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STANDARD MODEL

The elementary particles are the fundamental

constituents of all matter, they are considered to

be point-like and structureless. That is, they do

not occupy a volume in space. In the Standard

Model they are characterized in two large

groups: bosons and fermions.

Some of the most important properties of leptons

are:

Table 1: Leptons of the Standard Model.

Figure 1: Standard Model of Particle physics.

Lepton Mass  𝑴𝒆𝑽 𝒄𝟐   Mean lifetime  𝒔  

Electron 𝑒− 0.511 ∞ 

Electron neutrino 𝜈𝑒  0 ∞ 

Muon 𝜇− 105.658 2.197 × 10−6 

Muon neutrino 𝜈𝜇  0 ∞ 

Tau 𝜏− 1777 (291.0 ± 1.5) × 10−15  

Tau neutrino 𝜈𝜏  0 ∞ 
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STANDARD MODEL

The Standard Model is a local norm theory;

therefore, all its interactions are described by

local gauge symmetries.

The gauge transformations are given by unitary

matrices belonging to a certain Lie group 𝑈 𝑁 or

SU 𝑁 . Because of this, the transformation

matrices can be represented as:

𝑈𝜃 𝑥 = 𝑒−𝑖𝜃𝑎 𝑥 𝑇𝑎,

where 𝜃𝑎 𝑥 are the parameters of the

transformation and 𝑇𝑎 are the generators of the

group associated to that representation. Which

obey the following Lie algebra:

𝑇𝑎 , 𝑇𝑏 = 𝑖𝑓𝑎𝑏
𝑐𝑇𝑐 .

Figure 2: Yang & Mills in 1999.

(1)

(2)
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STANDARD MODEL

A clear example of global gauge

invariance under the transformation Ψ

→ Ψ′ = 𝑒𝑖𝛼𝑎𝑇𝑎Ψ, is present in the Dirac

Lagrangian:

ℒ𝐷 = 𝑖ഥΨ𝛾𝜇𝜕𝜇Ψ − ഥΨ𝑀Ψ.

Figure 3: Local gauge transformation.

(3)

Ψ =

𝜓1

𝜓2

⋮
𝜓𝑛

𝑀 =

𝑚1 0 ⋯ 0
0 𝑚2 ⋯ 0
⋮
0

⋮
0

⋱ 0
0 𝑚𝑛

But for the local gauge transformation Ψ → Ψ′ = 𝑒−𝑖𝑞𝜃𝑎 𝑥 𝑇𝑎Ψ:

ℒ′ = 𝑖ഥΨ𝛾𝜇𝜕𝜇Ψ + 𝑞 𝜕𝜇𝜃𝑎 ഥΨ𝛾𝜇𝑇𝑎Ψ − ഥΨ𝑀Ψ.

In order to keep the Lagrangian invariant it is necessary to introduce the covariant
derivative 𝐷𝝁 = 𝜕𝜇 + 𝑖𝑞𝑇𝑎𝐴𝜇

𝑎:

ℒ = −
1

4
𝐹𝑎

𝜇𝜈
𝐹𝜇𝜈

𝑎 + 𝑖ഥΨ𝛾𝜇𝐷𝜇Ψ − ഥΨ𝑀Ψ.

(4)

(5)

𝐹𝜇𝜈
𝑎 = 𝜕𝜇𝐴𝜈

𝑎 − 𝜕𝜈𝐴𝜇
𝑎 + 𝑞𝑓𝑎𝑏

𝑐 𝐴𝜇
𝑎𝐴𝜈

𝑏
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𝑼(𝟏)𝒅 MODEL

The 𝑼(𝟏)𝒅 model is a simple extension of the Standard Model by the addition of a new

gauge field associated with a new gauge symmetry. The Lagrangian underlying the

addition of the new 𝑈(1)𝑑 symmetry group to the Standard Model is [1]:

ℒ𝑆𝑀+𝑈(1)𝑑 = ℒ𝑆𝑀 −
1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 +
1

2
𝜅𝐵𝜇𝜈𝐹𝜇𝜈

𝑌 + ℒ𝐻𝑖𝑔𝑔𝑠′ + ⋯,

𝐵𝜇𝜈 = 𝜕𝜇𝑉𝜈 − 𝜕𝜈𝑉𝜇.

