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Motivation

Some background

▶ The Standard Model has been successful in describing interactions.
▶ There are issues such as the mixing pattern, neutrino masses, the composition of

dark matter...
▶ A possible solution: extending the model with one or more symmetry groups.
▶ Finite permutation groups: S3 has provided a good approach to describe the mixing

pattern.
▶ Finite groups based on modular symmetries have been proposed.
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Quark mixing matrix

Vckm =

 Vud Vus Vub

Vcd Vsc Vcb

Vtd Vts Vtb



Figure 1: Quark mixing matrix pattern

Sheldon Stone, New physics from flavour. PoS ICHEP2012 (2013), 033 DOI: 10.22323/1.174.0033
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Symmetry groups: S3 Group
Permutation group of three elements

e : {x1, x2, x3} → {x1, x2, x3},
a1 : {x1, x2, x3} → {x2, x1, x3},
a2 : {x1, x2, x3} → {x3, x2, x1},
a3 : {x1, x2, x3} → {x1, x3, x2},
a4 : {x1, x2, x3} → {x3, x1, x2},
a5 : {x1, x2, x3} → {x2, x3, x1},

x1

x2

x3

a1a2 = a5, a2a1 = a4, a4a2 = a2a1a2 = a3.

If we redefine a1 = a and a2 = b, then all the elements of the group are defined as follows.

{e, a, b, ab, ba, bab}, (1)

Hajime Ishimori, Tatsuo Kobayashi, Hiroshi Ohki, Yusuke Shimizu, Hiroshi Okada, Morimitsu Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Progress of
Theoretical Physics Supplement, Volume 183, January 2010, Pages 1–163
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Symmetry groups: S3 Group

b

ab

For the elements of S3, it is also satisfied that

a2 = b2 = (bab)2 = 1

(ab)3 = (ba)3 = 1, (2)

This allows us to group the elements into three conjugacy classes (identity, rotations, and
reflections).

C1 : {e} C2 : {ab, ba} C3 : {a, b, bab} (3)
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Symmetry groups: S3 Group

Matrix representation of S3

a =

(
−1 0
0 1

)
, b =

(
− cos θ sin θ
sin θ cos θ

)
, bab =

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
, (4)

ab =

(
cos θ − sin θ
sin θ cos θ

)
, ba =

(
cos θ sin θ
− sin θ cos θ

)
, e =

(
1 0
0 1

)
,
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Modular Groups
The modular group is defined as

Γ = SL2(Z) =
{(

a b
c d

)
|a, b, c, d ∈ Z, ad− bc = 1

}
. (5)

From this group, the fractional transformation is defined as

Γ(τ) =

(
a b
c d

)
(τ) → aτ + b

cτ + d
. (6)

with
(

a b
c d

)
∈ Γ.

The generators of Γ(τ) are

S : τ → −1

τ
and T : τ → τ + 1, (7)

which in Γ correspond to

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
(8)

and satisfy in Γ
S2 = 1 and (ST )3 = 1. (9)8 / 34



Modular Groups
The congruence subgroup is defined as

Γ(N) =

{(
a b
c d

)
∈ Γ :

(
a b
c d

)
=

(
1 0
0 1

)
(mod N)

}
. (10)

It is worth noting that

Γ ≃ PSL2(Z) = SL2(Z)/{I,−I}. and Γ(N) ≃ Γ(N)/{I,−I} (11)

The finite modular group is defined as

ΓN ≡ Γ/Γ(N). (12)

Some isomorphisms of the finite modular groups are

Γ2 ≃ S3 Γ3 ≃ A4 (13)
Γ4 ≃ S4 Γ5 ≃ A5.

It can be proof that

S2 = 1

(ST )3 = 1 (14)
TN = 1.
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Modular Groups

Γ2 ≃ S3

S2 = 1

(ST )3 = 1

T 2 = 1.

a2 = 1

(ab)3 = 1,

b2 = 1
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Modular Groups

Under Γ, modular forms of weight k are defined as holomorphic functions f(τ) that satisfy

f(τ) → (cτ + d)kf(τ), (15)

forms of weight zero are invariant under Γ.

