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Motivation

Some background

» The Standard Model has been successful in describing interactions.

» There are issues such as the mixing pattern, neutrino masses, the composition of
dark matter...

» A possible solution: extending the model with one or more symmetry groups.

» Finite permutation groups: S; has provided a good approach to describe the mixing
pattern.

» Finite groups based on modular symmetries have been proposed.
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Quark mixing matrix
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Figure 1: Quark mixing matrix pattern

Sheldon Stone, New physics from flavour. PoS ICHEP2012 (2013), 033 DOI: 10.22323/1.174.0033
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Symmetry groups: S3 Group
Permutation group of three elements

T2
e: {1;1,332,333} — {331,3327373}a

ar : {x1, 2, 23} — {22, 21, 23},
ag : {1, 72,73} — {23, 72,71},
az : {z1, 72,73} — {1, 73,72},
ay : {T1,T2, 73} — {®3, 71, T2}, 1 T3
t{xr, 22,23} = {22, 23, 21},

S
a

a1az = as, a2a1 = G4, G402 = 420102 = a3.
If we redefine a; = a and a2 = b, then all the elements of the group are defined as follows.

{e,a,b,ab,ba,bab}, (1)

Hajime Ishimori, Tatsuo Kobayashi, Hiroshi Ohki, Yusuke Shimizu, Hiroshi Okada, Morimitsu Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Progress of
Theoretical Physics Supplement, Volume 183, January 2010, Pages 1-163
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Symmetry groups: S3 Group

ab
—

b
—_—

For the elements of Ss, it is also satisfied that

a’? =b* = (bab)? =1

(ab)® = (ba)® =1, (2)
This allows us to group the elements into three conjugacy classes (identity, rotations, and
reflections).
Cy i {e} Cy : {ab,ba} Cs : {a,b,bab} (3)
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Symmetry groups: S3 Group

Matrix representation of Ss
-1 0 —cosf sinf —cos 260 sin 20
= ( 0 1) ’ b= ( sinf  cos 0) ’ bab = ( sin26  cos 20) ’ (4)

b— cos —sinf ba — cosf sinf (10
W= 1\sind cosh )’ “=\_sing cosh)’ o 1)
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Modular Groups

The modular group is defined as

F:SLQ(Z):{<CCL Z)|a,b,c,d€Z,ad—bc:1}. (5)
From this group, the fractional transformation is defined as
a b at +b
o= (4 )0 T ©
. a b
with e d )€ T.

The generators of I'(7) are
S:7’—>—1 and T:7—>714+1, (7)
.

which in T correspond to

and satisfy in T’



Modular Groups

The congruence subgroup is defined as

r(zv):{(“c‘ Z)er:(‘é Z):(é ?)(modN)}.

It is worth noting that
T ~ PSLy(Z) = SLy(Z)/{I,~1}. and T(N)=~T(N)/{I,~I}
The finite modular group is defined as

Iy =T/T(N).
Some isomorphisms of the finite modular groups are
I'y ~ S5 Ty~ Ay
'y~ Sy I's ~ As.
It can be proof that
S%=1
(ST)* =1
™ =1.

(14)
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Modular Groups

FQ'ZSS
S22 =1 a?=1
(ST)* =1 ab)® =1,
T2 =1. =1
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Modular Groups

Under T, modular forms of weight & are defined as holomorphic functions f(7) that satisfy
F(7) = (e +d)* f(7), (15)

forms of weight zero are invariant under T".

It can be shown that modular forms can be organized into multiplets that, under a finite
group T, transform as
Fr) = (er + ) p(7) f (1), (16)

where p(v) is a unitary representation of T

11/34



Elements for Model Construction

Extended the group with T'y
SU(3)c x SUL(2) x Uy(1) x I'y (17)

¢ — (et +d)koo (18)

It is assumed as a hypothesis that modular symmetry is a residual symmetry of a more
fundamental group at low energies.

Fields are not modular forms.
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Elements for Model Construction

» Define the basis of Ss.

» Establish the assignments under S; and the modular weights of the fields.
» Construct the modular forms of S5 with weight 2 and 4.

