





## **Precise Theoretical Predictions of the Electroweak Observables**

## Ph. D. Edilson A. Reyes R.<sup>(1),(2)</sup>

## In collaboration with: Raffaele Fazio<sup>(2)</sup>, Daniel Melo<sup>(2)</sup>, Omar Torrijo<sup>(1)</sup>, Alexis Lopez<sup>(1)</sup>, Liliana Bautista<sup>(1)</sup>.

Departamento de Física <sup>(1)</sup> GOM – Física Teórica / UDP <sup>(2)</sup> Grupo de Campos y Patículas / UNAL

Wednesday, Dic 04, 2024

## **EW Observables in SUSY Extensions of SM**



n∠8 m<sub>H</sub> [GeV]

## Quantum Corrections to (g-2) Muon



| QED                                  | 116 584 718.931(104) |
|--------------------------------------|----------------------|
| Electroweak                          | 153.6(1.0)           |
| HVP $(e^+e^-, LO + NLO + NNLO)$      | 6845(40)             |
| HLbL (phenomenology + lattice + NLO) | 92(18)               |
| Total SM Value                       | 116591810(43)        |

Anomaly could be explained: Anomaly could be explained: For  $\tan\beta = 10$ ,  $m_{SUSY} \sim 250$  GeV For  $\tan\beta = 60$ ,  $m_{SUSY} \sim 700$  GeV (consistent with the unification of the top and bottom Yukawas).

#### 2

## Supersymmetry (Experiment)

## BUT ISN'T SUSY ALREADY RULED OUT BELOW THE TEV SCALE ??

#### (g-2) wants light sleptons, neutralinos, charginos. It does not need squarks and LHC seems ok with it ...

#### **SLEPTON SEARCHES:**



LHC exclusion bounds (as given for Simplified Model Spectra (SMS)).

## ELECTROWEAKINO BOUNDS:

## The Mass of the W Boson



## Higgs Decay Zy Mode (In progress ...)

#### Phys. Rev. Lett. 132, no.2, 021803 (2024). 3.4±1.1 EXPATLAS+CMS $\mu^{ZY} = 2.2 \pm 0.7$ 1.57+0.30 LO $u^{Z y} = \frac{\sigma_{gg \to H}^{ext} B_{H \to Z y}^{exp}}{\sigma_{gg \to H}^{SM} B_{H \to Z y}^{SM}}$ 1.57+0.30 **NLO<sub>QCD</sub>** $\Gamma_{H} = 4.07 \pm 0.16 \, MeV$ 1.56+0.07 2 3 1 5 $\Gamma/\Gamma_{H} \times 10^{-3}$ 10<sup>6</sup> **Radiative Natural SUSY:** $\operatorname{sgn}(-m_{H_u}^2)\sqrt{\left|-m_{H_u}^2\right|}$ (at 1 TeV)[GeV] Split-SUSY HS-SUSY 10<sup>5</sup> H. Baer et al, JHEP 03, 186 (2022) Minisplit SUSY H. Baer et al, Entropy 25, 275 (2024) 10<sup>4</sup> 1000 100 Natural SUSY

10

1

10

100

1000

µ[GeV]

 $10^{4}$ 

 $10^{5}$ 

 $10^{6}$ 

#### **Dominant diagrams for LO prediction**



#### NLO QCD corrections are 0.3% of LO



Spira, Djouadi and Zerwas, PLB (1992)

#### NLO EW corrections may reach 7% of LO



September 2024: i) Zi Qiang Chen et al. ii) Wen-Long Sang et al.

#### No estimation at NNLO in the EW sector!

## **Higgs Boson Mass in the SM**

 $M_{h} = 125.11 \pm 0.11 \text{ GeV}_{ATLAS RUN 1 + 2 (2023)}$ 

#### **Future Colliders**

| Collider Scenario    | Strategy                 | $\delta m_H$ (MeV) |
|----------------------|--------------------------|--------------------|
| LHC Run-2            | $m(ZZ), m(\gamma\gamma)$ | 160                |
| HL-LHC               | m(ZZ)                    | 10-20              |
| ILC <sub>250</sub>   | ZH recoil                | 14                 |
| CLIC <sub>380</sub>  | ZH recoil                | 78                 |
| CLIC <sub>1500</sub> | m(bb) in $Hvv$           | 30 <sup>19</sup>   |
| CLIC3000             | m(bb) in $Hvv$           | 23                 |
| FCC-ee               | ZH recoil                | 11                 |
| CEPC                 | ZH recoil                | 5.9                |

JHEP 01 (2020) 139 - arXiv:1905.03764

### EW corrections are missing!

S. Weinzeirl et al. (2022)



Topology A, Sector 255

 $O(\alpha^2 \alpha_s) \times y_t y_h; p^2 \neq 0$ 



The calculated M<sub>h</sub> decreases by about 50 MeV when Q is varied around the EW scale!

## **Higgs Boson Mass in the MSSM**



## **GOM – Física Teórica - UP**

## @fisicateoricaUP



Edilson Reyes fisicateoricaUDP

Github



#### fisicateoricaUP

efisicateoricaUP 69 suscriptores • 84 videos

Canal de YouTube del grupo de física teórica de la UP. Seminarios sobre física de altas energías. Cursos cortos de programación ...

github.com/fisicateoricaUDP y 1 vínculo más

Ç Suscrito ∨ Principal Videos Playlists

\_ Ordenar por ∨



# Instagram SÍGUENOS EN: Grupo de Física Teórica Universidad de Pamplona PAMPLONA NORTE DE SANTANDER

# Many Thanks for Your Attention!

This work is supported by Convocatoria Interna de Proyectos Año 2024 – Universidad de Pamplona – Colombia.