Assuming spontaneous 𝑼(𝟏)𝒅 symmetry breaking:

ℒ𝑆𝑀+𝑈(1)𝑑 = ℒ𝑆𝑀 −
1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 +
1

2
𝜅𝐵𝜇𝜈𝐹𝜇𝜈

𝑌 +
1

2
𝑚𝑉

2𝑉𝜇𝑉𝜇 + ℒℎ𝑖𝑔𝑔𝑠′ + ⋯,

so as to, the kinetic Lagrangian is given by:

ℒ𝐾𝑖𝑛𝑒𝑡𝑖𝑐 = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 −
1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 +
1

2
𝜅𝐵𝜇𝜈𝐹𝜇𝜈

𝑌 .

(6)

(9)

(8)

(7)
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𝑼(𝟏)𝒅 MODEL

Note: A scenario is assumed for a dark photon in which the known quarks and leptons

have no 𝑈(1)𝑑 charge.

This Lagrangian can also be obtained by redefining the electromagnetic 4-potential:

𝐴𝜇 → 𝐴𝜇 − 𝜅𝑉𝜇,

𝐹𝜇𝜈 → 𝐹𝜇𝜈 − 𝜅𝐵𝜇𝜈.

Which allows me to find an effective interaction Lagrangian of the Model:

ℒ𝑖𝑛𝑡
𝑒𝑓𝑓

= ℊ𝑒
ത𝜓𝛾𝜇 𝐴𝜇 − 𝜅𝑉𝜇 𝜓 = ℊ𝑒

ത𝜓𝛾𝜇𝐴𝜇𝜓 − ℊ𝑒𝜅 ത𝜓𝛾𝜇𝑉𝜇𝜓,

The first term continues to describe an fermionic interaction by Standard Model’s photon.

Furthermore, the second term corresponds to an effective interaction between the

Standard Model’s fermions and the dark photon.

(10)

(11)
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𝑼(𝟏)𝒅 MODEL

Analyzing the free Lagrangian associated with the 𝑉𝜇 field of the model’s Lagrangian

(equation 12), a Proca-type Lagrangian is found:

ℒ𝑈(1)𝑑
𝑃𝑟𝑜𝑐𝑎 = −

1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 +
1

2
𝑚2𝑉𝜇𝑉𝜇.

Whose plane wave solution associated with its equation of motion is:

𝑉𝜇 𝑥 = න
𝑑𝑞3

2𝜋 3

1

2𝐸𝑞



𝑗=1

3

(𝜖𝜇
𝑗

𝑞 𝑎𝑞,𝑗𝑒
−𝑖𝑞𝑥 + 𝜖𝜇

𝑗∗
𝑞 𝑎𝑞,𝑗

† 𝑒𝑖𝑞𝑥) .

With which, the Feynman propagator for the dark photon is obtained:

0 𝑇{𝑉𝜇(𝑦)𝑉𝜈(𝑥)} 0 =
−𝑖

𝑞2 − 𝑚𝑉
2 + 𝑖𝜖

𝑔𝜇𝜈 −
𝑞𝜇𝑞𝜈

𝑚𝑉
2 .

(12)

(14)

(13)
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ANOMALOUS MAGNETIC MOMENT OF THE MUON

The magnetic moment is an intrinsic property of particles that depends on their spin 𝑺 and

their angular momentum 𝑳, and tells how sensitive these are to an external magnetic field

𝑩. In the non-relativistic limit, the Dirac equation in the presence of an external magnetic

field has the following Hamiltonian:

𝐻 =
Ԧ𝑝2

2𝑚𝑙
+ 𝑉 𝑟 +

𝑒

2𝑚𝑙
𝐵 ∙ 𝐿 + 𝑔𝑙

Ԧ𝑆 ,

where Ԧ𝑆 =
𝜎

2
, 𝑚 is the particle’s mass and 𝑔𝑙 is its gyromagnetic factor.

𝜇𝐿 =
−𝑒

2𝑚𝑙
𝐿 റ𝜇 = 𝑔𝑙

−𝑒

2𝑚𝑙

റ𝑆
analogously

The 𝑔𝑙 factor is adimensional.

