Synchrotron Light, Beam Dynamics and Light Sources

Lenny Rivkin

Paul Scherrer Institute (PSI)

and

Swiss Federal Institute of Technology Lausanne (EPFL)

Synchrotron Light

Lenny Rivkin

Paul Scherrer Institute (PSI)

and

Swiss Federal Institute of Technology Lausanne (EPFL)

Curved orbit of electrons in magnetic field

Electromagnetic waves or photons

Crab Nebula 6000 light years away

First light observed 1054 AD

GE Synchrotron New York State

First light observed 24 April, 1947

Synchrotron radiation: some dates

•1873 Maxwell's equations

■1887 Hertz: electromagnetic waves

-1898 Liénard: retarded potentials

• 1900 Wiechert: retarded potentials

1908 Schott: Adams Prize Essay

... waiting for accelerators ... 1940: 2.3 MeV betatron, Kerst, Serber

Maxwell equations (poetry)

War es ein Gott, der diese Zeichen schrieb Die mit geheimnisvoll verborg'nem Trieb Die Kräfte der Natur um mich enthüllen Und mir das Herz mit stiller Freude füllen. Ludwig Boltzman

Was it a God whose inspiration
Led him to write these fine equations
Nature's fields to me he shows
And so my heart with pleasure glows.
translated by John P. Blewett

Synchrotron radiation: some dates

•1873 Maxwell's equations

• 1887 Hertz: electromagnetic waves

-1898 Liénard: retarded potentials

• 1900 Wiechert: retarded potentials

1908 Schott: Adams Prize Essay

... waiting for accelerators ... 1940: 2.3 MeV betatron, Kerst, Serber

THEORETICAL UNDERSTANDING >

1873 Maxwell's equations

→ made evident that changing charge densities would result in electric fields that would radiate outward

1887 Heinrich Hertz demonstrated such waves:

It's of no use whatsoever[...] this is just an experiment that proves Maestro Maxwell was right—we just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there.

Synchrotron radiation: some dates

• 1873 Maxwell's equations

■1887 Hertz: electromagnetic waves

-1898 Liénard: retarded potentials

• 1900 Wiechert: retarded potentials

•1908 Schott: Adams Prize Essay

... waiting for accelerators ...

1940: 2.3 MeV betatron, Kerst, Serber

Synchrotron radiation: some dates

1946 Blewett observes energy loss

due to synchrotron radiation

100 MeV betatron

•1947 First visual observation of SR

NAME!

70 MeV synchrotron, GE Lab

1949 Schwinger PhysRev paper

. . .

•1976 Madey: first demonstration of

Free Electron laser

Why do they radiate?

Synchrotron Radiation is not as simple as it seems

... I will try to show that it is much simpler

Charge at rest Coulomb field, no radiation

Uniformly moving charge does not radiate

But! Cerenkov!

Free isolated electron cannot emit a photon

Easy proof using 4-vectors and relativity

momentum conservation if a photon is emitted

$$P_i = P_f + P_{\gamma}$$

$$e_i$$

$$e_{\bar{i}}$$

square both sides

$$m^2 = m^2 + 2\mathbf{P}_f \cdot \mathbf{P}_{\gamma} + 0 \Rightarrow \mathbf{P}_f \cdot \mathbf{P}_{\gamma} = 0$$

in the rest frame of the electron

$$\boldsymbol{P}_f = (m,0) \qquad \boldsymbol{P}_{\gamma} = (E_{\gamma}, p_{\gamma})$$

this means that the photon energy must be zero.