» Calculate the Lagrangian of the Yukawa sector.
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Base definition
Base of S5 for 6 = 47/3

e_(l o) a_(1 0) b_( 1

0 1)’ 0 1 _§ —i
_1 V3 B ] 13

ab = _é _2; , ba= é _i , bab= é _21 (19)
2 2 2 2 2 2

Tensor products of S3
mlyzﬁ-xzyl)
2

xy Y1 _ . ,
(x2>2(® (y2>2(x1y14x2y2)1€9($1y2 T2y1)1 B ($1y1—-x2y2

(51) e = () 20)
(@)1 @ (y)1 = (@'y)1.
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Higgs potential
Three Higgs doublets potential invariant under Ss
a

Vo (R, ) + g8 (1)

(HIH,) + b (HIH,) (HlTHl + HQTH2>

+5 (rrf s+ H§H2)2 + g (rlrs - Hng)2 + e fign ((HIH;) (HIH) + hec.)
' {(Hng) (HITH) + (H!H,) (HQTH)} n g {(H}Hl - H;H2)2 n (HITHQ T H2TH1>2}
0 () (1) + () () + () () + (30, (23, )
(21)
]
where the VEVs are denoted as
(01 Hy 0) = —=vi; (0] Ha[0) = —=vs; (0] H, [0) = —=us, (22)

V2 V2 V2

M. Gémez-Bock, M. Mondragén, A. Pérez-Martinez, Scalar and gauge sectors in the 3-Higgs Doublet Model under the S 3 symmetry, Eur. Phys. J. C 81 (10) (2021) 942.
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Assignments in S3; and modular weights

\ (Q1,Q2)  (g1,2) Qs q3
SU(2) 2 1 2 1
S3 2 2 1 1
k —2 —2 0 0

| (H,H))  H,  (WY0.%Y0) v
SU(2) 2 2 1 1
S3 2 1 2 1
k 0 0 2(4) 4

Table 1: Charges, assignments, and modular weights of SU(2) and S3. The superindex (4) on the modular forms indicates that
they are of modular weight 4. The subindex s indicates that it is the symmetric singlet of the modular form of weight 4.
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Modular forms in Ss

The modular forms will be constructed from the following expression.
Z—logfl —>Zc¢+dkc+ZCT+d dilogfl( ). (23)

A useful type of modular form is

) =¢/*[[a-a", q=em" (24)

Ferruccio Feruglio.Are neutrino masses modular forms? arXiv preprint arXiv:1706.08749-(2019). DOI: 10.1142/97898132380530012
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Modular forms in S;

Under the generators of the modular group, n(7) transforms as

Under T
n(21) — e™/Sp(27),
n(t/2) = n((r +1)/2),
n((T+1)/2) = ™ 2(7/2).
Under S

n(27) — /=it /2n(7/2),
n(r/2) — v —i3n(27),

(T +1)/2) = eV —irn((T +1)/2).

(26)
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Modular Forms in S5
The general modular form in terms of the functions 7(7) can be written as

d +1
Y(a,f0l7) = o (alogn (I) + Blogn <T) +vlogn(2T)> ; (27)
T 2 2
which satisfies
at+pf+y = 0
Y(a,B.97) S Y (y,8,alr) (28)
Y(a,B.97) = Y(Ba|r)
with the generators of S5 for the representation 2
1 1 -3 (-1 0
=5 s ) = 1) 29)
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Modular Forms in S5
The system of equations generated by is solved
at+pf+y = 0
Y(St) = Y(=1/7)=7%p(S)Y (1) (30)
Y(Tr) = Y(F+1) =p(T)Y(7)
The modular forms of weight 2 for S5, with Cy, = i/2m, are
V3i (n/'(1/2)  n'((r+1)/2)
o (5o M) o1
K2 <77/(T/2) L +1)/2) 817’(2T)>
dr \n(r/2) ~ n((r+1)/2)  =n@2r) )’