Figure 5: Angular magnetic moment.

(15)
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ANOMALOUS MAGNETIC MOMENT OF THE MUON

For the case in which the process corresponds to the interaction between a Dirac fermion

and a “classical” electromagnetic field (Figure 6), the gyromagnetic factor 𝑔𝑙 corresponds

exactly to 2.

Figure 6: Tree-order interaction between a charged lepton

and an electromagnetic field. 

For this process with momentum transfer corresponding to 𝑞 = 𝑝′ − 𝑝, the calculation of the

scattering amplitude using the Feynman rules for QED is:

−𝑖ℳ0
𝜇

= 𝑖ℊ𝑒ഥ𝒖 𝒑′ 𝛾𝜇𝒖 𝒑 . (16)
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ANOMALOUS MAGNETIC MOMENT OF THE MUON

However, by using the quantum field theory treatment new contributions to the

gyromagnetic factor 𝑔𝑙 appear. Therefore, the anomaly is defined:

𝑎𝑙 =
𝑔𝑙 − 2

2
.

These corrections to the 𝑔𝑙 value can be obtained from expanding the vertex correction 

function 𝚪𝝁(𝒑, 𝒑′). These contributions correspond to the diagrams in Figure 7.

Figure 7: Expansion of the vertex correction function Γμ 𝑝, 𝑝′ . (a) Total contribution.

(b) Tree-order contribution. (c) 1-loop contribution.

(17)

𝑖ℊ𝑒𝛾
𝜇 → 𝑖ℊ𝑒Γ

𝜇 𝑝, 𝑝′
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ANOMALOUS MAGNETIC MOMENT OF THE MUON

so as to, the total contribution will be the superposition of all contributions of all possible

processes:

−𝑖ℳ𝜇 = 𝑖ℊ𝑒 ഥ𝒖 𝒑′ Γ𝜇 𝑝, 𝑝′ 𝒖 𝒑

Thus, for a process of specific 𝒏-order one has:

−𝑖ℳ𝑛
𝜇

= 𝑖ℊ𝑒 ഥ𝒖 𝒑′ Γ𝜇(𝑛) 𝑝, 𝑝′ 𝒖 𝒑

Figure 8: Expansion of the correction to the vertex Γ𝜇(𝑛) 𝑝, 𝑝′ of 𝑛-order.

(19)

(18)

𝑖ℊ𝑒𝛾
𝜇 → 𝑖ℊ𝑒Γ

𝜇 𝑝, 𝑝′
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ANOMALOUS MAGNETIC MOMENT OF THE MUON

Considering Ward's identity and Gordon's decomposition, the most general vertex

correction function associated with this process is:

Γ𝜇 𝑝, 𝑝′ = 𝐹1 𝑞2 𝛾𝜇 + 𝑖𝐹2 𝑞2
𝑞𝜈𝜎

𝜇𝜈

2𝑚𝑙
,

where 𝑭𝟏 𝒒𝟐 and 𝑭𝟐 𝒒𝟐 are called form factors. A sum of contributions for each 𝑛 can be

associated with the form factors:

Γ𝜇 𝑝, 𝑝′ = 

𝑛=0

∞

Γ𝜇(𝑛) 𝑝, 𝑝′ = 

𝑛=0

∞

𝐹1
𝑛

𝑞2 𝛾𝜇 + 𝑖𝐹2
𝑛

𝑞2
𝑞𝜈𝜎

𝜇𝜈

2𝑚𝑙
. (21)

(20)

Ward’s identity: If ℳ 𝑞 = 𝜖𝜇 𝑞 ℳ𝜇 𝑞 is the 

amplitude of some QED process involving 

an external photon of momentum 𝑞, then:

𝑞𝜇ℳ𝜇 𝑞 = 0. 