We need to separate the field from charge

Bremsstrahlung or "braking" radiation

Transition Radiation

$$\epsilon_1$$

$$c_1 = \frac{1}{\sqrt{\epsilon_1 \mu_1}}$$
 $c_2 = \frac{1}{\sqrt{\epsilon_2 \mu_2}}$

Liénard-Wiechert potentials

$$\varphi(t) = \frac{1}{4\pi\epsilon_0} \frac{q}{\left[\mathbf{r}(1 - \mathbf{n} \cdot \mathbf{\beta})\right]_{ret}}$$

$$\varphi(t) = \frac{1}{4\pi\varepsilon_0} \frac{q}{\left[\mathbf{r}(1 - \mathbf{n} \cdot \mathbf{\beta})\right]_{ret}} \qquad \vec{\mathbf{A}}(t) = \frac{q}{4\pi\varepsilon_0 c^2} \left[\frac{\mathbf{v}}{\mathbf{r}(1 - \mathbf{n} \cdot \mathbf{\beta})}\right]_{ret}$$

and the electromagnetic fields:

$$\nabla \cdot \vec{\mathbf{A}} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0$$
 (Lorentz gauge)

$$\vec{\mathbf{B}} = \nabla \times \vec{\mathbf{A}}$$

$$\vec{\mathbf{E}} = -\nabla \mathbf{\phi} - \frac{\partial \vec{\mathbf{A}}}{\partial t}$$

Fields of a moving charge

$$\vec{\mathbf{E}}(t) = \frac{q}{4\pi\varepsilon_0} \left[\frac{\vec{\mathbf{n}} - \vec{\boldsymbol{\beta}}}{(1 - \vec{\mathbf{n}} \cdot \vec{\boldsymbol{\beta}})^3 \gamma^2} \cdot \frac{1}{\mathbf{r}^2} \right]_{ret} + \text{"near field"}$$

$$\frac{q}{4\pi\varepsilon_0 c} \left[\frac{\vec{\mathbf{n}} \times \left[(\vec{\mathbf{n}} - \vec{\boldsymbol{\beta}}) \times \vec{\boldsymbol{\beta}} \right]}{\left(1 - \vec{\mathbf{n}} \cdot \vec{\boldsymbol{\beta}} \right)^3 \gamma^2} \cdot \frac{1}{\mathbf{r}} \right]_{ret}$$
 "far field"

$$\vec{\mathbf{B}}(t) = \frac{1}{\mathbf{c}} [\vec{\mathbf{n}} \times \vec{\mathbf{E}}]$$

Energy flow integrated over a sphere

Power $\sim E^2 \cdot \text{Area}$

$$A = 4\pi r^2$$

Near field

$$P \propto \frac{1}{r^4} r^2 \propto \frac{1}{r^2}$$

Far field

$$P \propto \frac{1}{r^2} r^2 \propto const$$

Radiation = constant flow of energy to infinity

Transverse acceleration

Radiation field quickly separates itself from the Coulomb field

Longitudinal acceleration

Radiation field cannot separate itself from the Coulomb field

Synchrotron Radiation Basic Properties

Beams of ultra-relativistic particles: e.g. a race to the Moon

An electron with energy of a few GeV emits a photon... a race to the Moon!

$$\Delta t = \frac{L}{\beta c} - \frac{L}{c} = \frac{L}{\beta c} (1 - \beta) \sim \frac{L}{\beta c} \cdot \frac{1}{2\gamma^2}$$

- by only 8 meters
- the race will last only 1.3 seconds

$$\Delta L = L(1 - \beta) \cong \frac{L}{2\gamma^2}$$

$$\beta \equiv \frac{v}{c}$$

$$\gamma \equiv \frac{E}{mc^2} = \frac{1}{\sqrt{1 - \beta^2}}$$

Moving Source of Waves: Doppler effect

Time compression

Electron with velocity β emits a wave with period T_{emit} while the observer sees a different period T_{obs} because the electron was moving towards the observer

The wavelength is shortened by the same factor

$$\lambda_{obs} = (1 - \beta \cos \theta) \lambda_{emit}$$

in ultra-relativistic case, looking along a tangent to the trajectory

$$\lambda_{\rm obs} = \frac{1}{2\gamma^2} \lambda_{\rm emit}$$

since

$$1 - \beta = \frac{1 - \beta^2}{1 + \beta} \cong \frac{1}{2\gamma^2}$$

Radiation is emitted into a narrow cone

Sound waves (non-relativistic)

Angular collimation

Doppler effect (moving source of sound)

$$\lambda_{heard} = \lambda_{emitted} \left(1 - \frac{\mathbf{v}}{\mathbf{v}_s} \right)$$

Synchrotron radiation power

Power emitted is proportional to:

$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3} \right]$$

The power is all too real!

ig. 12. Damaged X-ray ring front end gate valve. The power incident on the valve was approximately 1 kW for a duration estimated to 2-10 min and drilled a hole through the valve plate.

