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+ 𝛬CDM…



WHAT’S GOING ON?
➤ What happens as we approach the Planck scale? 

➤ What happened at the early Universe? 

➤ How do we go from an effective theory like the SM to a more  
fundamental one? 

➤ How are the gauge, Yukawa  
and Higgs sectors related at  
a more fundamental level? 

➤ Why/how are the elementary  
particle masses so different? 

➤ Is there more than one Higgs, more scalars? 

➤ What about flavor? 

➤ Where is the new physics?
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FLAVOUR
➤ Interactions that distinguish between different flavours

•Fermion masses 

•Mixing 

•CP violation
• Γ(KL→µ +µ−)/ Γ(K+→µ+ν)  → 

charm quark 

•𝛥mK  → charm mass 

•𝛥mB → top mass 

•𝜀K → third generation 

•𝜈 oscillation →  𝜈 mass 

Nir, CERN–LATAM School HEP (2015)

Lead to discoveries

•Dark matter 

•Baryogenesis 

•Leptogenesis 

•EW phase transition 

•??

Connections to new/unknown physics

➤ why 3 generations? 
➤ why those masses? 
➤ why the gap between neutral and charged 

fermions 
➤ why the difference between mixing 

matrices? 
➤ why that amount of CP violation? 
➤ …



SOME ASPECTS OF THE FLAVOUR PROBLEM

➤ Quark and charged lepton 
masses very different, very 
hierarchical 
 
 
 

➤ Neutrino masses unknown, 
only difference of squared 
masses.  

➤ Type of hierarchy (normal or 
inverted) also unknown 

➤ Higgs sector under study

me : mµ : m⌧ ⇠ 10�5 : 10�2 : 1

md : ms : mb ⇠ 10�4 : 10�2 : 1

mu : mc : mt ⇠ 10�6 : 10�3 : 1

➤ Quark mixing angles 
 
 

➤ Neutrino mixing angles 
 
 

➤ Small mixing in quarks, large 
mixing in neutrinos. 
Very different 

➤ Is there an underlying 
symmetry?

✓12 ⇡ 13.0o

✓23 ⇡ 2.4o

✓13 ⇡ 0.2o

⇥12 ⇡ 33.8�

⇥23 ⇡ 48.6�

⇥13 ⇡ 8.6�

?



PMNS VS CKM

democratichierarchical



QUARKS, CHARGED LEPTONS AND HIGGS INTERRELATED
➤ Yukawa couplings:  several orders of magnitude of difference, 

strong hierarchy 

 
Also neutrinos, but they could acquire mass other ways. 

➤ Higgs sector:  
 

➤ hierarchy problem (quadratic radiative corrections) 

➤ limits to perturbative unitarity 

➤ Why MHiggs~125 GeV?

7.1.2 Sector de masa fermionica L 
En el Modelo Estándar (ME), no hay términos de masa para los fermiones. No podemos escribir
términos de masa de Dirac para los fermiones porque están asignados a representaciones quirales
de la simetría gauge. Tampoco podemos escribir términos de masa de Majorana para los fermiones,
ya que todos tienen Y 6= 0. Por lo tanto,

LME

 
= 0 (7.12)

7.1.3 Sector de Yukawa LYuk

La parte de Yukawa del lagrangiano se da por

LME

Y = Y d

ijQLi�DRj + Y u

ijQLi�̃URj + Y e

ijLLi�ERj + h.c., (7.13)

donde �̃ = i⌧2�†, y los Y f son matrices generales 3⇥3 de acoplamientos adimensionales. Esta parte
del lagrangiano es, en general, dependiente del sabor (es decir, Y f 6= 1) y viola CP. Sin pérdida de
generalidad, podemos usar una transformación bi-unitaria,

Y e ! Ŷe = UeLY
eU †

eR
(7.14)

para cambiar la base a una donde Y e es diagonal y real:

Ŷ e
= diag (ye, yµ, y⌧ ) (7.15)

En la base definida en la ecuación (7.14), denotamos los componentes de los dobletes de leptones
SU(2) y los tres singletes de leptones SU(2) de la siguiente manera:

✓
⌫eL
eL

◆
,

✓
⌫µL
µL

◆
,

✓
⌫⌧L
⌧L

◆
; eR, µR, ⌧R (7.16)

donde e, µ, ⌧ están ordenados por el tamaño de ye,µ,⌧ (de menor a mayor). De manera similar, sin
pérdida de generalidad, podemos usar una transformación bi-unitaria,

Y u ! Ŷu = VuLY
uV †

uR
(7.17)

para cambiar la base a una donde Ŷ u sea diagonal y real:

Ŷ u
= diag (yu, yc, yt) (7.18)

En la base definida en la ecuación (7.21), denotamos los componentes de los dobletes de quarks
SU(2), y los singletes de quarks up SU(2), de la siguiente manera:

✓
uL
duL

◆
,

✓
cL
dcL

◆
,

✓
tL
dtL

◆
; uR, cR, tR (7.19)

donde u, c, t están ordenados por el tamaño de yu,c,t (de menor a mayor).

De manera similar, sin pérdida de generalidad, podemos usar una transformación bi-unitaria,

Y u ! Ŷu = VuLY
uV †

uR
(7.20)
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para cambiar la base a una donde Ŷ u sea diagonal y real:

Ŷ u
= diag (yu, yc, yt) (7.21)

En la base definida en la ecuación (7.21), denotamos los componentes de los dobletes de quarks
SU(2), y los singletes de quarks up SU(2), de la siguiente manera:

✓
uL
duL

◆
,

✓
cL
dcL

◆
,

✓
tL
dtL

◆
; uR, cR, tR, (7.22)

donde u, c, t están ordenados por el tamaño de yu,c,t (de menor a mayor). Podemos usar otra
transformación bi-unitaria,

Y d ! Ŷd = VdLY
dV †

dR
(7.23)

para cambiar la base a una donde Ŷ d sea diagonal y real:

Ŷ d
= diag (yd, ys, yb) (7.24)

En la base definida en la ecuación (7.24), denotamos los componentes de los dobletes de quarks
SU(2), y los singletes de quarks down SU(2), de la siguiente manera:

✓
udL
dL

◆
,

✓
usL
sL

◆
,

✓
ubL
bL

◆
; dR, sR, bR (7.25)

7.1.4 L�

El potencial escalar se da por
LME

�
= �µ2�†�� �

⇣
�†�

⌘2

(7.26)

Esta parte del lagrangiano también conserva CP. Elegir µ2 < 0 y � > 0 conduce a la ruptura
espontánea de simetría requerida. Definiendo

v2 = �µ2

�
(7.27)

podemos reescribir la ecuación (7.26) de la siguiente manera (hasta un término constante):

L� = ��

✓
�†�� v2

2

◆2

(7.28)

El potencial escalar (7.28) implica que el campo escalar adquiere un valor esperado de vacío (VEV),
|h�i| = v/

p
2. Debemos hacer una elección de la dirección de h�i, y la elegimos en la dirección real

del componente hacia abajo,

h�i =
✓

0

v/
p
2

◆
. (7.29)

Este VEV rompe la simetría SU(2) ⇥ U(1) a un subgrupo U(1). Esta declaración corresponde al
hecho de que hay una (y solo una) combinación lineal de generadores que aniquila el estado de vacío.
Con nuestra elección específica, la ecuación (7.29), es T3 + Y . El subgrupo no roto se identifica con
U(1)EM, y por lo tanto su generador, Q, se identifica como

Q = T3 + Y (7.30)
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Ŷ u
= diag (yu, yc, yt) (7.21)

En la base definida en la ecuación (7.21), denotamos los componentes de los dobletes de quarks
SU(2), y los singletes de quarks up SU(2), de la siguiente manera:

✓
uL
duL

◆
,

✓
cL
dcL

◆
,

✓
tL
dtL

◆
; uR, cR, tR, (7.22)

donde u, c, t están ordenados por el tamaño de yu,c,t (de menor a mayor). Podemos usar otra
transformación bi-unitaria,
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Figure 12.2: Constraints on the fl̄, ÷̄ plane. The shaded areas have 95% CL.

and the Jarlskog invariant is J =
!
3.08+0.15

≠0.13
"

◊ 10≠5. The parameters in Eq. (12.3) are

sin ◊12 = 0.22500 ± 0.00067 , sin ◊13 = 0.00369 ± 0.00011 ,

sin ◊23 = 0.04182+0.00085
≠0.00074 , ” = 1.144 ± 0.027 . (12.28)

Fig. 12.2 illustrates the constraints on the fl̄, ÷̄ plane from various measurements, and the global
fit result. The shaded 95% CL regions all overlap consistently around the global fit region. This
reverts a change in the 2020 edition, when the shown CL of each region was increased to 99%,
because of poor consistency (primarily due to changes in |Vud|), which is no longer the case.

If one uses only tree-level inputs (magnitudes of CKM elements not coupling to the top quark
and the angle “), the resulting fit is almost identical for ⁄ in Eq. (12.26), while the other pa-
rameters’ central values can change by about a sigma and their uncertainties double, yielding
⁄ = 0.22507 ± 0.00068, A = 0.805 ± 0.028, fl̄ = 0.166+0.026

≠0.024, and ÷̄ = 0.370+0.029
≠0.028. This illustrates

how the constraints can be less tight in the presence of BSM physics.

12.5 Implications beyond the SM
The e�ects in B, Bs, K, and D decays and mixings due to high-scale physics (W , Z, t, H in

the SM, and unknown heavier particles) can be parameterized by operators composed of SM fields,

1st December, 2023
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12. CKM Quark-Mixing Matrix

Revised March 2022 by A. Ceccucci (CERN), Z. Ligeti (LBNL) and Y. Sakai (KEK).

12.1 Introduction
The masses and mixings of quarks have a common origin in the Standard Model (SM). They

arise from the Yukawa interactions with the Higgs condensate,

LY = ≠Y
d

ij Q
I
Li „ d

I
Rj ≠ Y

u
ij Q

I
Li ‘ „

ú
u

I
Rj + h.c., (12.1)

where Y
u,d are 3◊3 complex matrices, „ is the Higgs field, i, j are generation labels, and ‘ is the 2◊2

antisymmetric tensor. Q
I
L are left-handed quark doublets, and d

I
R and u

I
R are right-handed down-

and up-type quark singlets, respectively, in the weak-eigenstate basis. When „ acquires a vacuum
expectation value, È„Í = (0, v/

Ô
2), Eq. (12.1) yields mass terms for the quarks. The physical states

are obtained by diagonalizing Y
u,d by four unitary matrices, V

u,d
L,R, as M

f
diag = V

f
L Y

f
V

f†

R (v/
Ô

2),
f = u, d. As a result, the charged-current W

± interactions couple to the physical uLj and dLk

quarks with couplings given by

≠gÔ
2

(uL, cL, tL)“µ
W

+
µ VCKM

Q

ca
dL

sL

bL

R

db + h.c., VCKM © V
u

L V
d

L
† =

Q

ca
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

R

db . (12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] is a 3 ◊ 3 unitary matrix. It can be
parameterized by three mixing angles and the CP -violating KM phase [2]. Of the many possible
conventions, a standard choice has become [3]

VCKM =

Q

ca
1 0 0
0 c23 s23
0 ≠s23 c23

R

db

Q

ca
c13 0 s13e

≠i”

0 1 0
≠s13e

i” 0 c13

R

db

Q

ca
c12 s12 0

≠s12 c12 0
0 0 1

R

db

=

Q

ca
c12c13 s12c13 s13e

≠i”

≠s12c23 ≠ c12s23s13e
i”

c12c23 ≠ s12s23s13e
i”

s23c13
s12s23 ≠ c12c23s13e

i” ≠c12s23 ≠ s12c23s13e
i”

c23c13

R

db , (12.3)

where sij = sin ◊ij , cij = cos ◊ij , and ” is the phase responsible for all CP -violating phenomena in
flavor-changing processes in the SM. The angles ◊ij can be chosen to lie in the first quadrant, so
sij , cij Ø 0.