It can be shown that modular forms can be organized into multiplets that, under a finite
group Γ̄, transform as

f⃗(τ) → (cτ + d)kρ(γ) ⃗f(τ), (16)

where ρ(γ) is a unitary representation of Γ̄.
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Elements for Model Construction

Extended the group with Γ2

SU(3)C × SUL(2)× Uy(1)× Γ2 (17)

ϕ → (cτ + d)kϕϕ (18)

It is assumed as a hypothesis that modular symmetry is a residual symmetry of a more
fundamental group at low energies.

Fields are not modular forms.
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Elements for Model Construction

▶ Define the basis of S3.
▶ Establish the assignments under S3 and the modular weights of the fields.
▶ Construct the modular forms of S3 with weight 2 and 4.
▶ Calculate the Lagrangian of the Yukawa sector.
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Base definition
Base of S3 for θ = 4π/3

e =

(
1 0
0 1

)
, a =

(
−1 0
0 1

)
, b =

(
1
2 −

√
3
2

−
√
3
2 − 1

2

)
,

ab =

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)
, ba =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
, bab =

(
1
2

√
3
2√

3
2 − 1

2

)
. (19)

Tensor products of S3(
x1

x2

)
2

⊗
(
y1
y2

)
2

= (x1y1 + x2y2)1 ⊕ (x1y2 − x2y1)1′ ⊕
(
x1y2 + x2y1
x1y1 − x2y2

)
2(

x1

x2

)
2

⊗ (y′)1′ =

(
−x2y

′

x1y
′

)
2

(20)

(x′)1′ ⊗ (y′)1′ = (x′y′)1.
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Higgs potential
Three Higgs doublets potential invariant under S3

V = µ2
1

(
H†

1H1 +H†
2H2

)
+ µ2

0

(
H†

sHs

)
+

a

2

(
H†

sHs

)2
+ b

(
H†

sHs

) (
H†

1H1 +H†
2H2

)
+

c

2

(
H†

1H1 +H†
2H2

)2
+

d

2

(
H†

1H2 −H†
2H1

)2
+ efijk

((
H†

sHi

) (
H†

jHk

)
+ h.c.

)
+ f

{(
H†

sH1

) (
H†

1Hs

)
+
(
H†

sH2

) (
H†

2Hs

)}
+

g

2

{(
H†

1H1 −H†
2H2

)2
+
(
H†

1H2 +H†
2H1

)2}
+

h

2

{(
H†

sH1

) (
H†

sH1

)
+
(
H†

sH2

) (
H†

sH2

)
+
(
H†

1Hs

)(
H†

1Hs

)
+
(
H†

2Hs

)(
H†

2Hs

)}
;

(21)

v21 = 3v22 ,

where the VEVs are denoted as

⟨0|H1 |0⟩ =
1√
2
v1; ⟨0|H2 |0⟩ =

1√
2
v2; ⟨0|Hs |0⟩ =

1√
2
v3, (22)

M. Gómez-Bock, M. Mondragón, A. Pérez-Martı́nez, Scalar and gauge sectors in the 3-Higgs Doublet Model under the S 3 symmetry, Eur. Phys. J. C 81 (10) (2021) 942.
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Assignments in S3 and modular weights

(Q1, Q2) (q1, q2) Q3 q3

SU(2) 2 1 2 1
S3 2 2 1 1
k −2 −2 0 0

(H1, H2) Hs (Y
2(4)
1 (τ), Y

2(4)
2 (τ)) Y

(4)
s (τ)

SU(2) 2 2 1 1
S3 2 1 2 1
k 0 0 2(4) 4

Table 1: Charges, assignments, and modular weights of SU(2) and S3. The superindex (4) on the modular forms indicates that
they are of modular weight 4. The subindex s indicates that it is the symmetric singlet of the modular form of weight 4.
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Modular forms in S3

The modular forms will be constructed from the following expression.∑
i

d

dτ
log fi(τ) →

∑
i

(cτ + d)kic+
∑
i

(cτ + d)2
d

dτ
log fi(τ). (23)

A useful type of modular form is

η(τ) = q1/24
∞∏

n=1

(1− qn), q = e2πiτ (24)

Ferruccio Feruglio.Are neutrino masses modular forms? arXiv preprint arXiv:1706.08749-(2019). DOI: 10.1142/97898132380530012
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Modular forms in S3

Under the generators of the modular group, η(τ) transforms as

Under T

η(2τ) → eiπ/6η(2τ),

η(τ/2) → η((τ + 1)/2), (25)

η((τ + 1)/2) → eiπ/12η(τ/2).

