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Lagrangians

* In this short lecture, | will focus on two main elements of Quantum Field
Theory as applied to particle physics:
 Lagrangians in field theory
* Interaction by Particle Exchange

* In classical dynamics can work with Forces and Acceleration using
Newton’s second Law. Alternatively, can obtain the same dynamical
equations of motion from the Lagrangian: L= T -V, where the kinetic and
potential energies are expressed in terms of generalised coordinates

* The equations of motion are then obtained from the Euler-Lagrange eqns:
d (0L oL _0
dr Gq, 861,- B
« A simple example:
oV(x
L=T-V= %m)'cz—V(x) =  mX=- 8( )
X
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Continuous Field Theory

* From discrete particles to continuous systems, the Lagrangian is
replaced by the Lagrangian density

L(ql,f1 )—>L(¢l, 0

and coordinates are replaced by continuous fields and their derivatives
with respect to the four space-time coordinates

o,
9 = 20

OxXH
* The dynamics are then obtained from
( 0L ) 0L
oy — =
a((9,u¢z) (9¢,

* In QFT, single particle wavefunctions satisfying the appropriate field
equations are replaced by (multi-particle) excitations of the quantum field

* The structure of the Standard Model is determined by the SM
Lagrangian Density (of CERN T-shirt fame). Its quantisation determines
the related Feynman rules

Prof. M.A. Thomson August 4 2024



Spin-half Relativistic Fields

* The free-particle Dirac equation can be obtained from

Lp = iyy"d, — mpy
* The Euler Lagrange equations could be solved using the eight
independent fields in the spinor

1 \Pl + lq)l

|| | Y2t iD;
Yix) = U3 ] | s+ iDs
I/ Yy + iy

 Alternatively, the independent components can be taken as the four-
components of the spinor and the four components of the adjoint spinor.
Solving the E-L equations for the components of the adjoint spinor gives

8{ =0 and % = iy"o, — my
(0uy;) oY,
« Substituting into the E-L equation aﬂ(a(g@))— gj =0 gives

iy (Ouy) —my =0
which is just the free-particle Dirac equation for the spinor field
* Not all that interesting yet... in the next lecture we’ll put in interactions
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Interaction by Particle Exchange

 Calculate transition rates from Fermi’ s Golden Rule
_ 2
Uy = 27| Tyi|"p (Ey)

where Tﬁ is perturbation expansion for the Transition Matrix Element

Tfi — <f‘V‘l> _I_Z <f|V|]><]|V|l> i

7 BTk
*For particle scattering, the first two terms in the perturbation series
can be viewed as: f f
“scattering in ij J “:‘:cattering viaan
a potential” . Vo V. intermediate state
l fi . j

l

- “Classical picture” — particles act as sources for fields which give
rise a potential in which other particles scatter — “action at a distance”

- “Quantum Field Theory picture” — forces arise due to the exchange
of virtual particles. No action at a distance + forces between particles
now due to particles
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» Consider the particle interaction @ +b — ¢+ d which occurs
via an intermediate state corresponding to the exchange of particle X

* One possible space-time picture of this process is:

C Initial statei: a+ b
Final state f: c+d

Intermediate state j: c +b +x

space

*This time-ordered diagram corresponds to
a “emitting” x and then b absorbing x

~d

time :
* The corresponding term in the perturbation expansion is:

IV GV
E —E;
(d|V|x+b)(c+x|V]a)
(Ea+Ep) — (Ec+Ex+ Ep)

. T]?ib refers to the time-ordering where @ emits X before b absorbs it

Iy =

ab
Ti
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* Need an expression for (¢ + x|V|a) in a c
non-invariant matrix element Tf,- 8a
 Ultimately aiming to obtain Lorentz Invariant ME X

* Take it on trust that 7;; is related to the invariant matrix element by
Ty = [J(2E:) "/ * My,
k
where k runs over all particles in the matrix element

e Here we have
(c+x|V]a) =

(a—c+x)
(2E,2E.2E,)!/?
M(4—c1x) is the “Lorentz Invariant” matrix element for a = ¢ + x

* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x|\Via) =
eFx{Via) (2E,2E.2E,)!/?
ga is a measure of the strength of the interactiona = ¢ + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI

Note : in this “illustrative” example g is not dimensionless.
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Similarly (d|V]x+b) = L X

(2Eb2Ed2Ex)1/2
Giving 740 _ (d|V|x+b)(c+x|V]a) b 8b d
/i (ECI _|_Eb) — (Ec ‘|‘Ex—|—Eb)
— 1 1 8a8b

2E, (2E,2Ep2E.2E )\ /2 (Eq—Ec— Ey)
*The “Lorentz Invariant” matrix element for the entire process is
M® = (2E2E,2E2E,)'/?Té

1 . 8a8b
2E, (E,—E,—Ey)

Note:

¢ M]Cﬁl’? refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
+ Momentum is conserved at each interaction vertex but not energy
E; #E;
+ Particle x is “on-mass shell” i.e. E2 = p2  m?
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* But need to consider also the other time ordering for the process

.
.
.
.
.
o
.
.
.
.