It is known experimentally that s13 π s23 π s12 π 1, and it is convenient to exhibit this
hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = ⁄ = |Vus|


|Vud|2 + |Vus|2
, s23 = A⁄

2 = ⁄

----
Vcb

Vus

---- ,

s13e
i” = V

ú

ub = A⁄
3(fl + i÷) = A⁄

3(fl̄ + i÷̄)
Ô

1 ≠ A2⁄4
Ô

1 ≠ ⁄2 [1 ≠ A2⁄4(fl̄ + i÷̄)]
. (12.4)

These relations ensure that fl̄ + i÷̄ = ≠(VudV
ú

ub)/(VcdV
ú

cb) is phase convention independent, and the
CKM matrix written in terms of ⁄, A, fl̄, and ÷̄ is unitary to all orders in ⁄. The definitions of fl̄, ÷̄

reproduce all approximate results in the literature; i.e., fl̄ = fl(1≠⁄
2
/2+. . .) and ÷̄ = ÷(1≠⁄

2
/2+. . .),

and one can write VCKM to O(⁄4) either in terms of fl̄, ÷̄ or, traditionally,

VCKM =

Q

ca
1 ≠ ⁄

2
/2 ⁄ A⁄

3(fl ≠ i÷)
≠⁄ 1 ≠ ⁄

2
/2 A⁄

2

A⁄
3(1 ≠ fl ≠ i÷) ≠A⁄

2 1

R

db + O(⁄4) . (12.5)

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update
1st December, 2023 11:05am
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Figure 12.1: Sketch of the unitarity triangle.

The CKM matrix elements are fundamental parameters of the SM, so their precise determination
is important. The unitarity of the CKM matrix imposes

q
i VijV

ú

ik = ”jk and
q

j VijV
ú

kj = ”ik. The
six vanishing combinations can be represented as triangles in a complex plane, of which those
obtained by taking scalar products of neighboring rows or columns are nearly degenerate. The
areas of all triangles are the same, half of the Jarlskog invariant, J [7], which is a phase-convention-
independent measure of CP violation, defined by Im

#
VijVklV

ú

il V
ú

kj

$
= J

q
m,n ÁikmÁjln.

The most commonly used unitarity triangle arises from

Vud V
ú

ub + Vcd V
ú

cb + Vtd V
ú

tb = 0 , (12.6)

by dividing each side by VcdV
ú

cb (see Fig. 12.1). Its vertices are exactly (0, 0), (1, 0), and, due to
the definition in Eq. (12.4), (fl̄, ÷̄). An important goal of flavor physics is to overconstrain the
CKM elements, and many measurements can be conveniently displayed and compared in the fl̄, ÷̄

plane. While the Lagrangian in Eq. (12.1) is renormalized, and the CKM matrix has a well-known
scale dependence above the weak scale [8], below µ = mW the CKM elements can be treated as
constants, with all µ-dependence contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM, to extract
magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes dominated by loop-level
contributions in the SM are particularly sensitive to new physics beyond the SM (BSM). We give
the global fit results for the CKM elements in Sec. 12.4, and discuss some implications for beyond
standard model physics in Sec. 12.5.

12.2 Magnitudes of CKM elements
12.2.1 |Vud|

The most precise determination of |Vud| comes from the study of superallowed 0+ æ 0+ nuclear
beta decays, which are pure vector transitions. Taking the average of the fifteen most precise
determinations [9] yields [10]

|Vud| = 0.97373 ± 0.00031 . (12.7)
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12.3.4.2 B
0 æ D

(ú)±
fi

û

The interference of b æ u and b æ c transitions can be studied in B
0 æ D

(ú)+
fi

≠ (b æ cūd) and
B

0 æ B
0 æ D

(ú)+
fi

≠ (b̄ æ ūcd̄) decays and their CP conjugates, since both B
0 and B

0 decay to
D

(ú)±
fi

û (or D
±

fl
û, etc.). Since there are only tree and no penguin contributions to these decays,

in principle, it is possible to extract from the four time-dependent rates the magnitudes of the two
hadronic amplitudes, their relative strong phase, and the weak phase between the two decay paths,
which is 2— + “.

A complication is that the ratio of the interfering amplitudes is very small, rDfi = A(B0 æ
D

+
fi

≠)/A(B0 æ D
+

fi
≠) = O(0.01) (and similarly for rDúfi and rDfl), and therefore it has not

been possible to measure it. To obtain 2— + “, SU(3) flavor symmetry and dynamical assump-
tions have been used to relate A(B0 æ D

≠
fi

+) to A(B0 æ D
≠
s fi

+), so this measurement is not
model independent at present. Combining the D

±
fi

û, D
ú±

fi
û and D

±
fl

û measurements [131] gives
sin(2— + “) > 0.68 at 68% CL [115], consistent with the previously discussed results for — and “.

12.4 Global fit in the Standard Model
Using the independently measured CKM elements mentioned in the previous sections, the uni-

tarity of the CKM matrix can be checked. We obtain |Vud|2 + |Vus|2 + |Vub|2 = 0.9985 ± 0.0007 (1st
row), |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.001 ± 0.012 (2nd row), |Vud|2 + |Vcd|2 + |Vtd|2 = 0.9972 ± 0.0020 (1st
column), and |Vus|2+|Vcs|2+|Vts|2 = 1.004±0.012 (2nd column), respectively. Due to the recent re-
duction of the value of |Vud|, there is a 2.2‡ tension with unitarity in the 1st row, leading also to poor
consistency of the SM fit below. The uncertainties in the second row and column are dominated by
that of |Vcs|. For the second row, another check is obtained from the measurement of

q
u,c,d,s,b |Vij |2

in Sec. 12.2.4, minus the sum in the first row above: |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.002 ± 0.027. These
provide strong tests of the unitarity of the CKM matrix. With the significantly improved direct
determination of |Vtb|, the unitarity checks for the third row and column have also become fairly
precise, leaving decreasing room for mixing with other states. The sum of the three angles of the
unitarity triangle, – + — + “ =

!
173 ± 6

"¶, is also consistent with the SM expectation.
The CKM matrix elements can be most precisely determined using a global fit to all available

measurements and imposing the SM constraints (i.e., three generation unitarity). The fit must also
use theory predictions for hadronic matrix elements, which sometimes have significant uncertainties.
There are several approaches to combining the experimental data. CKMfitter [6,115] and Ref. [132]
(which develops [133,134] further) use frequentist statistics, while UTfit [116,135] uses a Bayesian
approach. These approaches provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix significantly
reduce the allowed range of some of the CKM elements. The fit for the Wolfenstein parameters
defined in Eq. (12.4) gives

⁄ = 0.22500 ± 0.00067 , A = 0.826+0.018
≠0.015 ,

fl̄ = 0.159 ± 0.010 , ÷̄ = 0.348 ± 0.010 . (12.26)

These values are obtained using the method of Refs. [6, 115]. The prescription of Refs. [116, 135]
gives ⁄ = 0.22499 ± 0.00067, A = 0.833 ± 0.011, fl̄ = 0.159 ± 0.010, and ÷̄ = 0.348 ± 0.009 [136];
these results are now very close to one another. The fit results for the magnitudes of all nine CKM
elements are

--VCKM
-- =

Q

ca
0.97435 ± 0.00016 0.22500 ± 0.00067 0.00369 ± 0.00011
0.22486 ± 0.00067 0.97349 ± 0.00016 0.04182+0.00085

≠0.00074
0.00857+0.00020

≠0.00018 0.04110+0.00083
≠0.00072 0.999118+0.000031

≠0.000036

R

db , (12.27)
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K, B, BS, D processes can be used to study new physics 

            FCNCs very sensitive to BSM

PDG 2023

VCKM very well determined



PMNS MATRIX PONTECORVO-MAKI-NAKAGAWA-SAKATA

➤ Neutrinos also mix ➝  neutrino oscillations 

➤ Dirac or Majorana 

➤ Three mixing angles and a phase: atmospheric 𝛳23, 
solar 𝛳12 and reactor 𝛳13. Possible also Majorana phases 

➤ Only determined squared mass differences

�m2
ij = m2

i �m2
j

96 Extensions of the Standard Model

of finding one or other flavour after a time t = L/c, where L is the distance
travelled, is

P
(

vµ −→ vµ

)

= 1 − sin2 2θ · sin2
(

1.27
"m2L

E

)

P
(

vµ −→ vτ

)

= 1 − P
(

vµ −→ vµ

)

(4.11)

Here the numerical coefficient is just 1/(4h̄c) if we retain all the factors of h̄ and
c, and it equals 1.27 if L is expressed in km, "m2 in (eV/c2)2, and E in GeV.
Figure 4.2 shows how the flavour amplitudes would oscillate for the particular
case of maximum mixing, that is, θ = 45◦. The oscillation wavelength is
λ = 4πE/"m2. For example, for a value of "m2 = 3 × 10−3 eV2 found from
the atmospheric data discussed in Section 9.15, λ = 2400 km for E = 2 GeV.
This very long wavelength is due to the smallness of the mass difference.

n2 n1

nt nmnm

u = 45°

Fig. 4.2 Two neutrino (νµ → ντ) oscillations,
showing amplitudes of the mass eigenstates
for the case θ = 45◦. They are in phase at
the beginning and end of the plot, separated
by one oscillatory wavelength, and thus from
(4.6) corresponding at these points to pure
muon–neutrino flavour eigenstates. In the
centre of the plot the two amplitudes are 180◦

out of phase, corresponding to the tauon–
neutrino flavour eigenstate.

In the case of three rather than two flavours, there will be three mass
eigenstates m1, m2, and m3 (in ascending order), with two independent mass
differences, say "m12 and "m23 (with "m13 = "m23 + "m12), and three
mixing angles, denoted θ12, θ23, and θ13. Note that the oscillations only
measure the differences of the squares of the masses rather than the masses
themselves. As described in Sections 9.15–9.17, the atmospheric neutrino data
and those from accelerator neutrino experiments are concerned with the larger
mass difference, denoted by |("m23)

2| = (m3)
2 − (m2)

2 and effectively the
single angle θ23 (denoted by "m2 and θ in the foregoing equations). The solar
neutrino and reactor antineutrino data concern the smaller one, |("m21)

2| and
the angle θ12, as shown in equation (4.12) and in Fig. 4.3:

v3 _______________
← |"m23|2 (atm) = (2.3 ± 0.2) × 10−3 eV2

tan2 θ23 = 1.00 ± 0.30
(4.12a)

v2 ______________
v1 ______________ ← |"m12|2 (solar) = (8.2 ± 0.3) × 10−5 eV2

tan2 θ12 = 0.39 ± 0.05
(4.12b)

The third mixing angle has so far only an upper limit, tan2θ13 < 0.05 from a
reactor experiment. The signs of the above mass differences are unknown, so
the mass hierarchy could be the inverse of that shown, with ν3 being the lightest
rather than the heaviest state.

The general 3 × 3 mixing matrix involving three flavours and three masses
is somewhat clumsy, and can be more easily expressed as the product of three
simpler matrices as follows (with c23 = cos θ23, s23 = sin θ23, etc):

U =

∣

∣

∣

∣

∣

∣

1 0 0
0 c23 s23
0 −s23 c23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c13 0 s13eiδ

0 1 0
−s13e−iδ 0 c13

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c12 s12 0
−s12 c12 0

0 0 1

∣

∣

∣

∣

∣

∣

↑ ↑
atmospheric solar

(4.13)
Experimentally, it is found that θ13 is very small, so that s13 ∼ 0 and c13 ∼ 1. In
this case, the middle matrix simply has unit value. The first matrix—relevant to

reactor



FERMION AND SCALAR SECTORS

➤ Free parameters in 
quarks: 
6 masses ->Yukawa 
couplings 
3 mixing angles 
CP violating phase 

➤ Unitarity —> Jarlskog 
invariants

➤ Free parameters in 
neutrinos: 
6 masses  
3 mixing angles 
CP violating phase 
2 Majorana phases 

➤ Unitarity? —> Also 
Jarlskog invariants

  Plus Higgs vev and self coupling



FLAVOUR SYMMETRIES
➤ Flavour symmetries: continuous or discrete? 