Yl(T) =

Ya(r) =

Ys(4) — Y12 4 }/22

% % y &4
1 1 _ v(4) 1 (4)
(1@)®(Y2)YS Tl ) YV =my,

Y*2(4) _ Y12 o Y22.
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Yukawa Sector

To compress the notation, the doublets of S3 can be redefined as

ol @ &)
Q4 ULR H, (4) Y, (2) Y,
=( = L ou = . H= oy = 1 s Y@® = 1 ;
Q ( Q, ) " usr )’ Hy )’ Y@ Y@

Thus, the Lagrangian in the Yukawa sector is

LMW =C1QeueHaYW + CQeue Ha Y™
+C5Q00ueH, oYW +CQeue Hy oYY
+05Q0usr @ HoY® + CQ@usp 0 Hyo Y (32)
+CQ;0u@HRY® + Qs 0u® H, o Y?

+ CyQ4 @ uzgp ® H, + h.c.

Only the S3 invariant terms are allowed, and their modular weight must be zero.
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Yukawa Sector

Matrix elements

ME = (a+ 7)Y ® + (0 — ¥ + CovaVi® + Cov, Y + CrovP

Mip =
My =
MY =
iy
iy
iy

B+ ”/)UQY( )+ (v— )UlY(4) + 021)13/5(4) + C3v3Y1(4)
CS(UQY( ) +U1Y( )) + Cs, Y( )
(B + "/)UIY( ) + ( B)UQY( ) + Cgle( ) + Csvs (4)

=(a+ ”/)UQYQ( ) + (a— ’y)mYl( ) _ CQUQYS( ) _ C3’USY2( ) + C4115Y5(4)
=C5 (U1Y1(2) — U2Y2(2)) + CgvSYZ(Q)
= C?(U2Y1(2) + U1Y2(2)) + CSUSY1(2)

M = Cr(n Y} — v:Y3?) + Cov, Yy
Mé;) = CQ'US.

(33)

In this model, the free parameters are vy, va, vs, o, 3, v, Ca, Cs, C4, Cs5, Cg, C7, Cs, Co y T,
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Vor Matrix
The goal is to construct a matrix of the form

0 a O
a b ¢ |, (34)
0 ¢ d

Known as texture zeros.

To satisfy this form in the mass matrix, the following conditions must be imposed
M11 = 0 M12 = MQ*I Mgg = M2*3 M13 = M31 = 0 (35)

Ml(g) = C5('U2Y1(2) + 1)1Y2(2)) + CG’USY1(2) = 0,

Mgf) = C7(UQY1(2) + 'U1Y2(2)) + Cg’l)syl(2) = 0, (36)
Using the relation from the minimization of the Higgs potential
Y2 (r) - VY (r) = 0. (37)

H. Fritzsch, Z.-Z. Xing, Mass and flavor mixing schemes of quarks and leptons, Progress in Particle and Nuclear Physics 45 (1) (2000) 1-81.
doi:https://doi.org/10.1016/S0146-6410(00)00102-2.
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Vor Matrix
We make the texture zeros matrix if

Re(B) =0 C3=0 7 =—(1/2)(vs/v2)Cy
a=-CeR Cs = —4(’02/1)8)05 Cg = —4(’1)2/1)5)07
05 = C; T=1

Cy,v12,vs €ER

For 7 = i we have

v =V3y V=2Vt Y = 2 W =ayd, (38)
with y, = Y% (7). The mass matrix takes the form.
For simplify the notation, we have defined the parameters as

C' = 4v3v293 (Cs + B),

o ¢ 0
O = 8y2(Cyvs — Coa), MW= c* ¢, c (39)
Cl = —4V/3v2y, Cs, 0 Cy G
Cy = Cyvs
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Vor Matrix

The information about the phase is extracted through the matrix
P; = diag(1, e'1, e'(¢1=2)) (40)

where ¢, is C’ phase and ¢- is Cf phase.