space

—d

i j

C

n

time
*The Lorentz invariant matrix element for this time ordering is:

Mb =

*This time-ordered diagram corresponds to
b “emitting” X and then a absorbing X
- X is the anti-particle of x e.g.

e-

Vu

w

Vel| | €

L I AT

w+

Ve

1

8a8b

2E, (Ep—Eq—Ey)

*In QM need to sum over matrix elements corresponding to same final

state: M, = MY +M¥
_ 8a8b . 1 + 1
2FE, tE,—E.-—E, E,—E;—FE;
_ 8a8b 1 B 1
)E. \E,—E.—E, E,—E.+E,

Energy conservation:

(Ea ‘|‘Eb — Ec ‘|‘Ed)
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8a8b 2E,

‘Which gives My = '
g Ji OE, (Ea—EC)Z_E%
_ 8a8b
(Ea —EC)2 —E)%
‘From 1st time ordering E? = p2 + m? = (B, — p.)*> +m>
. . 8a8b
giving My = N
/ (Ea—Ec)? = (Pa—Pe)? —m2 —Pe
_ 8a8b
(pa _pc)2 _myzc
8a8b
) My = 2 2
q- — my

* After summing over all possible time orderings, My; is (as anticipated)
Lorentz Invariant. This is remarkable result — the sum over all time
orderings gives a frame independent matrix element.

* This simple approach is a long way from a full Quantum Field Theory
derivation, but gives a sense of the interpretation of Feynman diagrams
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Feynman Diagrams

° In QFT the sum over all possible time-orderings is represented by a
FEYNMAN diagram

X = X + o
X
b d b b d
a C In a Feynman diagram:
N
% the LHS represents the initial state
X % the RHS is the final state
@ everything in between is “how the interaction
b ~d happened”

* |t is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

® The factor 1/ (q2 — m)%) is the propagator; it arises naturally from

the above discussion of interaction by particle exchange
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*The matrix element: My = fagb > depends on:

q- — my
& The fundamental strength of the interaction at the two vertices £a, &p

& The four-momentum, ¢ , carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

a P, P c Here g=pi—p3=ps—pr=t “t-channel”
. For elastic scattering: p1 = (E,p1); p3 = (E,p3)
. P b ) q° = (E—E)*—(p1—P3)°
g><0 termed “space-like”
. s Here g =p1+tp2=p3+ps=s “s-channel”
oS>* /4, InCoM: pi1=(E,p); pr=(E,—p)
P ps q° = (E+E)*—(p—p)* =4E>
q°>>0 termed “time-like”
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Virtual Particles

“Time-ordered QM” Feynman diagram
o o
® X ® ¢ e 8a8b
bXd + bzd o I Mfi - q2 — m2
—> — b d x
time time
N— 7 N— 7
—— ——
‘Momentum conserved at vertices ‘Momentum AND energy conserved
‘Energy not conserved at vertices at interaction vertices
‘Exchanged particle “on mass shell” = *Exchanged particle “off mass shell’
2 7|2 — 2 E? —|B:|* = ¢* £ m?
E: — |Px|” = m: x —IPx|" =4 X
VIRTUAL PARTICLE

Can think of observable “on mass shell” particles as propagating waves
and unobservable virtual particles as normal modes between the source

particles: —

14
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Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:

‘Interaction by particle exchange in 2"9 order perturbation theory.
a c

8a8b
Mpi=——=
b d q= — nmx
« Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

rise to a potential V(r
sefoapotential VI M = (yy|V () ys)
i » / Obtain same expression for };; using
*p e YUKAWA
V(r) V(r) = gags , potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V(r) is not a relativistic
invariant view...
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The Interaction Vertex

° In the simple example, simply put in a “constant” at each interaction vertex

X
b 8b d
* Gave rise to a manifestly Lorentz invariant matrix element
Mfi _ fagb _
q- — my

* This was the simplest choice — but it turns out that possibilities are
very limited by the requirement of Lorentz invariance

* Beyond a simple scalar, we need to construct possible operators
from four-by-four matrices, since the operator is sandwiched between
Dirac 4-component spinors.
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Bilinear Covariants

* The requirement of Lorentz invariance of the matrix element severely restricts
the form of the interaction vertex. QED and QCD are “VECTOR” interactions:

=y
* As already described, this combination transforms as a 4-vector

* |In general, there are only 5 possible combinations of two spinors and the gamma
matrices that form Lorentz invariant currents, called “bilinear covariants”:

Type Form Components “Boson Spin”
¢+ SCALAR o 1 0
* PSEUDOSCALAR V)¢ 1 0
¢ VECTOR %, 4 1
¢ AXIALVECTOR  UY*7p¢ 4 1
+ TENSOR V(Y —7v'1r)e 6 2

* Note that in total the sixteen components correspond to the 16 elements of
a general 4x4 matrix: “decomposition into Lorentz invariant combinations”
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Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

Mfi _ 8a8b

2 2
q- — my

* We have seen how interaction by particle exchange gives rise to
the “propagator” term and there are limited options for what
happens at the interaction vertex

* In the next lecture will explore some of the features of QED
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