 
 
 

➤ At low energies now discrete preferred.  Could be: 

➤ Residual symmetry from breaking from continuous one 
➤ From the breaking of a larger discrete group 

➤ Discrete from the “beginning” 

discrete 
could lead to domain walls

continuous 
breaking may give massless 

Goldstone bosons



All the particles we have discovered so far…

E. Siegel / Beyond the Galaxy, World Scientific

Only one Higgs boson…



MULTI-HIGGS MODELS AND FLAVOUR SYMMETRIES
➤ 2HDM widely studied, several studies on 3HDM (Branco et al,; King et 

al, JHEP 01 (2014) 052 al, 2014) 

➤ Extra Higgs doublets and discrete symmetries ➝  continuous symmetries 

➤ After minimization of the potential there might be residual symmetries ➝ 
unphysical quark sector,  degenerate masses/zero masses/zeroes in VCKM, 

e.g. S3, S4, A4, 𝛥(54) all have residual symmetries in 3HDM 

➤ ZN Abelian symmetries very popular, easier to implement

Ivanov, 
Prog.Part.Nucl.Phys. 95 (2017)

Complicated potential, many new 
parameters, many “exotic” scalars



Non-Abelian Family Symmetry   

A5T7 S4

A4

�(96) SO(3)

�(27)

SU(3)

⌃(168)

S3

N=2 N=3

N=4

N=5

PSL(2, N)

N=7

• H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, 1003.3552 

• S. F. K., A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, 1402.4271 

from Steve King’s talk at Modular Invariance Approach to the lepton and quark flavor problem, Mainz, May 2024

Cyclic Symmetries

Wikipedia, from Juan Camilo’s Acosta poster, 9th COMHEP



MASS MATRICES TEXTURES  — TEXTURE ZEROES
➤ Zeroes in the mass matrices —> 

less parameters, underlying 
symmetries: Fritzsch 
 
 
 
hierarchical A≫|B|≫|C| 

➤ In SM and extensions (no FC 
right-handed currents) is always 
possible to simultaneously the Mu 
and Md to Hermitian or NNI 
textures

6.3. Texture zeros of quark mass matrices
6.3.1. Where do texture zeros come from?

If some elements of the fermion mass matrices are vanishing, the number of their free param-
eters will be reduced, making it possible to establish some testable relations between the fermion
mass ratios and the observable flavor mixing quantities. Such a texture-zero approach was first
developed in 1977 to calculate the Cabibbo angle of quark flavor mixing in the two-family scheme
[129, 130, 131], and it was extended by Harald Fritzsch to the three-family case one year later
[135, 136]. The original version of the Fritzsch texture for quark mass matrices is of the form 35

Mq =

0
BBBBBBBB@

0 Cq 0
C⇤q 0 Bq
0 B⇤q Aq

1
CCCCCCCCA , (272)

where Aq is taken to be real and positive, and Aq � |Bq| � |Cq| holds (for q = u or d). One can see
that Mq is Hermitian and has a nearest-neighbor-interaction structure, which allows a lighter quark
to acquire its mass through an interaction with the nearest heavier neighbor. These two salient
features guarantee the analytical calculability of Mq; namely, Aq, |Bq| and |Cq| can all be expressed
as simple functions of the three quark masses in each quark sector [136, 758]. It is therefore
straightforward to calculate the CKM matrix elements in terms of four independent quark mass
ratios (i.e., mu/mc, mc/mt, md/ms and ms/mb) and two nontrivial phase di↵erences between Mu
and Md (i.e., arg Cu � arg Cd and arg Bu � arg Bd). Without the help of a sort of left-right symmetry
or some kinds of non-Abelian flavor symmetries (see, e.g., Refs. [506, 759, 760]), however, it is
very di�cult to naturally realize both the Hermiticity and texture zeros of Mq in Eq. (272) from
the model-building perspective. Moreover, such a purely phenomenological conjecture of quark
mass matrices has already been excluded by today’s experimental data.

Note that in the SM or its natural extensions without flavor-changing right-handed currents
it is always possible to simultaneously transform two arbitrary 3 ⇥ 3 quark mass matrices Mu
and Md in a given flavor basis into either the Hermitian textures [174] or the non-Hermitian but
nearest-neighbor-interaction textures [759] in a new flavor basis. The latter can be expressed as

M0q =

0
BBBBBBBB@

0 Cq 0
C0q 0 Bq
0 B0q Aq

1
CCCCCCCCA , (273)

with B0q , Bq and C0q , Cq (for q = u or d). This observation means that the texture zeros of
Mq in Eq. (272) are not a contrived assumption, but just a special choice of the flavor basis as in
Eq. (273) — but in this case the Hermiticity of Mq is a purely empirical assumption. On the other
hand, two generic 3 ⇥ 3 Hermitian quark mass matrices Mu and Md can be further simplified in a
parallel way to a more specific Hermitian texture with the vanishing (1,3) and (3,1) entries via a
new choice of the flavor basis [505], and in this case only the vanishing (1,1) and (2,2) entries of

35If a fermion mass matrix is Hermitian or symmetric, one usually counts its o↵-diagonal vanishing entries (m,n)
and (n,m) as one texture zero instead of two texture zeros. That is why the Fritzsch form of Mu and Md is also referred
to as the six-zero textures of quark mass matrices.
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This version excluded already

➤ NNI 
 
 
 
 
B’ ≠ B, C’ ≠ C 

➤ What works? up and 
down sector same 
structure, coming from 
same dynamics

Xing Phys.Rept. 854 (2020)

6.3. Texture zeros of quark mass matrices
6.3.1. Where do texture zeros come from?

If some elements of the fermion mass matrices are vanishing, the number of their free param-
eters will be reduced, making it possible to establish some testable relations between the fermion
mass ratios and the observable flavor mixing quantities. Such a texture-zero approach was first
developed in 1977 to calculate the Cabibbo angle of quark flavor mixing in the two-family scheme
[129, 130, 131], and it was extended by Harald Fritzsch to the three-family case one year later
[135, 136]. The original version of the Fritzsch texture for quark mass matrices is of the form 35

Mq =

0
BBBBBBBB@

0 Cq 0
C⇤q 0 Bq
0 B⇤q Aq

1
CCCCCCCCA , (272)

where Aq is taken to be real and positive, and Aq � |Bq| � |Cq| holds (for q = u or d). One can see
that Mq is Hermitian and has a nearest-neighbor-interaction structure, which allows a lighter quark
to acquire its mass through an interaction with the nearest heavier neighbor. These two salient
features guarantee the analytical calculability of Mq; namely, Aq, |Bq| and |Cq| can all be expressed
as simple functions of the three quark masses in each quark sector [136, 758]. It is therefore
straightforward to calculate the CKM matrix elements in terms of four independent quark mass
ratios (i.e., mu/mc, mc/mt, md/ms and ms/mb) and two nontrivial phase di↵erences between Mu
and Md (i.e., arg Cu � arg Cd and arg Bu � arg Bd). Without the help of a sort of left-right symmetry
or some kinds of non-Abelian flavor symmetries (see, e.g., Refs. [506, 759, 760]), however, it is
very di�cult to naturally realize both the Hermiticity and texture zeros of Mq in Eq. (272) from
the model-building perspective. Moreover, such a purely phenomenological conjecture of quark
mass matrices has already been excluded by today’s experimental data.

Note that in the SM or its natural extensions without flavor-changing right-handed currents
it is always possible to simultaneously transform two arbitrary 3 ⇥ 3 quark mass matrices Mu
and Md in a given flavor basis into either the Hermitian textures [174] or the non-Hermitian but
nearest-neighbor-interaction textures [759] in a new flavor basis. The latter can be expressed as

M0q =

0
BBBBBBBB@

0 Cq 0
C0q 0 Bq
0 B0q Aq

1
CCCCCCCCA , (273)

with B0q , Bq and C0q , Cq (for q = u or d). This observation means that the texture zeros of
Mq in Eq. (272) are not a contrived assumption, but just a special choice of the flavor basis as in
Eq. (273) — but in this case the Hermiticity of Mq is a purely empirical assumption. On the other
hand, two generic 3 ⇥ 3 Hermitian quark mass matrices Mu and Md can be further simplified in a
parallel way to a more specific Hermitian texture with the vanishing (1,3) and (3,1) entries via a
new choice of the flavor basis [505], and in this case only the vanishing (1,1) and (2,2) entries of

35If a fermion mass matrix is Hermitian or symmetric, one usually counts its o↵-diagonal vanishing entries (m,n)
and (n,m) as one texture zero instead of two texture zeros. That is why the Fritzsch form of Mu and Md is also referred
to as the six-zero textures of quark mass matrices.
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ALLOWED TEXTURES
Table 14: The five phenomenologically viable five-zero textures of Hermitian quark mass matrices.

I II III IV V

Mu =

0
BBBBBBBB@

0 Cu 0
C⇤u B0u 0
0 0 Au

1
CCCCCCCCA

0
BBBBBBBB@

0 Cu 0
C⇤u 0 Bu
0 B⇤u Au

1
CCCCCCCCA

0
BBBBBBBB@

0 0 Du
0 B0u 0

D⇤u 0 Au

1
CCCCCCCCA

0
BBBBBBBB@

0 Cu 0
C⇤u B0u Bu
0 B⇤u Au

1
CCCCCCCCA

0
BBBBBBBB@

0 0 Du
0 B0u Bu

D⇤u B⇤u Au

1
CCCCCCCCA

Md =

0
BBBBBBBB@

0 Cd 0
C⇤d B0d Bd
0 B⇤d Ad

1
CCCCCCCCA

0
BBBBBBBB@

0 Cd 0
C⇤d B0d Bd
0 B⇤d Ad

1
CCCCCCCCA

0
BBBBBBBB@

0 Cd 0
C⇤d B0d Bd
0 B⇤d Ad

1
CCCCCCCCA

0
BBBBBBBB@

0 Cd 0
C⇤d B0d 0
0 0 Ad

1
CCCCCCCCA

0
BBBBBBBB@

0 Cd 0
C⇤d B0d 0
0 0 Ad

1
CCCCCCCCA

case the analytical results obtained in Eqs. (276) and (277) can be remarkably simplified,
but the resulting relation |Vub/Vcb| '

p
mu/mc is phenomenologically disfavored.

• It has been shown that a proper flavor basis transformation allows us to arrive at Hermitian
Mu of the form given in Eq. (275) and Hermitian Md with the vanishing (1,1) entry, or vice
versa, from arbitrary forms of Mu and Md [779]. This observation means that only one
phenomenological assumption — the vanishing (1,3) and (3,1) entries for Md (or for Mu) —
is needed to make in getting at Eq. (275).

We therefore conclude that the Hermitian four-zero textures of quark mass matrices are currently
the most interesting zero textures which can successfully bridge a gap between the observed quark
mass spectrum and the observed flavor mixing pattern.

Note that it is also possible to realize the four zeros of Mu and Md in Eq. (275) by means of
the cyclic group Z6. For instance, one may assign the Z6 charges of QL1, QL2 and QL3 in Eq. (3)
to be 0, 1 and 4, respectively; and the Z6 charges of UR1, UR2 and UR3 in Eq. (3) to be 3, 4, and
1, respectively. The same assignments can be made for the down-quark sector. Then the spinor
bilinears of quark fields transform as follows:

QLiUR j ! Zi jQLiUR j , QLiDR j ! Zi jQLiDR j , Z =

0
BBBBBBBB@

!3 !4 !1

!4 !5 !2

!1 !2 !5

1
CCCCCCCCA . (279)

By invoking three SU(2)L-singlet scalar fields �1 with Q = 2, �2 with Q = 4 and �3 with Q = 1
and arranging them to couple with the above quark bilinears, one will be left with finite (1,2), (2,1),
(2,2), (2,3), (3,2) and (3,3) entries of the Yukawa coupling matrices Yu and Yd under the Z6 flavor
symmetry. In this case the (1,1), (1,3) and (3,1) entries of Yu and Yd are enforced to be vanishing
by the Z6 symmetry. The quark mass matrices Mu and Md turn out to be of the four-zero textures
after spontaneous electroweak symmetry breaking.