Synchrotron radiation power

Power emitted is proportional to:

$$P_{\gamma} = \frac{cC_{\gamma}}{2\pi} \cdot \frac{E^4}{\rho^2}$$

$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3} \right]$$

$$P_{\gamma} = \frac{2}{3} \alpha \hbar c^2 \cdot \frac{\gamma^4}{\rho^2}$$

$$\alpha = \frac{1}{137}$$

$$\hbar c = 197 \text{ Mev} \cdot \text{fm}$$

$$U_0 = C_{\gamma} \cdot \frac{E^4}{\rho}$$

$$U_0 = \frac{4\pi}{3} \alpha \hbar c \frac{\gamma^4}{\rho}$$

Typical frequency of synchrotron light

Due to extreme collimation of light observer sees only a small portion of electron trajectory (a few mm)

Pulse length:
difference in times it
takes an electron
and a photon to
cover this distance

$$\Delta t \sim \frac{l}{\beta c} - \frac{l}{c} = \frac{l}{\beta c} (1 - \beta)$$

$$\Delta t \sim \frac{2\rho}{\gamma c} \cdot \frac{1}{2\gamma^2}$$

Spectrum of synchrotron radiation

- Synchrotron light comes in a series of flashes every T₀ (revolution period)
- the spectrum consists of harmonics of

$$\omega_0 = \frac{1}{T_0}$$

 flashes are extremely short: harmonics reach up to very high frequencies

$$\omega_{typ} \cong \gamma^3 \omega_0$$

At high frequencies the individual harmonics overlap

$$\omega_0 \sim 1 \text{ MHz}$$
 $\gamma \sim 4000$
 $\omega_{\text{typ}} \sim 10^{16} \text{ Hz!}$

continuous spectrum!

THE ELECTROMAGNETIC SPECTRUM

Wavelength continuously tunable!

$$\frac{dP}{d\omega} = \frac{P_{tot}}{\omega_c} S\left(\frac{\omega}{\omega_c}\right)$$

$$S(x) = \frac{9\sqrt{3}}{8\pi} x \int_{x}^{\infty} K_{5/3}(x') dx' \qquad \int_{0}^{\infty} S(x') dx' = 1$$

$$\int_0^\infty S(x')dx' = 1$$

$$P_{tot} = \frac{2}{3} \hbar c^2 \alpha \frac{\gamma^4}{\rho^2}$$

$$\omega_{\rm c} = \frac{3}{2} \frac{{\rm c}\gamma^3}{\rho}$$

Synchrotron radiation flux for different electron energies

Useful books and references

H. Wiedemann, Synchrotron Radiation
Springer-Verlag Berlin Heidelberg 2003
H. Wiedemann, Particle Accelerator Physics
Springer, 2015 Open Access

A.Hofmann, *The Physics of Synchrotron Radiation* Cambridge University Press 2004

A. W. Chao, *Lectures on Accelerator Physics*, World Scientific 2020 A. W. Chao, M. Tigner, *Handbook of Accelerator Physics and Engineering* World Scientific 2013

Radiation is emitted into a narrow cone

Radiation effects in electron storage rings

Average radiated power restored by RF

Electron loses energy each turn to synchrotron radiation

$$U_0 \cong 10^{-3} \text{ of } E_0$$

RF cavities accelerate electrons back to the nominal energy

$$V_{RF} > U_0$$

Radiation damping

 Average rate of energy loss produces DAMPING of electron oscillations in all three degrees of freedom (if properly arranged!)

