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lllustrative Calculation

* As an example, consider the interaction of an electron and tau lepton by
the exchange of a photon. Although the general ideas we applied
previously still hold, but now have to account for the spin of the
electron/tau-lepton and also the spin (polarization) of the virtual photon.

* Previously with the example of a simple spin-less interaction we had:

S
M = <wc\v\wa>q2_m2<wdlvlwb>\ ‘ X

] 1l
*In QED we could again go through the procedure
of summing the time-orderings using Dirac
spinors and the expression for V. If we were

to do this, remembering to sum over all photon
polarizations, we would obtain:

* but first need a description of the interaction vertex for QED
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Quantum Electrodynamics (QED)

* The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution (classical electrodynamics)

p—P—qgA; E—E—q¢

(here g — charge)

In QM: p=—iV; E=id/ot
Therefore, make substitution: id;, — id, —qA,
where Au=(9,-A);  Gu=(3/01,+V)
* The Dirac equation:
Yoy +imy =0 == Yo,y HigyAyyH-imy =0

* The final complication is that we have to account for the photon

polarization states. Ay = 8ﬁl)ei(ﬁ,7—Et)

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

0
(1) _ (1) e@_ [0 Could equally have
= 7o |\l chosen circularly
0

0 polarized states
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*Previously with the example of a simple spin-less interaction we had:

I
- <l//c‘v‘l//d>q2_m)2€ <Wd|V|Wb>\ | X

1l 1l
*In QED we could again go through the procedure
of summing the time-orderings using Dirac
spinors and the expression for V. If we were

to do this, remembering to sum over all photon
polarizations, we would obtain: o A)

M = [ p3 Qeygyuue pl ]Z ‘u [ j(t:(pél)Q’E’yO’yvl’l’L'(172)}

G U — _
Y Y~ Y

Interaction of ¢~ | | Massless photon propagator | | |nteraction of 7~
with photon summing over polarizations with photon

* All the physics of QED is in the above expression !
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*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

1 0 0 0
e0) — 8 (1) — (1) £2) — (1) e(3) — 8
0 0 0 1
and gives: Zgﬁ (g&)* = —guv This is not obvious - for the

moment just take it on trust

and the invariant matrix element becomes:

M = [u}(p3)geY’ Y'ue(p1)] —5 [ul(pa)ge ¥y  uz(p2)]

‘Using the definition of the adjoint spinor Y = I/IT}’O

M = [ﬁe(P3)Qe7““e(pl)]

* This is a remarkably simple expression ! It can be shown that
17" uy transforms as a four vector. Writing

A =u,(p3) 7 uc(p1)  Jr = Ue(pa)y uc(p2)

M = —qeqT¥ showing that M is Lorentz Invariant

5 (e (pa)azy e (p2)]
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Feynman Rules for QED

* It should be remembered that the expression

guv _

M:[ﬁe(pS)Qe’)ﬁuue(pl)] qét [”T(p4)QTyvuT<p2)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual
photon. If we are then presented with a new Feynman diagram we
don’ t want to go through the full calculation again....

 Fortunately, this isn’ t necessary — can just write down matrix element
using a set of simple rules...

Basic Feynman Rules:

e’ wooe Propagator factor for each internal line
I (i.e. each internal virtual particle)
® Dirac Spinor for each external line
e n (i.e. each real incoming or outgoing particle)

&® Vertex factor for each vertex
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Basic Rules for QED

@ External Lines

" incoming particle u(p) —>

spin 1/2 < outgoing particle u(p) —>
incoming antiparticle v(p) —<—

_ outgoing antiparticle V(p) o—E—0

_ " incoming photon el (p) ANNS
spin1 = i u "

outgoing photon et (p) NN
@ Internal Lines (propagators)

_ _ 8uv U v
spin 1 photon q2 NNNS
spin 1/2  fermion i(Y"qu +m) . .

G2 —m?

& Vertex Factors
spin1/2  fermion (charge -e])  ie}"

® Matrix Element — ;)] = product of all factors
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P1 P3 _

ed. _ pi LR e‘\)\g/,/e— e (p3)[iey" Jue(p1)

—lg
2l
p2 D4 9

7 Y% T - 1% - ue(pa)ieyJuc(p2)

—iM = [tte(p3)iey" ue(p)] _;gzuv #e(pa)iey us(p2)]

 Which is the same expression as we obtained previously

egd. gt D2 put

_iM = [P(pa)ier u(py) ‘;‘i“v 7(p3)iey"v(ps)

’p

e 1 p3- N

Note: + At each vertex the adjoint spinor is written first
¢+ Each vertex has a different index
+ The 8uv of the propagator connects the indices at the vertices
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The Local Gauge Principle

* All the interactions between fermions and spin-1 bosons in the SM are specified
by the principle of LOCAL GAUGE INVARIANCE

* To arrive at QED, require physics to be invariant under the local phase
transformation of particle wave-functions