Giving up the structural parallelism between up- and down-type quark sectors, Pierre Ramond
et al found five di↵erent five-zero textures of Hermitian Mu and Md which were phenomenolog-
ically allowed in 1993 [551], as listed in Table 14. These textures still survive today, if each of
them is not required to have a strong hierarchy [784, 785]. Of course, none of them can fit current
experimental data better than the four-zero textures of quark mass matrices discussed above.
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From Z. Xing, Phys.Rept. 854 (2020)

Above textures first found by Ramond et al (1993), still work today if not 
strongly hierarchical.

the most challenging tasks in today’s particle physics is therefore to explore the underlying flavor
structures which can shed light on the origin of fermion masses and the dynamics of flavor mixing
and CP violation in a way more fundamental and more quantitative than the SM itself.

6.3.2. Four- and five-zero quark flavor textures
Given its Hermiticity and six texture zeros, the Fritzsch ansatz of quark mass matrices shown

in Eq. (272) is left with eight independent parameters among which the six real matrix elements
can be determined by six quark masses and the two phase di↵erences between Mu and Md can be
constrained by four flavor mixing parameters of the CKM matrix V . One may therefore expect two
testable relations between four independent quark mass ratios and four flavor mixing parameters.
In reality, the strong mass hierarchies of up- and down-type quarks allow us to make some reliable
analytical approximations for the predictions of the Fritzsch ansatz and thus obtain a few more
experimentally testable relations than expected [135, 136]. It turns out that this simple but instruc-
tive ansatz has definitely been ruled out by the relevant experimental data [551, 770, 771, 772],
mainly for the reason that the experimental value of mt is so large that the predicted result of |Vcb|
has no way to be compatible with its observed value.

A straightforward way of modifying the Fritzsch ansatz is to reduce the number of its texture
zeros. If one insists that there should exist a kind of structural parallelism between up- and down-
type quarks in the spirit of requiring the two sectors to be on the same dynamical footing, then
one may simultaneously add nonzero (1,1), (2,2) or (1,3) and (3,1) entries into Mu and Md in
Eq. (272). But it is found that only the following four-zero textures of quark mass matrices are
phenomenologically favored [510, 717, 773, 774, 775, 776, 777, 778, 779, 780]:

Mq =

0
BBBBBBBB@

0 Cq 0
C⇤q B0q Bq
0 B⇤q Aq

1
CCCCCCCCA , (275)

where Aq is chosen to be real and positive, B0q is also real, and Aq � |Bq| & |B0q| � |Cq| is
expected to hold (for q = u or d). Because of det Mq = �Aq|Cq|2 < 0, let us diagonalize Mu or
Md in Eq. (275) by using the unitary transformation O†uMuO0u = Diag{mu,mc,mt} or O†dMdO0d =
Diag{md,ms,mb}, where O0u = OuQu and O0d = OdQd with Qu = Qd = Diag{�1, 1, 1} as a typical
example to match the negative determinants of Mu and Md under discussion 36. Then we arrive at
the expressions

B0u = mt + mc � mu � Au , |Bu|2 =
�
Au + mu

� �
Au � mc

� �
mt � Au

�

Au
, |Cu|2 =

mumcmt

Au
, (276)

36As for the more restrictive Fritzsch texture of Mq in Eq. (272), the unique choice is Qu = Qd = Diag{1,�1, 1}
[781]. In dealing with the four-zero texture of Mq in Eq. (275), however, there are actually four di↵erent possibilities
[718, 782]: Qu = Diag{±1,⌥1, 1} and Qd = Diag{±1,⌥1, 1}. Such sign ambiguities come from the fact that we have
required O0q to be as calculable as Oq in diagonalizing Mq, but O0q is only relevant to a transformation of the right-
handed quark fields and thus has no physical impact on the CKM matrix V . One may certainly avoid this kind of
uncertainty by starting from O†uMuM†uOu = Diag{m2

u,m2
c ,m2

t } or O†dMdM†dOd = Diag{m2
d,m

2
s ,m2

b}, but in this case an
exact analytical calculation becomes rather complicated and the corresponding results are too lengthy to be useful.
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➤ But so far the best one is:



TEXTURES AT HIGH ENERGIES
➤ Usually express mass matrices as mass ratios ➝ 

they remain stable below eW scale, but renormalize above it, 
depending on model 

➤ From high to low energies they get renormalized as,  
 
 
 
 
 

➤ Textures remain, coefficients change, for MSSM there is 
dependence on soft breaking terms

6.3.3. Comments on the stability of texture zeros
Since a flavor symmetry model which can naturally accommodate the texture zeros of Yukawa

coupling matrices is usually built at an energy scale far above the electroweak scale ⇤EW, it is
sometimes necessary to examine whether the RGE evolution has a nontrivial impact on those
texture zeros of fermion mass matrices. Here let us briefly comment on the stability of Hermitian
quark flavor textures with four zeros as an example.

The one-loop RGEs of Yu and Yd given in Eq. (165) or Eq. (170) allow us to derive a straight-
forward relation between Yu(⇤) and Yu(⇤EW) or that between Yd(⇤) and Yd(⇤EW) in a reasonable
analytical approximation, where ⇤ � ⇤EW is naturally assumed. To be more explicit, we are
subject to the SM or the MSSM with tan � . 10, in which case the top-quark Yukawa coupling is
expected to dominate how the structures of Yu and Yd change with the energy scale, while the gauge
coupling contributions only provide an overall RGE correction factor for each Yukawa coupling
matrix. In this case one obtains the generic one-loop results [786]

(Yu)i j(⇤EW) ' �u

2
666664(Yu)i j(⇤) +

⇣
ICu

u
t � 1

⌘ 3X

k=1

(Ou)i3(O⇤u)k3(Yu)k j(⇤)
3
777775 , (280a)

(Yd)i j(⇤EW) ' �d

2
666664(Yd)i j(⇤) +

✓
ICu

d
t � 1

◆ 3X

k=1

(Ou)i3(O⇤u)k3(Yd)k j(⇤)
3
777775 , (280b)

where Ou is a unitary matrix used for the diagonalization O†uYuY†u Ou ' Diag{0, 0, y2
t } in the top-

dominance approximation [550, 787], It has been defined in Eq. (183) and its numerical evolution
with ⇤ can be found in Fig. 24, and

�u,d ⌘ exp
"
� 1

16⇡2

Z ln(⇤/⇤EW)

0
↵u,d(t) dt

#
(281)

with the expressions of ↵u and ↵d having been given in Eq. (166) or Eq. (167). It becomes clear
that the stability of up- and down-type quark mass matrices against the RGE evolution depends on
the deviations of ICu

u
t and ICu

d
t from one, respectively.

Given the Hermitian four-zero textures of Mu and Md at a superhigh energy scale ⇤ as shown
in Eq. (275), one may use Eqs. (280a) and (280b) to get the corresponding quark mass matrices at
the electroweak scale ⇤EW as follows:

Mu(⇤EW) ' �u

2
6666666664

0
BBBBBBBBB@

0 Cu 0
C⇤u B0u BuICu

u
t

0 B⇤uICu
u

t AuICu
u

t

1
CCCCCCCCCA
+

ICu
u

t � 1
Au

0
BBBBBBBBB@

0 0 0
0 |Bu|2 BuB0u
0 B⇤uB0u 0

1
CCCCCCCCCA

3
7777777775
, (282a)

Md(⇤EW) ' �d

2
6666666664

0
BBBBBBBBB@

0 Cd 0
C⇤d B0d Bd

0 B⇤dICu
d

t AdICu
d

t

1
CCCCCCCCCA
+

ICu
d

t � 1
Au

0
BBBBBBBBB@

0 0 0
0 BuB⇤d AdBu

0 B⇤uB0d B⇤uBd

1
CCCCCCCCCA

3
7777777775
. (282b)

We see that the texture zeros of both Mu and Md keep unchanged in this approximation, but the
Hermiticity of Md gets lost. If the (2,2) entries are switched o↵ in the beginning, then one finds
that the (2,2) zeros of the Fritzsch ansatz are definitely sensitive to the RGE corrections [788].
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I’s are the one-loop corrections,𝛾 anomalous dimensions, C’s coefficients in the running



HOW DO WE GO BEYOND THE SM?

Grand Unified Theory?

Strings?
M theory?

LQG?

Standard Model

SUSY? 

More particles?
Higgses?

Something 
else...

νR

More 
symmetries?

More 
interactions?

U(1)? Broken 
symmetries?

l

More space-time
dimensions?

Dark Matter

• Theories 
• top-down 
• bottom-up 

• They should meet 
somewhere



HOW DO WE MOVE UP (OR DOWN) IN ENERGY?
➤ We know how a QFT behaves at different scales through the 

renormalization group RG 

➤ The theory has the same structure at different energy scales, but the 
parameters — couplings and masses — change with energy 

➤ Related to scale invariance and conformal invariance

�(g) = µ
@g

@µ
�(�) = µ

@ lnZ

@µ

Conformally invariant

Scale invariant

Scale invariance appears 
in many physical systems



HOW TO GO BEYOND THE STANDARD MODEL (BSM)?
➤ Traditional way  ⇒  addition of symmetries  

                                  N=1 SUSY                                                         

➤ Very effective, but too many free parameters 

➤ Complementary approach 
Look for renormalization group invariant relations 
at high energies   
                            GUT ⇒ Planck 

➤ Resulting theory has few free parameters ∴  very predictive

 Can get messy…

Relates gauge and Yukawa sector 
Predictions for 3rd generation masses



RENORMALIZATION GROUP INVARIANTS RGI
➤ Search for more fundamental theory ⇒ less parameters 

Renormalization Group Invariants (RGI) 
 
 
 

➤ Equivalent to solve reduction equations 

Reduced theory has only one coupling and its beta 
function 
Reduction ➝ power series solution  
Uniqueness of solution can be studied at one-loop 
  Zimmermann (1985); Zimmermann, Oehme, Sibold (1984-1985)

�(g1, . . . , gN ) = 0

µd�/dµ =
NX

i=1

�i @�/@gi = 0

�g (dgi/dg) = �i

i = 1, . . . , N



REDUCTION OF COUPLINGS
➤ Couplings related to a primary coupling 

totally reduced — all couplings depend on one 
partially reduced — some couplings depend on one 

➤ Can be applied to SUSY and non-SUSY models 

➤ SM analyzed — results now ruled out, still impressive                           
Kubo, Sibold, Zimmermann (1984-1987)      

➤ 2HDM analyzed Denner (1990)   —   now re-analysed: 
possible to have one-loop reduced equations in type II 2HDM at 
a high-scale  boundary     May Pech, MM, Patellis, Zoupanos (2023) 

➤ Under some conditions SUSY unification models  
finite =  
absence of ∞ renormalizations

➤ Many solutions imply SUSY 

➤ SUSY indispensable for finiteness 

➤ And no… SUSY not excluded experimentally 
but some low energy models are indeed 
excluded



FINITENESS = SCALE/CONFORMAL INVARIANCE

➤ All-loop finiteness ⇒	β= 0 
to all orders in perturbation theory 

➤ Scale/conformal invariance  
Conformal and scale invariant = Yukawa couplings  
Scale invariant = Soft breaking terms 
Do not depend on energy scale 
Based on RGI and reduction of couplings 

➤ Gives UV completion of the QFT 

➤ Reduces greatly the number of free 
parameters  
⇒ new symmetries 

➤ Partial reduction ⇒ predictions for 
3rd generation masses



➤ Prediction for top mass — very clean  
 

                    
 
 
 
 
 

➤ Prediction for Higgs mass — depends on soft breaking terms,  
also very restricted                                                                                         

             Mtopth~ 178 GeV                1993    Kapetanakis, M.M., Zoupanos 
                m_bot also predicted, large tan beta             
              Mtopexp = 176 ± 18 GeV      1995 
 
               Mtopth  ~ 172.5 GeV            2007     Heinemeyer, M.M.,Zoupanos                                                                         
             Mtopexp  = 173.1 ± .09 GeV   2013 

FINITE  SU(5) THEORIES — THIRD GENERATION

          MHiggsth ~ 121 - 126 GeV      2008, 2013     Heinemeyer, M.M., Zoupanos 

          MHiggsexp = 126 ± 1 GeV           2013     



FINITESS  ⇒	GAUGE YUKAWA UNIFICATION

Grand Unified SUSY N=1, no gauge anomalies: 

W =
1

2
mij �i �j +

1

6
Cijk �i �j �k

�(1)
g = 0 = �j(1)

i

X

i

T (Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2�ji g
2C2(Ri)

Restricts the gauge group 
Relates gauge and Yukawa couplings 
If finite to all orders ⇒ Conformal invariance 
May imply extra symmetries, in this case discrete 

Just analyze one-loop solution 
One-loop finite ⇒ two-loop finite 
Isolated and non-degenerate solution ⇒ 
all-loop finite                Lucchesi, Piguet, Sibold

β= 0 non-renormalization of coupling constants, not complete UV finiteness where field renormalization is absent

T Dynkin index of irrep, C2 Casimir invariant of group          Cijk Yukawa couplings, g gauge coupling



SUSY BREAKING SSB
➤ Explicit/soft breaking  >100 new free parameters 😫 

 

➤ SSB can also be restricted through RGI ⇒ β = 0  

➤ Leads to a sum rule among scalars and gauging masses 
 

➤ Breaks conformal invariance BUT remains scale invariant!

