Exploring Inelastic Dark Matter Signatures with DUNE

Óscar Zapata, Amalia Betancur and Gustavo Castrillón

GFIF

Facultad de Ciencias Exactas y Naturales Universidad de Antioquia

UNIVERSIDAD DE ANTIOQUIA

Gustavo A. Castrillón

≻How does DUNE work?.

≻The Inelastic Dark Matter model.

≻Analysis and Results.

≻Conclusions.

Gustavo A. Castrillón

How does DUNE work?

Gustavo A. Castrillón

How does DUNE work?

Fermi National Accelerator Laboratory

Gustavo A. Castrillón

How does DUNE work?

DUNE-PRISM Sensitivity to Light Dark Matter. De Romeri V., Kelly K. and Machado P.

The Inelastic Dark Matter model

Gustavo A. Castrillón

The Inelastic Dark Matter Model

Let us consider the following Lagrangian:

$$\mathcal{L}_{\psi} = i\bar{\psi} \, D \psi - m_D \bar{\psi} \psi - f \phi \bar{\psi}^c \psi + \text{h.c.}$$

Where:

$$D_{\mu} = \partial_{\mu} - ig_X \hat{X}_{\mu}$$

When symmetry breaking is applied to the scalar field, the Dirac field splits into two Majorana states

$$\phi = \frac{v_{\phi} + h'}{\sqrt{2}}$$
$$\chi_1 = \frac{\psi - \psi^c}{\sqrt{2}} \qquad \qquad \chi_2 = \frac{\psi + \psi^c}{\sqrt{2}}$$

~

$$\mathcal{L}_{\psi} = \frac{1}{2} \left(i \bar{\chi}_{1} \, \partial \chi_{1} + i \bar{\chi}_{2} \, \partial \chi_{2} - m_{\chi_{1}} \bar{\chi}_{1} \chi_{1} - m_{\chi_{2}} \bar{\chi}_{2} \chi_{2} \right) \\ + \frac{i}{2} g_{X} \hat{X} \mu \left(\bar{\chi}_{2} \gamma^{\mu} \chi_{1} - \bar{\chi}_{1} \gamma^{\mu} \chi_{2} \right) + \frac{f}{2} \hat{h}' \left(\bar{\chi}_{1} \chi_{1} - \bar{\chi}_{2} \chi_{2} \right)$$

On the other hand, the dark scalar field and the SM Higgs doublet appear in the Lagrangian as follows

$$V(\phi, H) = \lambda_H \left(H^{\dagger} H - \frac{\nu_H^2}{2} \right)^2 + \lambda_\phi \left(\phi^* \phi - \frac{\nu_\phi^2}{2} \right)^2 + \lambda_{\phi H} \left(H^{\dagger} H - \frac{\nu_H^2}{2} \right) \left(\phi^* \phi - \frac{\nu_\phi^2}{2} \right)$$

And the vector field is coupled to the hypercharge field as follows:

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu} - \frac{\epsilon}{2c_{\rm W}} \hat{X}_{\mu\nu} \hat{B}^{\mu\nu}$$

Gustavo A. Castrillón

Contributions by Channel

Annihilation	Type of	Representative	Relevant
channer	process	ulagrams	couprings
$\chi_1\chi_1 o A'A'$	<i>s</i> -wave	$\chi_1 \longrightarrow \mathcal{X}_2$ $\chi_1 \longrightarrow \mathcal{X}_2$ \mathcal{X}_4	α_D^2
$\chi_1\chi_2 \to A' \to \mathrm{SM}\mathrm{SM}$	<i>s</i> -wave	χ_1 A' SM χ_2 SM	$\alpha_D \alpha_{\rm em} \epsilon^2$
$\chi_1\chi_1 o h'(\chi_1\chi_1)$	s-wave	$\begin{array}{c} \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi_1 \\ \end{array} \begin{array}{c} h' \\ \chi_1 \\ \chi_1 \\ \chi_1 \end{array}$	$lpha_f^4$
$\chi_1\chi_1 \to h' o { m SMSM}$	s-wave	χ_1 h' M' M' M' M' M' M' M' M	$lpha_f y_{ m SM}^2 heta^2$
$\chi_1\chi_1 \to h'h'$	<i>p</i> -wave	$\begin{array}{c} \chi_1 \\ \chi_1 \\ \chi_1 \\ \chi_1 \\ h' \end{array}$	α_f^2

Long-lived dark Higgs and inelastic dark matter at Belle II. Duerr M., Garcia-Cely C., et al.

Parameter space

 $\{M_{\chi_1}, M_{A'}, M_{\phi}, y, \theta, \Delta/M_{\chi_1}, \alpha_D\}$

Gustavo A. Castrillón

We developed an algorithm in Python that utilizes the likelihood and the genetic algorithm known as differential evolution

$$\chi_{obs}^{2} = \sum_{i=1}^{N} \chi_{i}^{2}(\mathcal{O}_{Th}^{i}) = \sum_{i=1}^{N} \left(\frac{\mu_{Th}^{i} - \mu_{Obs}^{i}}{\Sigma^{i}}\right)^{2} \quad \Sigma^{i} = \sqrt{(\Sigma_{th}^{i})^{2} + (\Sigma_{obs}^{i})^{2}}$$

We consider only a single observable, which is the relic density. The likelihood is described by

$$\chi^2_{obs} = \left(\frac{\Omega h^2 - 0.12}{\Sigma^{\Omega}}\right)^2 \qquad \qquad \Sigma^{\Omega} = \sqrt{(0.1\Omega h^2)^2 + (0.001)^2}$$

Analizing and results

Gustavo A. Castrillón

Signals and background

Expected number of events for different range.