Gordon’s decomposition: For any solution 

𝒖(𝒑) of the massive Dirac equation, it is 

satisfied that:

ഥ𝒖 𝒑′ γ𝜇 𝒖 𝒑 = ഥ𝒖 𝒑′
𝑝′𝜇 + 𝑝𝜇

2𝑚
+

𝑖𝜎𝜇𝜈𝑞𝜈

2𝑚
𝒖 𝒑 .
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ANOMALOUS MAGNETIC MOMENT OF THE MUON

Using the Born approximation for an electrostatic potential it is found that the first form

factor 𝐹1
𝑛

corresponds to a modification of the electric charge and must fulfill that

𝐹1
0

𝑞2 = 0 = 1, therefore, 𝐹1
𝑛

𝑞2 = 0 = 0 for any 𝑛 ≥ 1.

On the other hand, using the Born approximation only for a magnetostatic potential, we
obtain that:

Ԧ𝜇 =
−𝑒

𝑚𝑙
𝐹1 0 + 𝐹2 0 Ԧ𝑆,

⇒ 𝑔𝑙 = 2 𝐹1 0 + 𝐹2 0 = 2 + 2𝐹2 0 .

So, for the value of the anomalous magnetic moment of a charged lepton we have:

𝑎𝑙 = 𝐹2 0 = 

𝑛=0

∞

𝐹2
𝑛

(0) .

(22)

(23)

(24)



ANOMALOUS MAGNETIC MOMENT OF THE MUON
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Figure 9: Experimental and theoretical 
predictions for muon g-2.

Source: BMW Collaboration(2024).

• g-2 Collaboration:

• White Paper: Theoretical calculation of the

muon anomalous magnetic moment by

performing a perturbative expansion.

• BMW: Calculation of the contribution of the

hadronic polarization of the leading-order

vacuum.

• CMD-3: Experimental measurement of the cross section of the 𝑒− + 𝑒+ → 𝜋+ + 𝜋− process 

at energies of 1.2 GeV at the VEPP-2000 electron-positron collider.
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PARTIAL RESULTS

The Feynman diagram associated with the 1-loop contribution of the effective interaction

between 𝑍′ boson and muon is:

𝑞

𝑝 𝑝′

𝑘′𝑘

𝑝 − 𝑘

Figure 10: 1-loop contribution with 
the 𝑍′ boson for the anomaly.

Factor Contribución

QED vertex 𝑖ℊ𝑒𝛾
𝜇

Effective vertex −𝑖𝜅ℊ𝑒𝛾
𝜇

Muon propagator
𝑖 𝛾𝜇𝑘𝜇 + 𝑚𝜇

𝑘2 − 𝑚𝜇
2 + 𝑖𝜖

𝑍′ boson propagator
−𝑖𝑔𝜇𝜈

𝑞2 − 𝑚𝑉
2 + 𝑖𝜖

−𝑖ℊ𝑒 ത𝑢 𝑝′ Γ𝜇 1 𝑝, 𝑝′ 𝑢 𝑝 = න
𝑑4𝑘

2𝜋 4
ഥ𝒖 𝒑′ −𝑖ℊ𝑒𝜅𝛾𝛼

𝑖 𝑘′ + 𝑚𝜇

𝑘′2 − 𝑚𝜇
2 + 𝑖𝜖

𝑖ℊ𝑒𝛾
𝜇

𝑖 𝑘 + 𝑚𝜇

𝑘2 − 𝑚𝜇
2 + 𝑖𝜖

−𝑖ℊ𝑒𝜅𝛾𝜎 𝒖 𝒑
−𝑖𝑔𝛼𝜎

𝑘 − 𝑝 2 − 𝑚𝑉
2 + 𝑖𝜖

.

Note: The vertexes in the process will correspond to 𝑖ℒ𝑖𝑛𝑡.

Figure 11: Propagators and vertexes for the 
process.

(25)
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PARTIAL RESULTS

ത𝑢 𝑝′ Γ𝜇 1 𝑝, 𝑝′ 𝑢 𝑝 = 2𝑖ℊ𝑒
2𝜅2 න

𝑑4𝑘

2𝜋 4
ഥ𝒖 𝒑′

𝑘𝛾𝜇𝑘′ − 2𝑚𝜇 𝑘′𝜇 + 𝑘𝜇 + 𝑚𝜇
2𝛾𝜇

(𝑘′2 − 𝑚𝜇
2 + 𝑖𝜖)(𝑘2 − 𝑚𝜇

2 + 𝑖𝜖) 𝑘 − 𝑝 2 − 𝑚𝑉
2 + 𝑖𝜖 

𝒖 𝒑 .