�LSB =
1

6
hijk �i�j�k +

1

2
bij �i�j +

1

2
(m2

)
j
i �

⇤ i�j +
1

2
M ��+H.c.

one- and two-loop finiteness conditions known 
all-loop finiteness possible 
                                             Kazakov, Jack, Jones, Pickering…

( m2
i +m

2
j +m

2
k )/MM

† = 1 +
g
2

16⇡2
�(2) +O(g4)

Depends on the gaugino mass  M  
Scale invariant but not conformal 
 Kazakov et al; Jack, Jones et al; Yamada; Hisano, Shifman; Kobayashi, Kubo, 
Zoupanos



The one- and two-loop finiteness conditions imply following 
matter content: 
                         
3 generations, 4 pairs of Higgs doublets one field in the adjoint 

➤ Soft scalar masses obey sum rule 

➤ No proton decay 

➤ At GUT scale finiteness is broken  ⇒ MSSM  
finiteness broken 

➤ Rotation of FUT Higgs sector ⇒ 2 Higgs doublets of 
MSSM maximally coupled to third generations

3 5 + 3 10 + 4 (5 + 5) + 24

SU(5) FINITE UNIFIED MODELS



SU(5) FUT THIRD GENERATION
➤ Restricted matter spectrum, in particular lots of Higgses 

➤ Relationship between gauge and Yukawa couplings 

➤ Sum rule relating mass of Higgs doublets, soft scalars and 
unified gaugino Mass 

➤ Yukawa couplings determined in terms of g2, soft breaking 
terms depend on M and m10

           ;                             ; 

 ;        ;     

g2
t = 4

5 g2 g2
b,τ = 3

5 g2

m2
Hu

+ 2m2
10 = M2 m2

Hd
− 2m2

10 = −
M2

3
m2

5 + 3m2
10 =

4M2

3



     SU(5) FUT

Yt

Yb

Yτ

MSUSYMW

 Y2t = kt g2 
Y2b,τ = kb g2

MSSMSM

mt = Yt vu               vu/  vd = tan β                         
mb,τ = Yb,τ vd           vd = mτexp /Yτ 

Finite soft breaking terms included 
⇒ SUSY corrections to Yb and Ytau 
⇒ soft SUSY spectrum

Results confronted to experimental 
constraints ⇒  
gives available parameter space



INTERPLAY HIGH-LOW ENERGIES: SEARCHES AT FUTURE COLLIDERS
GUT scale, Finiteness gives: 

Relations between gauge-Yukawa couplings 
Sum rule for soft breaking terms 
⇒ Very few free parameters 

Require: 
Absence of proton decay 
Proper unification of gauge couplings 
MSSM 

Low energies: 
Radiative eW symmetry breaking 
Include SUSY radiative corrections 
Quark and Higgs masses in experimental range  
Compliance with B physics (not trivial) 

Large tan 𝞫 
High SUSY spectrum > 1 TeV 
Challenging for future colliders 

 Heinemeyer, Kalinowski, Kotlarski , Mondragon, Patellis, Tracas, Zoupanos (2021)

B constraints: 
BR (b → s𝛾) 
BR (Bs → 𝜇+𝜇-) 
BR (Bu → 𝜏𝜐) BS 
𝛥 M BS SM/MSSM 



Figure 3: The left (right) plot shows the spectrum of the SU(5)-FUT (with µ < 0) model

after imposing the constraint Mh = 125.1 ± 3.1(2.1) GeV. The light (green) points are the

various Higgs boson masses, the dark (blue) points following are the two scalar top and bottom

masses, the gray ones are the gluino masses, then come the scalar tau masses in orange (light

gray), the darker (red) points to the right are the two chargino masses followed by the lighter

shaded (pink) points indicating the neutralino masses.

scalar tau. Some parts of the allowed spectrum of the lighter scalar tau or the lighter
charginos/neutralinos might be accessible at CLIC with

p
s = 3 TeV.

In Table 1 we show two example spectra of the SU(5)-FUT (with µ < 0) which span
the mass range of the parameter space that is in agreement with the B-physics observables
and the Higgs-boson mass measurement. We give the lightest and the heaviest spectrum
for �Mh = 2.1 and �Mh = 3.1, respectively. The four Higgs boson masses are denoted
as Mh, MH , MA and MH± . m

t̃1,2
, m

t̃1,2
, mg̃, m⌧̃1,2 , are the scalar top, scalar bottom,

gluino and scalar tau masses, respectively. m
�̃
±
1,2

and m
�̃
0
1,2,3,4

denote the chargino and

neutralino masses.

We find that no point of SU(5)-FUT (with µ < 0) fulfills the strict bound of Eq. (77).
(For our evaluation we have used the code MicroMegas [128–130].) Consequently, on a
more general basis a mechanism is needed in our model to reduce the CDM abundance in
the early universe. This issue could, for instance, be related to another problem, that of
neutrino masses. This type of masses cannot be generated naturally within the class of
finite unified theories that we are considering in this paper, although a non-zero value for
neutrino masses has clearly been established [103]. However, the class of FUTs discussed
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Figure 2: The lightest Higgs mass, Mh, as a function of M for the FUT model with µ < 0. The

green points are the ones that satisfy the B-physics constraints.

range where the unified gaugino mass varies from 0.5 TeV . M . 9 TeV. The green points
include the B-physics constraints. One should keep in mind that these predictions are
subject to a theory uncertainty of 3(2) GeV [118]. Older analysis, including in particular
less refined evaluations of the light Higgs boson mass, are given in Refs. [46, 124,125].

The allowed values of the Higgs mas put a limit on the allowed values of the SUSY
masses, as can be seen in Fig.3. In the left (right) plot we impose Mh = 125.1 ±

3.1(2.1) GeV as discussed above. In particular very heavy coloured SUSY particles
are favoured (nearly independent of the Mh uncertainty), in agreement with the non-
observation of those particles at the LHC [126]. Overall, the allowed coloured SUSY
masses would remain unobservable at the (HL-)LHC, the ILC or CLIC. However, the
coloured spectrum would be accessible at the FCC-hh [127], as could the full heavy Higgs
boson spectrum. On the other hand, the lightest observable SUSY particle (LSOP) is the

22

             FUTB — 3rd generation 
1 free parameter in gauge-Yukawa sector  
2 free parameters in soft SUSY breaking

Higgs mass range determined by finiteness, sum rule,  
B physics constraints and radiative top contributions to 
Higgs mass ⇒  heavy spectrum

These are now 
related!



➤ SU(5) models extensively studied     Rabi et al; Kazakov et al;   Quirós et al;   MM, Zoupanos et a  

➤ One coincides with a non-standard Calabi-Yau                  MM, Zoupanos 

➤ Finite string theories and criteria for branes                        Ibáñez 

➤ Models with three generations           Babu, Enkhbat, Gogoladze;  MM & Jiménez; Estrada, MM, Patellis, 
Zoupanos 

➤ SU(N)k   models finite ⟺ 3 generations 
only SU(3)3 compatible with phenomenology                  MM, Ma, Zoupanos                                               

➤ Relations non-commutative theories and finiteness          Jack, Jones                                                                                    

➤ Proof of conformal invariance  (dimensionless part)  Kazakov, Bork; MM & Reyes                   

➤ Relation between finiteness and QFT in curved space-time & inflation                                                                                                                
Elizalde, Odintsov, et al                                                                                           

➤ Recent reviews                    Heinemeyer, M.M, Tracas, Zoupanos, Phys.Rept. 814 (2019); Fortsch.Phys. 68 (2020)                                                                                                       

MANY ASPECTS OF FINITENESS STUDIED

 



SU(N)K — SU(3)3

➤ SU(N)k models finite  ⇔ three generations!    
                       

➤ Trinification model beta function SU(3)3 

 

➤ Finite  ⟺ 3 generations 
 
 

➤ Only SU(5) and SU(3)3 seem to have phenomenological 
possibilities so far

SU(N)1 × SU(N)2 × ⋯ × SU(N)k

26 S. Heinemeyer, M. Mondragón, N. Tracas et al. / Physics Reports 814 (2019) 1–43

5.4. Finite SU(N)3 unification

We continue examining the possibility of constructing realistic FUTs based on product gauge groups. Consider an
N = 1 supersymmetric theory, with gauge group SU(N)1 ⇥ SU(N)2 ⇥ · · · ⇥ SU(N)k, with nf copies (number of families)
of the supersymmetric multiplets (N,N⇤, 1, . . . , 1) + (1,N,N⇤, . . . , 1) + · · · + (N⇤, 1, 1, . . . ,N). The one-loop �-function
coefficient in the renormalization-group equation of each SU(N) gauge coupling is simply given by

b =

✓
�

11
3

+
2
3

◆
N + nf

✓
2
3

+
1
3

◆✓
1
2

◆
2N = �3N + nf N . (5.27)

This means that nf = 3 is the only solution of Eq. (5.27) that yields b = 0. Since b = 0 is a necessary condition for a finite
field theory, the existence of three families of quarks and leptons is natural in such models, provided the matter content
is exactly as given above.

The model of this type with best phenomenology is the SU(3)3 model discussed in Ref. [133], where the details of
the model are given. It corresponds to the well-known example of SU(3)C ⇥ SU(3)L ⇥ SU(3)R [134–137], with quarks
transforming as

q =

 d u h
d u h
d u h

!
⇠ (3, 3⇤, 1), qc =

 dc dc dc
uc uc uc

hc hc hc

!
⇠ (3⇤, 1, 3), (5.28)

and leptons transforming as

� =

 N Ec ⌫
E Nc e
⌫c ec S

!
⇠ (1, 3, 3⇤). (5.29)

Switching the first and third rows of qc together with the first and third columns of �, we obtain the alternative left–right
model first proposed in Ref. [137] in the context of superstring-inspired E6.

In order for all the gauge couplings to be equal at an energy scale, MGUT, the cyclic symmetry Z3 must be imposed, i.e.

q ! � ! qc ! q, (5.30)

where q and qc are given in Eq. (5.28) and � in Eq. (5.29). Then, the first of the finiteness conditions (4.5) for one-loop
finiteness, namely the vanishing of the gauge �-function is satisfied.