[lj —_ llj/ — IIIQZQX()C)
* Note that the change of phase depends on the space-time coordinate: X(t,f)
*Under this transformation the Dirac Equation transforms as

ivrouw—my=0| == |iy*(dy+iqodux)y—my =0

-To make “physics”, i.e. the Dirac equation, invariant under this local
phase transformation FORCED to introduce a massless gauge boson, Au :
+ The Dirac equation has to be modified to include this new field:

iy (Oy — qAu)y —my =0

*The modified Dirac equation is invariant under local phase transformations if:

Ay — A=Ay —dux Gauge Invariance
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* For physics to remain unchanged — must have GAUGE INVARIANCE of the new
field, i.e. physical predictions unchanged for Ay — A, =A; —du X

* Hence the principle of invariance under local phase transformations completely
specifies the interaction between a fermion and the gauge boson (i.e. photon):

it (Ouy —un) v—my =0
Lt
—) interaction vertex:  iyMgA,

— QED !

* The local phase transformation of QED is a unitary U(1) transformation

l//—”I//:ffllf i.e. l//—>l//’=l//eiq’C(x) with U'U =1

* LOCAL GAUGE INVARIANCE lies at the heart of the SM - all forces are
associated with a specific local gauge theory

We will come back to Gauge Invariance in the last lecture
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Renormalisation |

* In principle, we could now use the Feynman rules for QED to write down
the matrix element for any QED process

* Also includes corrections to the propagator (loops) and corrections at
the interaction vertices

(@) (b) () (d) (e)

* The loops in the propagator involve integrals over the four-momenta in
fermion loops, resulting in infinities that can be absorbed into the
definition of the electron charge

* At first sight the vertex corrections might seem even more problematic,
since they will depend on the mass of the fermion in questions.
Fortunately, in a local gauge theory diagrams such as c), d) and e)
exactly cancel - known as a Ward identity.
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Renormalisation |l

* But we still need to deal with the propagator...
€y €y € e(q?)
I | | E R % | I
€o €o € e(g?)

* and each loop as a correction factor
P=Py+ Pyn(¢®) Py + Pyrm(¢*) Pym(q*) Py + ...,

* This is just a geometric series

1 1
P="P _
1-7(?) Py 1—e3TI(g?)

Where I1(¢*) = 7(g”)/q” is the one loop self-energy correction
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Renormalisation lll — almost there

* Since it is an experimental fact that cross sections are finite:
e*(¢®) _ e 1
¢ ¢*1—egTl(g?)

is finite. If we know the physical electron charge at some scale ¢* = 1

e’ (u?)
1+ e?(p?)IL(p?)
substituting back into the top equation

2 MQ
) = T T =T

P =

2 __
€y =

* It can be shown that

1) - 1) = 1550 (%)

1272 >

where the difference of two divergent terms is finite
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Running Coupling

* Consequently

a(q®) = e*(¢°) /4m = o)

1 q>
1 — oz(/ﬂ)g—ﬁln <MQ>

and thus the observed strength of the coupling runs with g2

* It can be shown that

0.008 -

0-007 1 1 lllllll 1 1 lllllll

q/GeV
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QED Calculations

@ How to calculate a cross section using QED (e.g. e'e™— p*u-):
© Draw all possible Feynman Diagrams
‘For e*e~ = u*u~ there is just one lowest order diagram

et u
2
M o< e“ o< 1ty
e~ H
+ many second order diagrams + ...
+
e* H
+ ! + M o< 64 o< anm
e” The

® For each diagram calculate the matrix element using Feynman rules

©® Sum the individual matrix elements (i.e. sum the amplitudes)
Mfi =M +M>,+Msz+....

*Note: summing amplitudes therefore different diagrams for the same final
state can interfere either positively or negatively!

Prof. M.A. Thomson Michaelmas 2010

15



and then square \Mfilz = (M) +My+M3+....)(M{ +M; + M5 +....)
m) this gives the full perturbation expansion in O,

« For QED 0o, ~ 1/137 the lowest order diagram dominates and
for most purposes it is sufficient to neglect higher order diagiams.

e* p e* K

4
M? < a2, M2 o o

em
e~ ' e- Ty
@ Calculate decay rate/cross section using relevant kinematic formula
* e.g. for a decay *
= s [ IMPde
32mm;
* For scattering in the centre-of-mass frame
de 1 |B}]
dQ*  64m?s |pr|

Myi|?
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Spin in QED (e*e~ Annihilation)

* In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states
* There are four possible combinations of spins in the initial state !
e"’u"e* e—"u"e* e—"u"e* e—"u"e*
RL RR LL LR

- Similarly there are four possible helicity combinations in the final state

* In total there are 16 combinations e.g. RL—»RR, RL—RL, ....

* To account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

1 1
(IM|*) = 1 Z IM;|* = 1 (\MLL_>LL\2+ My 1rl* + ..)
spins
* j.e. need to evaluate: 2 L
— _?]e-]u

for all 16 helicity combinations! But there are tricks...