Using the properties of the gamma matrices:

𝛾𝛼𝛾𝜇𝛾𝛼 = −2𝛾𝜇, 𝛾𝛼𝛾𝜇𝛾𝜈𝛾𝛼 = 4𝑔𝜇𝜈, 𝛾𝛼𝛾𝜈𝛾𝜇𝛾𝜎𝛾𝛼 = −2𝛾𝜎𝛾𝜇𝛾𝜈.

(26)

The Feynman Parameters: They are a tool that allows us to evaluate loop integrals in

quantum field theory in an easier way.

For 𝑛 = 3:

1

𝐴1𝐴2𝐴3
= න

0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1
2

𝐴1𝑥1 + 𝐴2𝑥2 + 𝐴3𝑥3
3 .

1

𝐴1𝐴2 ⋯𝐴𝑛
= න

0

1

𝑑𝑥1𝑑𝑥2 ⋯𝑑𝑥𝑛 𝛿 

𝑖=1

𝑛

𝑥𝑖 − 1
𝑛 − 1 !

𝐴1𝑥1 + 𝐴2𝑥2 + ⋯+ 𝐴𝑛𝑥𝑛
𝑛
.

Therefore:

(27)

(28)
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PARTIAL RESULTS

4𝑖ℊ𝑒
2𝜅2 න

𝑑4𝑘

2𝜋 4
න
0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 ഥ𝒖 𝒑′
𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1 𝑘𝛾𝜇𝑘′ − 2𝑚𝜇 𝑘′𝜇 + 𝑘𝜇 + 𝑚𝜇

2𝛾𝜇

𝑘2 + 2𝑘 𝑥1𝑞 − 𝑥3𝑝 + 𝑥1𝑞
2 + 𝑥3𝑝

2 − 𝑚𝜇
2 𝑥1 + 𝑥2 −𝑚𝑉

2𝑥3 +𝑖𝜖
3 𝒖 𝒑 .

Furthermore, considering 4-momentum conservation at the vertex 𝑘′ = 𝑘 + 𝑞 and the

Dirac delta condition 𝑥1 + 𝑥2 + 𝑥3 = 1 , we have:

(29)

In this case:

𝐴1 = 𝑘′2 − 𝑚𝜇
2 + 𝑖𝜖

𝐴2 = 𝑘2 − 𝑚𝜇
2 + 𝑖𝜖

𝐴3 = 𝑘 − 𝑝 2 − 𝑚𝑉
2 + 𝑖𝜖.

(30)

Developing the denominator:

4𝑖ℊ𝑒
2𝜅2 න

𝑑4𝑘

2𝜋 4 න
0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 ഥ𝒖 𝒑′
𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1 𝑘𝛾𝜇𝑘′ − 2𝑚𝜇 𝑘′𝜇 + 𝑘𝜇 + 𝑚𝜇

2𝛾𝜇

𝑘 + 𝑥1𝑞 − 𝑥3𝑝
2 − 𝑚𝜇

2 1 − 𝑥3
2 −𝑚𝑉

2𝑥3 +𝑥1𝑥2𝑞
2 + 𝑖𝜖

3 𝒖 𝒑 . (31)

And, defining the following parameters:

𝑙 = 𝑘 + 𝑥1𝑞 − 𝑥3𝑝, ∆= 𝑚𝜇
2 1 − 𝑥3

2 +𝑚𝑉
2𝑥3 −𝑥1𝑥2𝑞

2.



𝑁 = 𝑘𝛾𝜇𝑘′ − 2𝑚𝜇 𝑘′𝜇 + 𝑘𝜇 + 𝑚𝜇
2𝛾𝜇.

19

PARTIAL RESULTS

First, the numerator must be written in terms of the new variable 𝑙:

(32)

For the first term:

𝑘𝛾𝜇𝑘′ = 𝑙𝛾𝜇𝑙 + 𝑙 𝛾𝜇𝑥3𝑝 + 𝛾𝜇 1 − 𝑥1 𝑞 + 𝑥3𝑝 + 𝑥1𝑞 𝛾𝜇𝑙 + 𝑥3𝑝 + 𝑥1𝑞 𝛾𝜇𝑥3𝑝 + 𝑥3𝑝 + 𝑥1𝑞 𝛾𝜇 1 − 𝑥1 𝑞.