Under S

η(2τ) →
√
−iτ/2η(τ/2),

η(τ/2) →
√
−i3τη(2τ), (26)

η((τ + 1)/2) → e−iπ/12
√
−iτη((τ + 1)/2).
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Modular Forms in S3

The general modular form in terms of the functions η(τ) can be written as

Y (α, β, γ|τ) = d

dτ

(
α log η

(τ
2

)
+ β log η

(
τ + 1

2

)
+ γ log η (2τ)

)
, (27)

which satisfies

α+ β + γ = 0

Y (α, β, γ|τ) S−→ τ2Y (γ, β, α|τ) (28)

Y (α, β, γ|τ) T−→ Y (β, α, γ|τ)

with the generators of S3 for the representation 2

ρ(S) =
1

2

(
1 −

√
3

−
√
3 −1

)
, ρ(T ) =

(
−1 0
0 1

)
, (29)
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Modular Forms in S3
The system of equations generated by is solved

α+ β + γ = 0

Y (Sτ) = Y (−1/τ) = τ2ρ(S)Y (τ) (30)
Y (Tτ) = Y (τ + 1) = ρ(T )Y (τ)

The modular forms of weight 2 for S3, with C1 = i/2π, are

Y1(τ) =

√
3i

4π

(
η′(τ/2)

η(τ/2)
− η′((τ + 1)/2)

η((τ + 1)/2)

)
, (31)

Y2(τ) =
i

4π

(
η′(τ/2)

η(τ/2)
+

η′((τ + 1)/2)

η((τ + 1)/2)
− 8η′(2τ)

η(2τ)

)
,

(
Y1

Y2

)
⊗
(

Y1

Y2

)
= Y (4)

s +

(
Y

(4)
1

Y
(4)
2

)
,

Y (4)
s = Y 2

1 + Y 2
2

Y
(4)
1 = 2Y1Y2

Y
(4)
2 = Y 2

1 − Y 2
2 .
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Yukawa Sector
To compress the notation, the doublets of S3 can be redefined as

Q =

(
Q1

Q2

)
; u =

(
u1R

u2R

)
; H =

(
H1

H2

)
; Y

(4)
=

(
Y

(4)
1

Y
(4)
2

)
; Y

(2)
=

(
Y

(2)
1

Y
(2)
2

)
;

Thus, the Lagrangian in the Yukawa sector is

L(u)
y = C1Q⊗ u⊗ H̃ ⊗ Y (4) + C2Q⊗ u⊗ H̃ ⊗ Y (4)

s

+ C3Q⊗ u⊗ H̃s ⊗ Y (4) + C4Q⊗ u⊗ H̃s ⊗ Y (4)
s

+ C5Q⊗ u3R ⊗ H̃ ⊗ Y (2) + C6Q⊗ u3R ⊗ H̃s ⊗ Y (2) (32)

+ C7Q3 ⊗ u⊗ H̃ ⊗ Y (2) + C8Q3 ⊗ u⊗ H̃s ⊗ Y (2)

+ C9Q3 ⊗ u3R ⊗ H̃s + h.c.

Only the S3 invariant terms are allowed, and their modular weight must be zero.
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Yukawa Sector
Matrix elements

M
(u)
11 = (α+ γ)v1Y

(4)
1 + (α− γ)v2Y

(4)
2 + C2v2Y

(4)
s + C3vsY

(4)
2 + C4vsY

(4)
s

M
(u)
12 = (β + γ)v2Y

(4)
1 + (γ − β)v1Y

(4)
2 + C2v1Y

(4)
s + C3vsY

(4)
1

M
(u)
13 = C5(v2Y

(2)
1 + v1Y

(2)
2 ) + C6vsY

(2)
1

M
(u)
21 = (β + γ)v1Y

(4)
2 + (γ − β)v2Y

(4)
1 + C2v1Y

(4)
s + C3vsY

(4)
1

M
(u)
22 = (α+ γ)v2Y

(4)
2 + (α− γ)v1Y

(4)
1 − C2v2Y

(4)
s − C3vsY

(4)
2 + C4vsY

(4)
s

M
(u)
23 = C5(v1Y

(2)
1 − v2Y

(2)
2 ) + C6vsY

(2)
2 (33)

M
(u)
31 = C7(v2Y

(2)
1 + v1Y

(2)
2 ) + C8vsY

(2)
1

M
(u)
32 = C7(v1Y

(2)
1 − v2Y

(2)
2 ) + C8vsY

(2)
2

M
(u)
33 = C9vs.