Next let us consider the second condition, i.e. the vanishing of the anomalous dimensions of all superfields, Eq. (4.6).
To do that first we have to write down the superpotential. If there is just one family, then there are only two
trilinear invariants, which can be constructed respecting the symmetries of the theory, and therefore can be used in
the superpotential as follows

f Tr(�qcq) +
1
6
f 0 ✏ijk✏abc(�ia�jb�kc + qciaq

c
jbq

c
kc + qiaqjbqkc), (5.31)

where f and f 0 are the Yukawa couplings associated to each invariant. Quark and leptons obtain masses when the scalar
parts of the superfields (Ñ, Ñc) obtain vacuum expectation values (vevs),

md = f hÑi, mu = f hÑc
i, me = f 0

hÑi, m⌫ = f 0
hÑc

i. (5.32)

With three families, the most general superpotential contains 11 f couplings, and 10 f 0 couplings, subject to 9
conditions, due to the vanishing of the anomalous dimensions of each superfield. The conditions are the following

X

j,k

fijk(fljk)⇤ +
2
3

X

j,k

f 0

ijk(f
0

ljk)
⇤

=
16
9

g2�il , (5.33)

where

fijk = fjki = fkij, (5.34)

f 0

ijk = f 0

jki = f 0

kij = f 0

ikj = f 0

kji = f 0

jik. (5.35)

Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñc
1,2,3 obtain vevs as follows

(Md)ij =

X

k

fkijhÑki, (Mu)ij =

X

k

fkijhÑc
k i, (5.36)

(Me)ij =

X

k

f 0

kijhÑki, (M⌫)ij =

X

k

f 0

kijhÑ
c
k i. (5.37)
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md = f hÑi, mu = f hÑc
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hÑi, m⌫ = f 0
hÑc
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where f and f 0 are the Yukawa couplings associated to each invariant. Quark and leptons obtain masses when the scalar
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i, me = f 0
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hÑc

i. (5.32)

With three families, the most general superpotential contains 11 f couplings, and 10 f 0 couplings, subject to 9
conditions, due to the vanishing of the anomalous dimensions of each superfield. The conditions are the following

X

j,k

fijk(fljk)⇤ +
2
3

X

j,k

f 0

ijk(f
0

ljk)
⇤

=
16
9

g2�il , (5.33)

where

fijk = fjki = fkij, (5.34)

f 0

ijk = f 0

jki = f 0

kij = f 0

ikj = f 0

kji = f 0

jik. (5.35)

Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñc
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fkijhÑki, (Mu)ij =

X

k

fkijhÑc
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MM, Ma, Zoupanos (2004);  
Heinemeyer, MM, Ma, Zoupanos (2010) 



2-LOOP SU(3)3 FINITE MODEL
➤ 2-loop finite  SU(3)3 trinification model, parametric solution of 

reduction equations    

                         

 
r parameterizes different solutions, f and f ’ are Yukawa couplings for quarks and leptons 

f 2 = r ( 16
9 ) g2 , f ′ 2 = (1 − r)( 8

3 ) g2

Good top and bottom masses with 
one parameter 

Large tan , heavy SUSY spectrum 

Possibility of neutrino masses, 
consistent with seesaw 

At high energies vector-like down 
type quarks 

Split-SUSY possible
MM, Reyes, Porod, Zoupanos, work in progress



GYU FROM REDUCTION OF COUPLINGS AT WORK

All-loop  
SU(5) FUT

2-loop 
SU(3)3 FUT

Reduced  
MSSM

top and bottom masses OK

Higgs mass OK 
large tan beta


consistent with B physics 
heavy SUSY spectrum

heavy SUSY spectrum 
different for each model

dark matter candidate

3 generations 

neutrino masses

First predictions 
now constraints

Reduced  
min SU(5)



WHAT NOW?  FLAVOR…

➤ So far detailed analysis only for third generation 
➤ As mentioned, some 3 generation finite models exist 
➤ SU(5) models some textures given  
➤ SU(3)3 naturally have 3 generations 
➤ How to do it more systematically?



GENERAL SUPERPOTENTIAL FOR SU(5) FUTS

➤ The SU(5) superpotential of possible finite models is              
 

 
3 generations, 4 pairs of Higgs doublets and one field in the adjoint 

                                

ℋ̄ai = 5 , ℋi
a = 5 , Ψ̄a′ i = 5 , Xij

a′ 
= 10 , Σi

j = 24

3 5 + 3 10 + 4 (5 + 5) + 24

4.1 General SU(5) FUT superpotential and the second finite-

ness condition

For the above-mentioned matter content we will use the following notation: 3  ̄a0i

superfields in the 5̄ irrep characterise the down-type antiquarks, charged leptons and
neutrinos, 3 X

ij

a0 superfields in the 10 represent the up-type quarks and antiquarks,
and the down-type quarks and the charged antileptons, 4 H

i

a
and 4 H̄ai in the 5

and 5̄ irrep respectively are assigned to the Higgs fields, and ⌃i

j
is in the adjoint

representation 24. Throughout the present work the indices i, j, k, . . . will be used
for the gauge group representation, the primed indices a

0
, b

0
, c

0
, . . . for the three

fermion generations and the non-primed a, b, c, . . . label the four Higgs fields Ha and
H̄a.

The most general superpotential with the above mentioned content, consistent
with preserved R-parity is

(24)
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Imposing the second finiteness condition, i.e. taking the anomalous dimensions
equal to zero (19), to the most general superpotential the following system of equa-
tions arises [6]:
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2
�
b

a
,

�H : 3gijag
ijb +

24

5
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cb +
24

5
hiah

ib =
24

5
g
2
�
b

a
,

� ̄ : 4ḡkiaḡ
kja +

24

5
hiah

ja + 4g0
ikl
g
0jkl =

24

5
g
2
�
b

a
,

�X : 2ḡikaḡ
jka + 3gikag

jka + qiabq
jab + g

0

kli
g
0klj =

36

5
g
2
�
j

i
,

�⌃ : fabf
ab +

21

5
pp

⇤ + hiah
ia = 10g2 . (25)

Notice that in the case R-parity is preserved some of the couplings in (25), namely
h, g

0 and q, will not appear. In order to be able to obtain an all-loop finite theory,
isolated and non-degenerate solutions to such a system are required, which implies
that the superpotenial has more symmetry.

9

g̅ijk = down Yukawa couplings, gijk = up Yukawa couplings



WHAT ABOUT FLAVOR?  3 GENERATIONS

➤ Look for FUT 3 generation models 
all-loops 
2-loops 

➤ Solutions for Yukawa couplings 

➤ Sum rule in SSB 

➤ Check absence of proton decay 

➤ Mass matrices

➤ Rotate to MSSM 

➤ Look again for mass 
matrices  

➤ Good textures?

Everything OK? then…

Proton decay → 
              2 fine tunings



FINITE S3 MODEL
➤ Solutions to the RE may imply extra symmetries, so far discrete 

➤ There are models with A4  and Q6,                          Babu et al;    MM & Jiménez 

➤ S3, smallest non-Abelian discrete group, successful at low energies 

➤ Irreps: 2, 1, 1A   →  Two generations in doublet, third in singlet 
 
 
 
 

➤ Look for all-loop finite model

Superfields
✓
 ̄1i

 ̄2i

◆
 ̄3i

✓
X

ij

1

X
ij

2

◆
X

ij

3

✓
H

i

1

H
i

2

◆
H

i

3 H
i

4

✓
H̄1i

H̄2i

◆
H̄3i H̄4i ⌃i

j

Irreducible
representations of 2 1S 2 1S 2 1S 1A 2 1S 1A 1S

S3

Table 3: Assignement of the superfields to the S3 irreducible representations.

The SU(5) superpotential, respecting the S3 symmetry with the above assignemnts
and symmetric under R-parity, is given by

WSU(5)⇥S3
= ḡ121

�
H̄1jX

ij

1  ̄2i + H̄1jX
ij

2  ̄1i + H̄2jX
ij

1  ̄1i � H̄2jX
ij

2  ̄2i

�

+ ḡ113

�
H̄3jX

ij

1  ̄1i + H̄3jX
ij

2  ̄2i

�
+ ḡ124

�
H̄4jX

ij

1  ̄2i � H̄4jX
ij

2  ̄1i

�

+ ḡ311

�
H̄1jX

ij

3  ̄1i + H̄2jX
ij

3  ̄2i

�
+ ḡ131

�
H̄1jX

ij
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ij

2  ̄3i

�

+ ḡ333H̄3jX
ij
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g121✏ijklm
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1 X
ij
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kl
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ij

1 X
kl
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ij
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ij
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3 X
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kl

2

�

+ g131✏ijklm
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1 X
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1 X
kl
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2 X
ij

2 X
kl
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�
+

1
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g333✏ijklmH
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3 X
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3 X
kl
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+ f11
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H̄1jH

i
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j

i
+ H̄2jH

i

2⌃
j

i

�
+ f33H̄3jH

i

3⌃
j

i

+ f44H̄4jH
i

4⌃
j

i
+

1

3!
p⌃i

j
⌃j

k
⌃k

i
+m11

�
H̄1iH

i

1 + H̄2iH
i

2

�

+m33H̄3iH
i

3 +m44H̄4iH
i

4 +
1

2
�
(⌃)⌃i

j
⌃j

i
.

(64)

This SU(5)⇥S3 superpotential leads to the following mass matrices for up and down
type quarks:

Mu =

0

@
g121 hH

5
2i+ g113 hH

5
3i g121 hH

5
1i g131 hH

5
1i

g121 hH
5
1i �g121 hH

5
2i+ g113 hH

5
3i g131 hH

5
2i

g131 hH
5
1i g131 hH

5
2i g333 hH

5
3i

1

A , (65)

Md =

0

@
ḡ121

⌦
H̄25

↵
+ ḡ113

⌦
H̄35

↵
ḡ121

⌦
H̄15

↵
+ ḡ124

⌦
H̄45

↵
ḡ131

⌦
H̄15

↵

ḡ121

⌦
H̄15

↵
� ḡ124

⌦
H̄45

↵
�ḡ121

⌦
H̄25

↵
+ ḡ113

⌦
H̄35

↵
ḡ131

⌦
H̄25

↵

ḡ311

⌦
H̄15

↵
ḡ311

⌦
H̄25

↵
ḡ333

⌦
H̄35

↵

1

A . (66)

Extensions of the SM with S3 as flavour symmetry and three Higgs doublets, with-
out supersymmetry, have been studied in the literature and they lead to the form of
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Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z3 0 0 1 1 1 2 0 0 1 0 1 1 2 0 0

Table 4: Cyclic discrete symmetries of the model based on S3. These symmetries
allow us to obtain isolated and non-degenerate solutions to the system of equations
(25).

the mass matrices shown here. Here we explore an all-loop finite model, which has
as flavour symmetry S3 and extra cyclic symmetries. The Md mass matrix exhibits
a similar structure to the one in [77], for a non-supersymmetric 4 Higgs doublet
model with S3 symmetry. The up type mass matrix Mu shows a different structure,
since in the model presented here the up quark information comes from the Xa0

superfields, that commute among themselves, and the symmetrization of S3 intro-
duces a minus sign in the antisymmetric singlet representation 1A assigned to H4,
leading to the cancellation of the following terms 1

2 (g124X1X2H4 + g214X2X1H4) =
1
2g124 (X1X2H4 �X2X1H4) = 0.

The finiteness solutions (25) to the general superpotential (64) lead to para-
metric solutions to the squared norm of the trilineal couplings, |f11|

2 = |f22|
2 =

1
4

�
4g25 � 5 |g131|

2� and |f33|
2 = 1

2

�
�4g25 + 5 |g131|

2� for the couplings fab of the three
Higgs fields coupled to the fermions. Since the square norm is positive definite
|faa|

2
� 0, the only possible solution is |f11|

2 = |f22|
2 = |f33|

2 = 0. This imposes
an additional restriction to the system of equations, |g333|2 = 2

5

�
4g25 � 5 |g113|

2� and
|ḡ333|

2 = �
3
10

�
4 g

2
5 � 5 |g113|

2�, which implies these couplings are also zero, i.e.
|g333|

2 = |ḡ333|
2 = 0. These conditions lead to the proposed S3 model, which is the

only finite model allowed under the irrep assignement we considered, and that allows
for all-loop finiteness solutions, which in turn imply additional cyclic symmetries, as
we show in the next section.