The benchmark point considered is the one described in the text with:

> $M_{\gamma'} = 0.01$ $\epsilon^2 = 1X10^{-10}$

Parameter Space for the Dark Matter Particle

In this image, we can observe a series of points that satisfy the dark matter abundance.

However, some regions are already constrained by the Beam Dump and BaBar experiments.

Parameters	Range
$M_{A'}$	$3M_{\chi}$
M_{χ_1}	$(1 \times 10^1, 1 \times 10^3) \mathrm{MeV}$
M_{ϕ}	$(1.5, 2.5)M_{\chi}$
y	$(1 \times 10^{-14}, 1 \times 10^{-7})$
heta	1×10^{-4}
Δ/M_{χ_1}	0.10
α_D	0.5

Gustavo A. Castrillón

The Principal Parameters Space in DUNE

When the mass splitting is below twice the electron mass, an interaction between both Majorana fields and the electrons is allowed, generating both fields a scattering signal.

Gustavo A. Castrillón

Parameter Space for the Dark Photon

It is also possible to study a mass region for the dark photon, where the points satisfy the matter abundance and can also be constrained through the DUNE experiment, without the need to consider the Offaxis system.

Parameters	Range
$M_{A'}$	$(1 \times 10^1, 1 \times 10^3)$ MeV
M_{χ_1}	$20 { m MeV}$
M_{ϕ}	$(1.5, 2.5)M_{\chi}$
y	$(1 \times 10^{-14}, 1 \times 10^{-7})$
heta	1×10^{-4}
Δ/M_{χ_1}	0.10
α_D	0.5

Gustavo A. Castrillón

Conclusions

Gustavo A. Castrillón

Conclusions

➤An energy spectrum was obtained through which, despite the similarities between neutrino and dark matter interactions, it is possible to differentiate the number of events for each, enabling the detection of dark matter signals in the DUNE experiment.

➤The detailed analysis of the parameter space reveals that the model meets the sensitivity limits of the DUNE experiment, suggesting the possibility of experimental validation or the imposition of additional constraints in this space. However, a broader region of the parameter space remains that could be explored through other experiments operating at similar energy levels.

References

- Deep Underground Neutrino Experiment (DUNE). "Far Detector Technical Design Report, Volume II: DUNE Physics". En: (2020)
- Anastasiia Filimonova, Sam Junius, Laura Lopez Honorez y Susanne Westhoff. "Inelastic Dirac dark matter". En: JHEP 06 2022), pág. 048. doi: 10.1007/JHEP06(2022)048.
- Michael Duerr, Torben Ferber, Camilo Garcia-Cely, Christopher Hearty y Kai Schmidt-Hoberg. "Long-lived Dark Higgs and Inelastic Dark Matter at Belle II". En:JHEP 04 (2021), pág. 146.
- Valentina De Romeri, Kevin J. Kelly y Pedro A. N. Machado. "DUNE-PRISM Sensitivity to Light Dark Matter". En: Phys. Rev. D 100.9 (2019), pág. 095010.
- V. Mathur, I. M. Shoemaker, and Z. Tabrizi, "Using DUNE to shed light on theelectromagnetic properties of neutrinos," JHEP 10 (2022) 041, arXiv:2111.14884[hep-ph].
- P. Ballett, M. Hostert, S. Pascoli, Y. F. Perez-Gonzalez, Z. Tabrizi, and R. Zukanovich Funchal, "Z's in neutrino scattering at DUNE," Phys. Rev. D 100 no. 5,(2019) 055012, arXiv:1902.08579 [hep-ph].

- Adam Alloul, Neil D. Christensen, Céline Degrande, Claude Duhr y Benjamin Fuks.
 "FeynRules 2.0 A complete toolbox for tree-level phenomenology". En: Computer Physics Communications 185.8 (ago. de 2014), 2250–2300. issn: 0010-4655.
- Gianfranco Bertone y Dan Hooper. "History of dark matter". En: Reviews of Modern Physics 90.4 (oct. de 2018). issn: 1539-0756.
- DUNE Collaboration, V. Hewes et al., "Deep Underground Neutrino Experiment (DUNE)Near Detector Conceptual Design Report," Instruments 5 no. 4, (2021) 31,arXiv:2103.13910 [physics.ins-det].
- SHiP Collaboration, C. Ahdida et al., "Sensitivity of the SHiP experiment to dark photonsdecaying to a pair of charged particles," Eur. Phys. J. C 81 no. 5, (2021) 451,arXiv:2011.05115 [hep-ex].
- B. Batell, J. Berger, L. Darm´e, and C. Frugiuele, "Inelastic dark matter at the FermilabShort Baseline Neutrino Program," Phys. Rev. D 104 no. 7, (2021) 075026,arXiv:2106.04584 [hep-ph].

Thank you very much

0%

Gustavo A. Castrillón

Universidad de Antioquia (2024)

0

Appendix

Gustavo A. Castrillón

Chi-Square Value for Nuisance Parameters

$$\chi^2 = \frac{(N_{DM} - (1 + \alpha)N_{SM} - (\alpha + \beta)N_{BKG})^2}{N_{DM}} + \left(\frac{\alpha}{\sigma_{\alpha}}\right)^2 + \left(\frac{\beta}{\sigma_{\beta}}\right)^2$$

Gustavo A. Castrillón