For the second term:

(35)

−2𝑚𝜇 𝑘′𝜇 + 𝑘𝜇 = −4𝑚𝜇𝑙𝜇 − 2𝑚𝜇 1 − 2𝑥1 𝑞𝜇 + 2𝑥3𝑝
𝜇 . (34)

Then:

𝑁 = 𝑙𝛾𝜇𝑙 + 𝑙 𝛾𝜇𝑥3𝑝 + 𝛾𝜇 1 − 𝑥1 𝑞 + 𝑥3𝑝 + 𝑥1𝑞 𝛾𝜇𝑙 + 𝑥3𝑝 + 𝑥1𝑞 𝛾𝜇𝑥3𝑝 + 𝑥3𝑝 + 𝑥1𝑞 𝛾𝜇 1 − 𝑥1 𝑞
−4𝑚𝜇𝑙𝜇 − 2𝑚𝜇 1 − 2𝑥1 𝑞𝜇 + 2𝑥3𝑝

𝜇 + 𝑚𝜇
2𝛾𝜇.

Now, considering the following identities:

න
𝑑4𝑙

2𝜋 4

𝑙𝜇

𝑙2 − Δ + 𝑖𝜖 3 = 0, න
𝑑4𝑙

2𝜋 4

𝑙𝜇𝑙𝜈

𝑙2 − Δ + 𝑖𝜖 3 = න
𝑑4𝑙

2𝜋 4

1
4𝑔𝜇𝜈𝑙2

𝑙2 − Δ + 𝑖𝜖 3 .
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The general expression can be simplified to:

(36)× −
𝑙2

2
+ 𝑚𝜇

2 1 − 𝑥3
2 − 2𝑥3 + 1 − 𝑥2 1 − 𝑥1 𝑞𝜇 𝛾𝜇 + 𝑥3𝑚𝜇 𝑥3 − 1 𝑝𝜇 + 𝑝′𝜇 𝒖 𝒑 .

Or, with the Gordon’s decomposition:

ഥ𝒖 𝒑′ Γ𝜇 1 𝑝, 𝑝′ 𝒖 𝒑 = 4𝑖ℊ𝑒
2𝜅2 න

𝑑4𝑙

2𝜋 4 න
0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 ഥ𝒖 𝒑′
𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1

𝑙2 − Δ + 𝑖𝜖 3

(37)× −
𝑙2

2
+ 𝑚𝜇

2 1 − 𝑥3
2 − 2𝑥3 + 1 − 𝑥2 1 − 𝑥1 𝑞𝜇 𝛾𝜇 − 2𝑥3𝑚𝜇

2 𝑥3 − 1
𝑖𝜎𝜇𝜈𝑞𝜈

2𝑚𝜇
𝒖 𝒑 .

ഥ𝒖 𝒑′ Γ𝜇 1 𝑝, 𝑝′ 𝒖 𝒑 = 4𝑖ℊ𝑒
2𝜅2 න

𝑑4𝑙

2𝜋 4 න
0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 ഥ𝒖 𝒑′
𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1

𝑙2 − Δ + 𝑖𝜖 3

Comparing expression (37) with the expression of the vertex correction function (20):

𝐹2
1

𝑞2 = 4𝑖ℊ𝑒
2𝜅2 න

𝑑4𝑙

2𝜋 4 න
0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1
2𝑥3𝑚𝜇

2 1 − 𝑥3

𝑙2 − Δ + 𝑖𝜖 3 .

Γ𝜇 1 𝑝, 𝑝′ = 𝐹1
1

𝑞2 𝛾𝜇 + 𝑖𝐹2
1

𝑞2
𝑞𝜈𝜎

𝜇𝜈

2𝑚𝜇
.Note: (20)

(38)
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Wick’s rotation: This procedure involves a complex rotation in the time component of the

momentum 𝑙 𝑙0 → 𝑖𝑙𝐸
0 , changing the space-time metric from Lorentzian to Euclidean signature.