6.1 Model 1: Finite S3 to all orders

Here we present the above-mentioned all-loop finite SU(5) ⇥ S3 model, which also
exhibits the cyclic symmetries shown in Table 4. The superpotential is given by
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S3 MASS MATRICES

WSU(5)⇥S3⇥Z2⇥Z3 = ḡ113

�
H̄3jX

ij

1  ̄1i + H̄3jX
ij

2  ̄2i

�
+ ḡ311
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H̄1jX

ij
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ij
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ij
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g113✏ijklm
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+ g131✏ijklm
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1 X
ij

1 X
kl

3 +H
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2 X
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2 X
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+ f44H̄4i⌃
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H

j

4 +
1

3!
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j
⌃j

k
⌃k

i

+mabH̄aHb +
1

2
�
(⌃)⌃i

j
⌃j

i
, (67)

which has terms that mix the three generations, contrary to FUTA which is diagonal.
On the other hand, the terms mabH̄aHb break the cyclic symmetries, and are nec-
essary to solve the doublet-triplet splitting. These terms do not affect the finiteness
conditions, which depend only on the trilinear terms. The solutions to the finiteness
conditions are:

|g113|
2 =

4

5
g
2
5 , |g131|

2 =
4

5
g
2
5 , |ḡ113|

2 =
3

5
g
2
5 , |ḡ131|

2 =
3

5
g
2
5 , |ḡ311|

2 =
3

5
g
2
5 ,

|f11|
2 = |f33|

2 = 0 , |f44|
2 = g

2
5 , |p|

2 =
15

7
g
2
5 , (68)

and they are isolated and non-degenerate, ensuring finiteness to all orders of pertur-
bation theory. In general, the Yukawa couplings are complex, but since the finiteness
conditions involve only their squared norm this information is lost. To maintain gen-
erality we have included them in the following expressions, noting that they are in
principle free parameters. The solutions are:

g113 =
2
p
5
g5e

i�1 , g131 =
2
p
5
g5e

i�2 ,

ḡ113 =

r
3

5
g5e

i�̄1 , ḡ131 =

r
3

5
g5e

i�̄2 , ḡ311 =

r
3

5
g5e

i�̄3 , (69)

and f11, f22 = f33 = g333 = ḡ333 = 0. We have also taken f44 = g5 and p =
q

15
7 g5 as

real, to avoid extra sources of CP violation.
In all the FUT models previously studied, as well as in the models here presented,

the two-loop correction to the soft breaking sector sum rule (16) vanishes. In the
present case the one-loop sum rule (17) leads to 11 equations that depend on 5
parameters, as shown below:

m
2
ē
 1

= m
2
ē
 2

= 1
2

⇣
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†
� 2m2
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2
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= 1
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+ 3m2

H3

⌘
,
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=
1

2

�
MM

†
�m

2
H3

�
, m

2
e�3

=
1

2

�
MM

†
� 2m2

H2
+m

2
H3

�
,

m
2
H1

= m
2
H2

, m
2
H̄1

= m
2
H̄2

= m
2
H̄3

+m
2
H2

�m
2
H3

, m
2
H̄4

=
2

3
MM

†
�m

2
H4

,

m
2
�⌃

=
1

3
MM

†
. (70)

6.1.1 Mass matrices

The up and down mass matrices for this model are:

Mu =

0

@
g113 hH

5
3i 0 g131 hH

5
1i

0 g113 hH
5
3i g131 hH

5
2i

g131 hH
5
1i g131 hH

5
2i 0

1

A , (71)

Md =

0

@
ḡ113

⌦
H̄35

↵
0 ḡ131

⌦
H̄15

↵

0 ḡ113

⌦
H̄35

↵
ḡ131

⌦
H̄25

↵

ḡ311

⌦
H̄15

↵
ḡ311

⌦
H̄25

↵
0

1

A . (72)

Unfortunately, it is clear from the textures that these will not render a realistic
spectrum at low energies, as two of the masses will be almost degenerate. The
requirement of the flavour symmetry and finiteness constrained the parameters too
much, leading to unrealistic mass matrices. This can be overcome by looking for
different symmetries and/or two-loop solutions. In the next section we search for
other finite models, based instead only on cyclic symmetries.

7 SU(5) FUT models based on cyclic symmetries

In this section we present examples of SU(5) finite models, where the finiteness re-
quirement implies cyclic symmetries. These models are similar to the previously
studied models FUTA and FUTB (see for instance [80]), where the finiteness condi-
tions were only applied to the third generation. We find the solutions to the finiteness
conditions for each model and the corresponding sum rules. Each solution leads to
a particular texture at the GUT scale.

Mass matrices are in general complex to account for CP violation, and their
phases add to the theory’s free parameters. As we already mentioned, information
about these phases cannot be obtained via the finiteness conditions eq(25), since these
conditions only give information about the trilinear couplings norm squared, and thus
these phases are in principle free parameters. A proposed solution in ref. [20] was to
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But…too restrictive, two masses almost degenerate

Yukawa couplings completely determined!



CYCLIC SYMMETRIES —  3 GENERATIONS

these phases are in principle free parameters. A proposed solution in ref. [20] was to
implement the phases through complex vev’s. Here, we follow a different strategy,
based on refs. [81, 82]. The idea consists in quantifying the minimum number of
independent phases, and then address the question of where they are placed in the
Yukawa matrices, by performing phase invariant products. This way, we attempt
to make a deeper analysis of the reduction of couplings in FUTs, by including the
minimum number of phases in the Yukawa matrices in a mathematically consistent
way, in order to characterise the Yukawa couplings both by their magnitude as well
as their phases.

Ref. [19] offers a classification of eight textures that mass matrices may take to
fulfill the requirement of cancellation of the off diagonal terms of the anomalous
dimensions (25). This classification is particularly useful when considering FUT
models that express cyclic symmetries. This classification is divided into two block
of four matrices V

(i)
3 , in which the quarks couple only to three Higgs pairs

�
Ha, H̄a

�
,

and another four matrices V
(i)
4 , where they couple to the four Higgs pairs. The

subscripts 3 and 4 in V
(i)
3 and V

(i)
4 denote the number of Higgs coupled, whereas the

superscript (i), with i = 1, . . . , 4, classifies the four different matrices in each block.
For the case of three pairs of Higgs coupled to the fermions, the matrices are:

V
(1)
3 =

0

@
g111 hH

5
1i g123 hH

5
3i g132 hH

5
2i

g213 hH
5
3i g222 hH

5
2i g231 hH

5
1i

g312 hH
5
2i g321 hH

5
1i g333 hH

5
3i

1

A , V
(2)
3 =

0

@
g112 hH

5
2i g121 hH

5
1i 0
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5
1i g223 hH

5
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5
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0 g322 hH
5
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5
3i

1

A ,

V
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3 =
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@
g113 hH

5
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5
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5
1i g223 hH

5
3i g232 hH

5
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5
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5
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1
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g111 hH

5
1i 0 0
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5
3i g232 hH

5
2i
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5
2i g333 hH

5
3i

1

A ,

(73)
while for the case where the four pairs of Higgs couple to the fermions they are:

V
(1)
4 =

0

@
g111 hH

5
1i g124 hH

5
4i g132 hH

5
2i

g214 hH
5
4i g222 hH

5
2i g231 hH

5
1i

g312 hH
5
2i g321 hH

5
1i g333 hH

5
3i

1

A , V
(2)
4 =

0

@
g112 hH

5
2i g121 hH

5
1i 0

g211 hH
5
1i g222 hH

5
2i g234 hH

5
4i

0 g324 hH
5
4i g333 hH

5
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1

A ,
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g113 hH

5
3i g121 hH

5
1i g132 hH

5
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g211 hH
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1i g222 hH

5
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5
4i

g312 hH
5
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5
4i g333 hH

5
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1

A , V
(4)
4 =

0

@
g113 hH

5
3i g121 hH

5
1i g132 hH

5
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g211 hH
5
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5
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5
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g312 hH
5
2i g324 hH

5
4i g333 hH

5
3i

1

A .

(74)
These matrices are constructed using the ga0b0a couplings and the Ha Higgs fields of
Mu. The Md matrices are calculated in the same way, substituting the corresponding
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                                                                           Coupled to 4 Higgs doublets

    Classification of SU(5) FUT with off-diagonal 𝛾 done already 
                                       Coupled to 3 Higgs doublets

                   Top and down mass matrices with same structure                                                    Babu, Enkhbat, Gogoladze (2003)



2-LOOP FINITE MODEL — V41

Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z8 4 3 5 0 7 1 0 2 6 1 4 6 2 5 0

Table 5: Symmetries related to (80).

The following parametric solutions to (25) are found for this model:

|g124|
2 = |g214|

2 =
4

5
g
2
5 , |g222|

2 =
2

5
g
2
5 , |g231|

2 = |g321|
2 =

1

10

�
8g25 � 5 |g111|

2�
,

|g333|
2 =

6

5
g
2
5 , |ḡ111|
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2
5 ,
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2 = |g312|

2 = |ḡ132|
2 = |ḡ312|

2 = |f11|
2 = |f44|

2 = 0 . (80)

By imposing the positivity conditon to the squared norm of the couplings, we find
the following constraint for |g111|

2:

2

5
g
2
5  |g111|

2


8

5
g
2
5 . (81)

Solutions with extra zero textures are found in the limiting values for the coupling
|g111|

2. For instance, when |g111|
2 = 8

5g
2
5, the couplings g321, g231, ḡ111 and ḡ124 are

zero, leading to the following mass textures:

Mu =

0

@
g111 hH

5
1i g124 hH

5
4i 0

g214 hH
5
4i g222 hH

5
2i 0

0 0 g333 hH
5
3i

1

A , Md =
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0 0 0

ḡ214

⌦
H̄45

↵
ḡ222

⌦
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↵
ḡ231

⌦
H̄15

↵

0 ḡ321

⌦
H̄15

↵
ḡ333

⌦
H̄35

↵

1

A , (82)

clearly incompatible with phenomenology. Another solution is found when |ḡ321|
2 =

0, which leads to |g111|
2 = 2

5g
2
5 and to the following mass matrices:

Mu =

0

@
g111 hH

5
1i g124 hH

5
4i 0

g214 hH
5
4i g222 hH

5
2i g231 hH

5
1i

0 g321 hH
5
1i g333 hH

5
3i

1
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0

@
ḡ111

⌦
H̄15

↵
ḡ124

⌦
H̄45
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0

ḡ214

⌦
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ḡ222

⌦
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↵
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⌦
H̄15
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↵

1

A , (83)
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We find the following symmetries ⇒  
parametric relations among couplings ⇒ 2-loop solution

up-type 
Yukawa

down-type 
Yukawa

evaluating at the end points 
implies more symmetry = more zeroes

Estrada, MM, Patellis, Zoupanos, Fortschr. Phys. 2024, 24001



EXAMPLE OF SOLUTIONS
➤ Many solutions, depend on the free parameter |g111|2 

➤ Taking the Yukawa values at extreme points in inequality → 
more zeroes, more symmetry? 
 
 
leads to 
 
 

➤ Mu compatible with phenomenology, but Md? 

➤ RGE analysis and sum rule might change a bad structure into a 
good/bad one                                   Cakir, Solmaz Xin (2008); Zhang, Zhou (2008)

Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z8 4 3 5 0 7 1 0 2 6 1 4 6 2 5 0

Table 5: Symmetries related to (80).

The following parametric solutions to (25) are found for this model:
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2 = |ḡ231|
2 =

3

10
g
2
5 , |ḡ321|
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By imposing the positivity conditon to the squared norm of the couplings, we find
the following constraint for |g111|

2:
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Solutions with extra zero textures are found in the limiting values for the coupling
|g111|

2. For instance, when |g111|
2 = 8

5g
2
5, the couplings g321, g231, ḡ111 and ḡ124 are

zero, leading to the following mass textures:
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ḡ222

⌦
H̄25

↵
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clearly incompatible with phenomenology. Another solution is found when |ḡ321|
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ḡ214

⌦
H̄45

↵
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which leads to a similar texture for Md as in (79) of model 2.
In the next section we explore another solution which gives viable textures for

both mass matrices.
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Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z8 4 3 5 0 7 1 0 2 6 1 4 6 2 5 0

Table 5: Symmetries related to (80).
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2 = |ḡ132|
2 = |ḡ312|
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By imposing the positivity conditon to the squared norm of the couplings, we find
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➤ We find the following symmetries ⇒ isolated solution 
unique relation among couplings ⇒  all-loop finite solution

➤ For the SSB ⇒ sum rule ⇒ 3 free  parameters

ALL-LOOP FINITE MODEL — V42

Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z3 0 2 0 0 2 0 1 1 0 0 1 1 0 0 0
Z4 3 3 2 3 3 2 2 3 0 2 2 3 0 2 0

Table 6: Cyclic discrete symmetries of model 4.1 to obtain isolated, non-degenerate
solutions of the system of equations (25).