M®™ = pPin™ Py, (41)
Therefore,
. 0 || o0
MW= |c| ¢ ¢y ], (42)
0o |cL ¢

F Gonzélez Canales, A Mondragén, M Mondragén, UJ Saldafia Salazar, and L Velasco-Sevilla. Quark sector of S 3 models: classification and comparison with experimental
data.Physical Review D88(9), 096004 (2013)



Vor Matrix

If we relate the mass matrix M = diag(c1, —02, 1) and using the invariants of a matrix,

one obtains
0109
C =
=\
Cz/i = (51 —324-1—0(3) (43)

| = (1—C¢)(Cy —01)(Cy + 02)
5 Cg/)

where o; = 0;/03,coni =1,2.

This calculation applies to both up and down quarks.
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Vor Matrix

th Geaseled Gutg i a2 ;
Vud =\ DiaD1q TV DPruDig (\/(1 —ou) (1= 8q) ey €] + \/ousaey eg 81¢2) et
th Fergtued == ) X
Vaw =~ Bl 4\ [pTuZe (A= 5u) (1 50) e ed + fousgegef it ) civn
th Foog5s0gEy 5 i i
Vap =\ gty [Ty (\/(1 o) (1= 6g) bg€y — \/5u555152gt¢2) cid1,
th [Fudseyed Feo ) )
Ve =\ Dy Prq tV DauBig (\/<1 = 8w (1—8q)exef + \/‘m‘sdf%fgemz) <
th Guogeyed >3 ) )

Ve =\ o252 4\ [pZefe (= 5u) (1= 5g) e e + fousaeefeivz ) eid1, (44)
th ENEIT T 5 : . ;
Veb =~ uD2u1SJ3d %+ Dybag (\/(1 —6u) (1 —384) 5483 — \/5“5%5(115351¢2> %1

th GudcosSutd 5q a weuedi i
Vg = et ot (Vou (1= 6u) (1 - 5q) €F — \fogepegedeivn ) eiv1

th Fudcdgdutd 5 ; ;
Vis = =\ " Daubaq ~ +\ Daobaa (\/Su (1 —6u) (1 —54) €9 - \/5d571‘555f‘31¢2) 1
vt _ [FuBeogssduby | ¢£7f§’5§‘f£‘21 b [3u8a0=00 (=04 iy ) cioy |

tb v DP3uD3d D3uD34 D3uD3q

F. Gonzalez Canales, A Mondragén, M Mondragdn, UJ Saldafa Salazar, and L Velasco-Sevilla.Quark sector of S 3 models: classification and comparison with experimental
data.Physical Review D88(9), 096004 (2013).




Vor Matrix

where it has been defined

Ju,d
&
&
Di(u,a)
Do(u,a)
D3(u,q)

1—Coy 4

1—0ud— Oud,

1+0cs — dud,

(1= 6u,a)(Cu,d + Fe,s) (1 = Gua)s
(1 = 0u,a)(Ou,a +0cs) (1 +0cs),
(1- 5u, J(1 = Gua)(1+Fes).
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Vor Matrix
The comparison is made with the x? function defined as

¥ Z — |Viy)® (46)

i=u,c,t j=d,s,b V”
Parameters Values in the fit
C@u 0.816393
Cha 0.828604
b1u 1.63797

?14d 0

b2u 0.0981477
$24 0

X2 0.00070

Table 2: Values of the free parameters for the adjustment with the values of the ratios of the masses fixed in their central value
and the respective obtaining of x2.
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Matriz Vorwm
VCKM matrix for this fit

0.97435  0.2250  0.00369
Vi = 022486 097349 0.04182 |, (47)

0.00857 0.04110 0.999118
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Conclusions and Perspectives

» When we use S3 (alone) it’s diffcult to obtain a proper V., matrix. However, with S3
derived from a modular symmetry the constrains vanish and we obtain a accurate
Vepm matrix.

» In this framework, the Yukawa’s are modular functions that can be obtained from the
modular symmetry.

> |t is possible to test other assignments or symmetry groups based on modular
symmetry.

» New models can be constructed by combining some symmetry groups and modular
groups.
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Thank you for your attention!!!
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Modular forms in Ss

Real and imaginary part of the modular form

20

coooo
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558
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-1.0 -05 0.0 05

1.0
Re T
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