In this model, the free parameters are v1, v2, vs, α, β, γ, C2, C3, C4, C5, C6, C7, C8, C9 y τ ,
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VCKM Matrix
The goal is to construct a matrix of the form 0 a 0

a∗ b c
0 c∗ d

 , (34)

Known as texture zeros.

To satisfy this form in the mass matrix, the following conditions must be imposed

M11 = 0 M12 = M∗
21 M32 = M∗

23 M13 = M31 = 0. (35)

M
(u)
13 = C5(v2Y

(2)
1 + v1Y

(2)
2 ) + C6vsY

(2)
1 = 0,

M
(u)
31 = C7(v2Y

(2)
1 + v1Y

(2)
2 ) + C8vsY

(2)
1 = 0, (36)

Using the relation from the minimization of the Higgs potential

Y
(2)
2 (τ)−

√
3Y

(2)
1 (τ) = 0. (37)

H. Fritzsch, Z.-Z. Xing, Mass and flavor mixing schemes of quarks and leptons, Progress in Particle and Nuclear Physics 45 (1) (2000) 1–81.
doi:https://doi.org/10.1016/S0146-6410(00)00102-2.
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VCKM Matrix
We make the texture zeros matrix if

Re(β) = 0 C3 = 0 γ = −(1/2)(vs/v2)C4

α = −C2 ∈ R C6 = −4(v2/vs)C5 C8 = −4(v2/vs)C7

C5 = C∗
7 τ = i C9, v1,2, vs ∈ R

For τ = i we have

y2 =
√
3y1 y

(4)
1 = 2

√
3y21 y

(4)
2 = −2y21 y(4)s = 4y21 , (38)

with yk = Yk(i). The mass matrix takes the form.
For simplify the notation, we have defined the parameters as

C ′ = 4
√
3v2y

2
1(C2 + β),

C ′
4 = 8y21(C4vs − C2v2),

C ′
5 = −4

√
3v2y1C5,

C ′
9 = C9vs

M (u) =

 0 C ′ 0

C
′∗ C ′

4 C ′
5

0 C
′∗
5 C ′

9

 , (39)
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VCKM Matrix

The information about the phase is extracted through the matrix

Pf = diag(1, eiϕ1 , ei(ϕ1−ϕ2)) (40)

where ϕ1 is C ′ phase and ϕ2 is C ′
5 phase.

M (u) = P †
f M̄

(u)Pf , (41)

Therefore,

M̄ (u) =

 0 |C| 0
|C| C ′

4 |C ′
5|

0 |C ′
5| C ′

9

 , (42)

F González Canales, A Mondragón, M Mondragón, UJ Saldaña Salazar, and L Velasco-Sevilla. Quark sector of S 3 models: classification and comparison with experimental
data.Physical Review D88(9), 096004 (2013)
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VCKM Matrix
If we relate the mass matrix MD = diag(σ̃1,−σ̃2, 1) and using the invariants of a matrix,
one obtains

|C| =

√
σ̃1σ̃2

C ′
9

C ′
4 = (σ̃1 − σ̃2 + 1− C ′

9) (43)

|C ′
5| =

√
(1− C ′

9)(C
′
9 − σ̃1)(C ′

9 + σ̃2)

C ′
9

.

where σ̃i = σi/σ3, con i = 1, 2.

This calculation applies to both up and down quarks.
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VCKM Matrix

V
th

ud =

√
σ̃cσ̃sξu1 ξd1
D1uD1d

+

√
σ̃uσ̃d

D1uD1d

(√
(1 − δu)

(
1 − δd

)
ξu1 ξd1 +

√
δuδdξu2 ξd2eiϕ2

)
eiϕ1 ,

V
th
us = −

√
σ̃cσ̃dξu1 ξd2
D1uD2d

+

√
σ̃uσ̃s

D1uD2d

(√
(1 − δu)

(
1 − δd

)
ξu1 ξd2 +

√
δuδdξu2 ξd1eiϕ2

)
eiϕ1 ,

V
th

ub =

√
σ̃cσ̃dσ̃sδdξu1

D1uD3d
+

√
σ̃u

D1uD3d

(√
(1 − δu)