7.4 Model 4.1: Finite version at all orders of V(2)
4

The following model is similar to the one presented in [19], but in our case it exhibits
only cyclic symmetries. Another difference lies in the inclusion of the phases and
their position, not previously done in FUTs. We found other models also based in
cyclic symmetries and finite to all-loops with different textures to model 4.1, but it
can be shown that they all belong to the same equivalence class, so they are basically
the same model.

To ensure finiteness to all-loops, the solutions to (86) must be isolated and non-
degenerate. One such solution exhibits the symmetries presented in Table 6, where
it should be noted that they lead to |g224|

2 = |ḡ224|
2 = |f11|

2 = 0.
Under these symmetries, the superpotential is:
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The trilinear terms satisfy exactly these symmetries, but the term mabH̄aiH
i

b
breaks

them softly in order to ensure a successful doublet-triplet splitting and no fast proton
decay. This breaking does not affect the finiteness conditions, which apply only to
the trilinear terms in the superpotential.
Using the allowed couplings in (87), we obtain the following solutions:
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Since these solutions are unique, isolated and non-degenerate, the model is all-loop
finite.

7.4.1 Sum rule for squared masses of scalars

In the dimesionful sector the one-loop sum rule (17) generates 13 equations, with 16
parameters (m2
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ē
 3

=
1

6

�
�MM

† + 9m2
H3

�
, m

2
ē
 2

=
1

6

�
�MM

†
� 6m2

H1
+ 15m2

H3

�
,

m
2
e�1

= m
2
e�3

=
1

2

�
MM

†
�m

2
H3

�
, m

2
e�2

=
1

2

�
MM

†
� 2m2

H1
+m

2
H3

�
,

m
2
H̄1

= m
2
H̄2

=
1

3

�
2MM

† + 3m2
H1

� 6m2
H3

�
, m

2
H̄3

= m
2
H̄4

=
1

3

�
2MM

†
� 3m2

H3

�
,

m
2
H2

= m
2
H1

; m
2
H4

= m
2
H3

, m
2
�⌃

=
1

3
MM

†
. (89)

7.4.2 Invariant products under phase transformations

Since the finiteness conditions only restrict the squared norm of the couplings, we
address the possible phases in the least arbitrary possible way. The minimum amount
of phases needed and their positions in the mass matrices have to satisfy certain
theorems and requirements established in references [81,82], which we follow here.

For a three generation quark model, there exist several combinations of four
(P (f)

4;j1k1,j2k2
, Q4;j1k1,j2m1) or even six (P (f)

6;j1k1,j2k2,j3k3
, Q

(fff 0)
6;j1k1,j2k2,j3m1

) entries of the
Yukawa matrices that are needed to determine the position of the phases. Their
argument must be different from zero and ⇡, and remains invariant under rephasing
of the Yukawa couplings. The general form of these products is the following:
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ē
 2

=
1

6

�
�MM

†
� 6m2

H1
+ 15m2

H3

�
,

m
2
e�1

= m
2
e�3

=
1

2

�
MM

†
�m

2
H3

�
, m

2
e�2

=
1

2

�
MM

†
� 2m2

H1
+m

2
H3

�
,

m
2
H̄1

= m
2
H̄2

=
1

3

�
2MM

† + 3m2
H1

� 6m2
H3

�
, m

2
H̄3

= m
2
H̄4

=
1

3

�
2MM

†
� 3m2

H3

�
,

m
2
H2

= m
2
H1

; m
2
H4

= m
2
H3

, m
2
�⌃

=
1

3
MM

†
. (89)

7.4.2 Invariant products under phase transformations

Since the finiteness conditions only restrict the squared norm of the couplings, we
address the possible phases in the least arbitrary possible way. The minimum amount
of phases needed and their positions in the mass matrices have to satisfy certain
theorems and requirements established in references [81,82], which we follow here.

For a three generation quark model, there exist several combinations of four
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Zn  ̄1  ̄2  ̄3 X1 X2 X3 H1 H2 H3 H4 H̄1 H̄2 H̄3 H̄4 ⌃
Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Z3 0 2 0 0 2 0 1 1 0 0 1 1 0 0 0
Z4 3 3 2 3 3 2 2 3 0 2 2 3 0 2 0

Table 6: Cyclic discrete symmetries of model 4.1 to obtain isolated, non-degenerate
solutions of the system of equations (25).

7.4 Model 4.1: Finite version at all orders of V(2)
4

The following model is similar to the one presented in [19], but in our case it exhibits
only cyclic symmetries. Another difference lies in the inclusion of the phases and
their position, not previously done in FUTs. We found other models also based in
cyclic symmetries and finite to all-loops with different textures to model 4.1, but it
can be shown that they all belong to the same equivalence class, so they are basically
the same model.

To ensure finiteness to all-loops, the solutions to (86) must be isolated and non-
degenerate. One such solution exhibits the symmetries presented in Table 6, where
it should be noted that they lead to |g224|
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Under these symmetries, the superpotential is:
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The trilinear terms satisfy exactly these symmetries, but the term mabH̄aiH
i

b
breaks

them softly in order to ensure a successful doublet-triplet splitting and no fast proton
decay. This breaking does not affect the finiteness conditions, which apply only to
the trilinear terms in the superpotential.
Using the allowed couplings in (87), we obtain the following solutions:
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Q
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where (fff 0) = (uud) or (fff 0) = (ddu). The argument of the above products
is equivalent to a system of coupled equations among the phases. Thus, once the
minimum number of phases is established it is enough to consider the same number
of products that generate a system of linearly independent equations.

For this model, the minimum number of phases is 4 among both types of Yukawa
matrices and their positions are established by constructing the following invariant
products under phase transformations and extracting their arguments:

arg (g114ḡ211g
⇤

211ḡ
⇤

114) = C1 6= 0, ⇡ , arg (g121ḡ322g
⇤

322ḡ
⇤

121) = C2 6= 0, ⇡ ,

arg (g232ḡ333g
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333ḡ
⇤

232) = C3 6= 0, ⇡ , arg (g114g232g322g
⇤

121g
⇤

211g
⇤

333) = C4 6= 0, ⇡ .

(91)
These expressions are dependent on 12 Yukawa couplings, but since Yu is symmetric
there are only 10 left, of which 6 are real. Therefore we are left with the following
solutions for the phases:

arg (g333) = �C4 + arg (g114)� arg (g121)� arg (g211) + arg (g232) + arg (g322) = �3 ,

arg (ḡ211) = C1 � arg (g114) + arg (g211) + arg (ḡ114) = �̄1 ,

arg (ḡ322) = C2 � arg (g121) + arg (g322) + arg (ḡ121) = �̄2 ,

arg (ḡ333) = C3�C4+arg (g114)�arg (g121)�arg (g211)+arg (g322)+arg (ḡ232) = �̄3 .

(92)
This way we choose �3 = arg (g333), �̄1 = arg (ḡ211), �̄2 = arg (ḡ322) y �̄3 = arg (ḡ333)
to fix the phases in the mass matrices. There are various ways to distribute the four
phases, but in this analysis we choose this particular one.

7.4.3 Mass matrices

The mass matrices for this model are:
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30

ALL-LOOP FINITE MASS MATRICES
➤ It is possible to find the minimum amount of phases —

rephasing invariants 
➤ The mass matrices are then:

➤ After the rotation in the Higgs sector to the MSSM basis: 
We have already substituted in these matrices the solutions found for the finiteness
conditions (88) and the complex phases, as already explained above.
After the rotation in the Higgs sector, the matrices in the MSSM basis are:
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↵
, (96)

where e↵i and e�i refer to the rotation angles in the up and down sector, respectively.
Notice that this is a non-minimal SUSY SU(5) model. The actual expressions for

the five dimensional operators that mediate proton decay will depend, among other
parameters, on the Yukawa couplings, the VCKM matrix elements, the soft breaking
sector, and the coloured Higgs triplet masses, and will differ from the usual minimal
SU(5) [74,87]. It is possible to estimate though, that the coloured triplets are indeed
heavier than the GUT scale in this model, similarly to the diagonal FUTA model.
In refs. [87, 88] a way to suppress these five dimensional operators in models with
several heavy triplets is outlined, in the basis where only one pair of Higgs doublets
couples to matter, similar to the scenario we present here.

7.4.4 Free parameters

Before the solution to the finiteness conditions is determined, the Lagrangian has 89
free parameters, including all the couplings, soft breaking terms, and phases, plus the
vacuum expectation values of the Higgs fields. This number is drastically reduced
after the solution to the finiteness conditons is found, both in the dimensionless and
dimensionful sectors, leaving 33 free parameters. This number is further reduced by
imposing the doublet-triplet splitting, which again has consequences in the dimen-
sionless and soft breaking sectors. The four phases that are left as free parameters
are constrained by the invariant products, as already explained, as:

�̄1 6= 0, ⇡ ; �̄2 6= 0, ⇡ ; �̄3 6= 0, ⇡ ; �3 6= 0, ⇡ ; �̄3 � �3 6= 0, ⇡ . (97)

Then, the vacuum expectation values of the Higgs fields are replaced by the
rotation angles when we go to the MSSM basis, with the constraint that the sum of
their squared values is equal to one, which eliminates one more parameter

e↵4 =
q

1� e↵2
1 � e↵2

2 � e↵2
3 , e�4 =

q
1� e�2

1 �
e�2
2 �

e�2
3 . (98)

31

𝛼i, 𝛽i refer to  the rotation angles in up and down sectors respectively,                  𝛴𝛽i =𝛴𝛼i=1

Same solution  as FUTB  
for 3rd generation! 
we know it works…
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FINALLY, HOW MANY FREE PARAMETERS?
  

GUT scale  89 free parameters 
Yukawa couplings, soft breaking terms, phases, 

vev’s of the Higgs fields 

 After Finiteness solutions  
33 free parameters  

Require  doublet-triplet splitting, rotation to MSSM 
basis with constraints over angles, rephasing 

invariants 
 

Low energies:  
radiative electroweak breaking, fix m𝜏exp and SM vev give tan𝛽 

 ⇒ 12 parameters left: 
The soft breaking terms, the phases, and the rotation angles 
𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝛼1, 𝛼2, 𝛼3,  𝛽1, 𝛽2, 𝛽3, M, 𝜇 

                            Only one phase is observable 
                        ⇒ 𝜙obs, 𝛼1, 𝛼2, 𝛼3,  𝛽1, 𝛽2, 𝛽3, M, 𝜇 
          only 9 parameters left to fit masses and mixing angles



WHAT ABOUT NEUTRINO MASSES, DARK MATTER, ETC?

➤ SU(5) models: 
Cold DM 
LSP is neutralino 
⇒ overabundance 

➤ Neutrino masses may be 
incorporated by breaking R 
symmetry ⇒  
gravitino Dark Matter 

➤ Other mechanisms? 
thermal inflation?  

➤ g-2 like in SM

➤ SU(3)3 models: 
𝜈R are present 

➤ Neutrino masses may be 
generated by seesaw or 
radiatively 

➤ Depending on the breaking of 
SU(3)3  
DM may be neutralino  
(or scalar?) 

➤ Neutralino DM overabundance

Flavor Structure may change  the above! 



CONCLUSIONS AND OUTLOOK

➤ Reduction of couplings finiteness 
powerful principle implies Gauge 
Yukawa Unification  

➤ Conformal or scale invariant theory 

➤ SSB terms satisfy a sum rule 
among soft scalars 

➤ SSB same as anomaly mediated 
scenario 

➤ Finiteness reduces greatly number 
of free parameters completely finite 
theories SU(5) 

➤ Very predictive

➤ Flavor 3 generation models 
2-loops: Yukawa couplings determined within a 
range 
All-loops: Yukawa couplings completely 
determined 

➤ Leads to viable mass textures 

➤ Drastic reduction in number of 
free parameters 

➤ Free parameters come from 
Higgs sector, SSB and phases  

➤ More fundamental theory?

    How can we restrict phases?  CP violation? 
    Higgs sector?   Flavor processes? 
    Dark matter?  Inflation?  Bariogenesis? 



Thank you!


