8		
id=6 pt=9.53886 pt1=9.53886 idp1=6 pt2=3.47278e-20 idp2=-1		
id=7 pt=625.917 pt1=618.913 idp1=9 pt2=7.00447 idp2=10		
id=8 pt=210.838 pt1=202.719 idp1=-1 pt2=8.1196 idp2=11		
id=9 pt=618.913 pt1=618.913 idp1=9 pt2=2.83072e-19 idp2=13		
id=10 pt=7.00447 pt1=7.00447 idp1=10 pt2=8.68791e-20 idp2=-1		
id=11 pt=8.1196 pt1=8.1196 idp1=11 pt2=3.52435e-20 idp2=-1		
id=12 pt=618.913 pt1=608.354 idp1=-1 pt2=10.5586 idp2=14		
id=13 pt=2.83072e-19 pt1=1.89236e-19 idp1=-1 pt2=9.38369e-20 idp2=-1		
id=14 pt=10.5586		

By allowing 1-node graphs

No kt cut

edge = torch.tensor([[0], [0]], dtype=torch.int64)

 $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = \bar{h}_{\Theta}(\mathbf{x}_i, \mathbf{x}_j - \mathbf{x}_i).$

ln(kt) > -0.5