This makes it easier to integrate:

(39)

For this case 𝑛 = 3 :

=
𝛼

2𝜋
× 𝜅2 න

0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1
𝑥3𝑚𝜇

2 1 − 𝑥3

𝑚𝜇
2 1 − 𝑥3

2 +𝑚𝑉
2𝑥3 −𝑥1𝑥2𝑞

2
.

න
𝑑4𝑙

2𝜋 4

1

𝑙2 − Δ + 𝑖𝜖 𝑛 =
𝑖 −1 𝑛

4𝜋 2

1

𝑛 − 1 𝑛 − 2

1

Δ𝑛−2 .

𝐹2
1

𝑞2 = 4ℊ𝑒
2𝜅2 න

0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1
2𝑥3𝑚𝜇

2 1 − 𝑥3

2 4𝜋 2Δ

Evaluating 𝐹2
1

𝑞2 = 0 = 𝑎𝜇
𝑉:

𝑎𝜇
𝑉 =

𝛼

2𝜋
× 𝜅2 න

0

1

𝑑𝑥1𝑑𝑥2𝑑𝑥3 𝛿 𝑥1 + 𝑥2 + 𝑥3 − 1
𝑥3𝑚𝜇

2 1 − 𝑥3

𝑚𝜇
2 1 − 𝑥3

2 +𝑚𝑉
2𝑥3

=
𝛼

2𝜋
× 𝜅2 න

0

1

𝑑𝑥3 න
0

1−𝑥3

𝑑𝑥1

𝑥3𝑚𝜇
2 1 − 𝑥3

𝑚𝜇
2 1 − 𝑥3

2 +𝑚𝑉
2𝑥3

.
(40)
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⇒ 𝒂𝝁
𝑽 𝒎𝑽, 𝜿𝟐 =

𝛼

2𝜋
𝜅2 න

0

1

𝑑𝑥3

2𝑥3𝑚𝜇
2 1 − 𝑥3

2

𝑚𝜇
2 1 − 𝑥3

2 + 𝑚𝑉
2𝑥3

Figure 12: 𝑍′ boson contribution for the anomaly.

The 𝜿𝟐 factor in the contribution

expression affects the order of

magnitude of 𝒂𝝁
𝑽.

The 𝒂𝝁
𝑽 value is inversely proportional to 𝒁′ boson mass 𝒎𝑽 . Upper limits 𝜅 ~ 𝒪 10−2 − 10−3 [4]

𝑚𝑉 ≳ 100 𝑀𝑒𝑉 [5]



Collaboration 𝒂𝝁
𝑺𝑴

𝒂𝝁
𝑵𝑷 = 𝒂𝝁

𝑬𝒙𝒑
− 𝒂𝝁

𝑺𝑴

White Paper 116 591 810 43 × 10−11 245 49 × 10−11

CMD-3 116 592 006 49 × 10−11 49(55) × 10−11

BMW’24 116 592 019(38) × 10−11 36 45 × 10−11
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Figure 13: Comparison between the 𝑍′ boson contribution 

for the anomaly and theoretical predictions.

This result will be

compared with the

theoretical predictions of

WP, CMD-3 and BMW'24.

𝑎𝜇
𝐸𝑥𝑝

= 116 592 055(24) × 10−11
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• For 𝟏𝟎𝟎 𝐌𝐞𝐕 < 𝒎𝑽 < 𝟓𝟓𝟎 𝑴𝒆𝑽 and 

𝟏𝟎−𝟔 ≲ 𝜿𝟐≲ 𝟏𝟎−𝟒 there is agreement with 

the WP prediction.

• For 𝜿𝟐 ≲ 𝟏𝟎−𝟔 the discrepancy presented 

by WP cannot be explained.

• For 𝒎𝑽 ≳ 𝟏𝟎𝟎 𝐌𝐞𝐕 and 𝜿𝟐 ≲ 𝟏𝟎−𝟔 there is 

agreement with the predictions of CMD-3

and BMW'24. However, their contribution 

to g-2 is very small 𝒂𝝁
𝑽 ≲ 𝟐. 𝟓 × 𝟏𝟎−𝟏𝟎 .
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