(
1 − δd

)
δdξu1 −

√
δuξu2 ξd1ξd2eiϕ2

)
eiϕ1 ,

V
th

cd = −

√
σ̃uσ̃sξu2 ξd1
D2uD1d

+

√
σ̃cσ̃d

D2uD1d

(√
(1 − δu)

(
1 − δd

)
ξu2 ξd1 +

√
δuδdξu1 ξd2eiϕ2

)
eiϕ1 ,

V
th
cs =

√
σ̃uσ̃dξu2 ξd2
D2uD2d

+

√
σ̃cσ̃s

D2uD2d

(√
(1 − δu)

(
1 − δd

)
ξu2 ξd2 +

√
δuδdξu1 ξd1eiϕ2

)
eiϕ1 ,

V
th

cb = −

√
σ̃uσ̃dσ̃sδdξu2

D2uD3d
+

√
σ̃c

D2uD3d

(√
(1 − δu)

(
1 − δd

)
δdξu2 −

√
δuξu1 ξd1ξd2eiϕ2

)
eiϕ1 ,

V
th

td =

√
σ̃uσ̃cσ̃sδuξd1

D3uD1d
+

√
σ̃d

D3uD1d

(√
δu (1 − δu)

(
1 − δd

)
ξd1 −

√
δdξu1 ξu2 ξd2eiϕ2

)
eiϕ1 ,

V
th
ts = −

√
σ̃uσ̃cσ̃dδuξd2

D3uD2d
+

√
σ̃s

D3uD2d

(√
δu (1 − δu)

(
1 − δd

)
ξd2 −

√
δdξu1 ξu2 ξd1eiϕ2

)
eiϕ1 ,

V
th

tb =

√
σ̃uσ̃cσ̃dσ̃sδuδd

D3uD3d
+

√ ξu1 ξu2 ξd1ξd2
D3uD3d

+

√
δuδd(1−δu)

(
1−δd

)
D3uD3d

eiϕ2

 eiϕ1 .

(44)

F. González Canales, A Mondragón, M Mondragón, UJ Saldaña Salazar, and L Velasco-Sevilla.Quark sector of S 3 models: classification and comparison with experimental
data.Physical Review D88(9), 096004 (2013).
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VCKM Matrix

where it has been defined

δu,d = 1− C ′
9u,d

ξu,d1 = 1− σ̃u,d − δu,d,

ξu,d2 = 1 + σ̃c,s − δu,d,

D1(u,d) = (1− δu,d)(σ̃u,d + σ̃c,s)(1− σ̃u,d),

D2(u,d) = (1− δu,d)(σ̃u,d + σ̃c,s)(1 + σ̃c,s),

D3(u,d) = (1− δu,d)(1− σ̃u,d)(1 + σ̃c,s). (45)

28 / 34



VCKM Matrix
The comparison is made with the χ2 function defined as

χ2 =
∑

i=u,c,t

∑
j=d,s,b

(
|V th

ij | − |Vij |
)2

σ2
Vij

(46)

Parameters Values in the fit

C ′
9u 0.816393

C ′
9d 0.828604

ϕ1u 1.63797

ϕ1d 0

ϕ2u 0.0981477

ϕ2d 0

χ2 0.00070

Table 2: Values of the free parameters for the adjustment with the values of the ratios of the masses fixed in their central value
and the respective obtaining of χ2.
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Matriz VCKM

VCKM matrix for this fit

V th
CKM =

 0.97435 0.2250 0.00369
0.22486 0.97349 0.04182
0.00857 0.04110 0.999118

 , (47)
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Conclusions and Perspectives

▶ When we use S3 (alone) it’s diffcult to obtain a proper Vckm matrix. However, with S3

derived from a modular symmetry the constrains vanish and we obtain a accurate
Vckm matrix.

▶ In this framework, the Yukawa’s are modular functions that can be obtained from the
modular symmetry.

▶ It is possible to test other assignments or symmetry groups based on modular
symmetry.

▶ New models can be constructed by combining some symmetry groups and modular
groups.
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Thank you for your attention!!!
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Modular forms in S3
Real and imaginary part of the modular form
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χ1 χ1′ χ2

C1 1 1 2
C2 1 1 −1
C3 1 −1 0
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