* Fortunately, in the limit £ > m,, only 4 helicity combinations give non-zero
matrix elements — we will see that this is an important feature of QED/QCD
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CHIRALITY

*The helicity eigenstates for a particle/anti-particle for E > m are:

= () e = vE [ ) = vE [ v [
se'? —ce'? ce'? seid

where s = sing; c = cos%

*Define the matrix

In the limit £ > m the helicity states are also eigenstates of }’5

Yup=tup Pup=—up; Py =—vi; Py =+
* In general, define the eigenstates of ’}/5 as LEFT and RIGHT HANDED CHIRAL
states ur, UL, VR, VL

i.e. }/5uR = +ugp; ysuL = —uy; ’}/SVR = —VR; yva = +vr

°In the LIMIT £ > m (and ONLY IN THIS LIMIT):
UR =Up; UL =U|; VR=V, VL=V

Prof. M.A. Thomson Michaelmas 2010 18



* This is a subtle but important point: in general the HELICITY and CHIRAL
eigenstates are not the same. It is only in the ultra-relativistic limit that the
chiral eigenstates correspond to the helicity eigenstates.

* Chirality is an import concept in the structure of QED, and any interaction of the
form ﬁy"u
* In general, the eigenstates of the chirality operator are:
Yugr = +ug; Yur=—ur; Yvp=—Vr; YvL=-+vL

‘Define the projection operators:
Pr=5(1+7); P=301-7)

*The projection operators, project out the chiral eigenstates

Prugp =ug; Prup =0; Prur=0; PLu; =uy

Prvr=0; Prvp=vr; Pivg=vg; Povp=0

‘Note Pr projects out right-handed particle states and left-handed anti-particle states

‘We can then write any spinor in terms of it left and right-handed
chiral components:

y=yr+yr=31+P)y+3(1-7)y
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Chirality in QED

*In QED the basic interaction between a fermion and photon is:
ieyyt ¢
-Can decompose the spinors in terms of Left and Right-handed chiral components:
ieyy' 9 = ie(W,+ W)Y (fr+¢L)
= (WY O+ YRV 0L+ W Y O+ W, 1" L)
*Using the properties of }/5

(rY)?=1L r'=y; rr=-rr

it is straightforward to show

YeY'oL=0; VY yor=0
* Hence only certain combinations of chiral eigenstates contribute to the
interaction. This statement is ALWAYS true.

‘For E > m, the chiral and helicity eigenstates are equivalent. This implies that
for £ > m only certain helicity combinations contribute to the QED vertex !
This is why previously we found that for two of the four helicity combinations
for the muon current were zero

Prof. M.A. Thomson Michaelmas 2010



Allowed QED Helicity Combinations

¢+ In the ultra-relativistic limit the helicity eigenstates = chiral eigenstates
¢ In this limit, the only non-zero helicity combinations in QED are:

Scattering: “Helicity (really chirality) conservation”

N 2 S &2 N - N &£
R R L

Annihilation:

L
N\ N\ N
/ z /.
R
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Itis easy to show  |Mgg|* = |Mpr|* = (47e0)* (1 4 cos 6)?

MRR

-1

e?(1+cosB)? | e*(1—cos@)? | e*(1—cosB)? | e*(1+cosh)?

Assuming that the incoming electrons and positrons are unpolarized, all 4
possible initial helicity states are equally likely.
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Differential Cross Section

*The cross section is obtained by averaging over the initial spin states

and summing over the final spin states: Mpe|? + |MLR|2A Mgg|? -+ |Miz |
do 1 1 : :
qa - 1~ 647‘[2S(|MRR|2+ Mge|” + |Mig|* + |MEL )
drar)?
(2567rgs (2(1+cos0)*>+2(1 —cosB)?)
do o’
=) | = (l1+cos’6
4O 4s ( ) ; .
Example: Mark Il Expt., M.E.Levi et al., -1 cos® +1
e+e— — l'l'+l'l’_ e Phys Rev Lett 51 (1983) 1941
a\| ' T 1 T 1 ]
\ﬁ — 90 GeV % ----- pure QED, O(as3)
O —— QED plus Z
= contribution
Angular distribution becomes
slightly asymmetric in higher

order QED or when Z
contribution is included
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- The total cross section is obtained by integrating over 8, ¢ using

+1 16
/(1+c0529)d£2:27r/ (14 cos®0)dcos O = Tn
—1

giving the QED total cross-section for the process €7€~ = UL~

A1 00
O =

3S 10 "lllllllllllllll

ete” = utu~

v Jade

1 1 1 11

* Lowest order cross section
calculation provides a good
description of the data !

0 Mark J
A Pluto

O Tasso

=
T I!lll'll 1 UBRIRERARL

] llllllll

o (nb)

%aeD 3s

This is an impressive result. From
first principles we can arrive at an
expression for the electron-positron
annihilation cross section which is
good to 1%

0.1

T 1T TT”'

I 1.t IHII

T

0.01414111111]111111111
10 20 30

s(GeV)

(=}
H
o
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Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons

* The interaction vertex of QED corresponds to a vector interaction,
“derived” from a classical electrodynamics approach and from
local gauge invariance
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