Quantum fluctuations

Statistical fluctuations in energy loss (from quantized emission of radiation)
 produce RANDOM EXCITATION of these oscillations

Equilibrium distributions

 The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam

Radiation damping

Transverse oscillations

Average energy loss and gain per turn

 Every turn electron radiates small amount of energy

$$E_1 = E_0 - \frac{U_0}{E_0} = E_0 \left(1 - \frac{U_0}{E_0} \right)$$

 only the amplitude of the momentum changes

$$P_1 = P_0 - \frac{U_0}{C} = P_0 \left(1 - \frac{U_0}{E_0} \right)$$

- Only the longitudinal component of the momentum is increased in the RF cavity
- Energy of betatron oscillation

$$E_{\rm B} \propto A^2$$

$$A_1^2 = A_0^2 \left(1 - \frac{U_0}{E_0} \right)$$
 or $A_1 \cong A_0 \left(1 - \frac{U_0}{2E_0} \right)$

Damping of vertical oscillations

But this is just the exponential decay law!

$$\frac{\Delta A}{A} = -\frac{U_0}{2E}$$

$$A = A_{\circ} \cdot e^{-t/\tau}$$

 The oscillations are exponentially damped with the damping time (milliseconds!)

$$\tau = \frac{2ET_0}{U_0}$$

 $\tau = \frac{2ET_0}{U_0}$ the time it would take particle to 'lose all of its energy'

In terms of radiation power

$$au = rac{2E}{P_{\gamma}}$$
 and since $P_{\gamma} \propto E^4$

$$P_{\scriptscriptstyle \gamma} \propto E^4$$

$$au \propto rac{1}{E^3}$$

Adiabatic damping in linear accelerators

In a linear accelerator:

$$x' = \frac{p_{\perp}}{p}$$
 decreases $\propto \frac{1}{E}$

$$p_{\perp}$$

In a **storage ring** beam passes many times through same RF cavity

- Clean loss of energy every turn (no change in x')
- Every turn is re-accelerated by RF (x' is reduced)
- Particle energy on average remains constant

Emittance damping in linacs:

Radiation damping

Longitudinal oscillations

Longitudinal motion: compensating radiation loss U₀

RF cavity provides accelerating field $f_{RF} = h \cdot f_0$

with frequency

- · h harmonic number
- The energy gain:

$$U_{RF} = eV_{RF}(\tau)$$

- Synchronous particle:
 - has design energy
 - gains from the RF on the average as as it loses per turn U_0

Longitudinal motion: phase stability

- Particle ahead of synchronous one
 - · gets too much energy from the RF
 - goes on a longer orbit (not enough B)>> takes longer to go around
 - comes back to the RF cavity closer to synchronous part.
- Particle behind the synchronous one
 - gets too little energy from the RF
 - goes on a shorter orbit (too much B)
 - catches-up with the synchronous particle

Longitudinal motion: energy-time oscillations

energy deviation from the design energy, or the energy of the synchronous particle

longitudinal coordinate measured from the position of the synchronous electron

Orbit Length

Length element depends on x

$$dl = \left(1 + \frac{x}{\rho}\right)ds$$

Horizontal displacement has two parts:

$$x = x_{\beta} + x_{\epsilon}$$

- To first order x_{β} does not change L
- x_{ϵ} has the same sign around the ring

Length of the off-energy orb
$$L_{\varepsilon} = \int dl = \int \left(1 + \frac{x_{\varepsilon}}{\rho}\right) ds = L_0 + \Delta L$$

$$\Delta L = \delta \cdot \oint \frac{D(s)}{\rho(s)} ds$$
 where $\delta = \frac{\Delta p}{p} = \frac{\Delta E}{E}$

$$\frac{\Delta L}{L} = \alpha \cdot \delta$$

Something funny happens on the way around the ring...

Revolution time changes with energy

$$\frac{\Delta T}{T} = \frac{\Delta L}{L} - \frac{\Delta \beta}{\beta}$$

- Particle goes faster (not much!)
- while the orbit length increases (more!)
- The "slip factor"

$$\eta \cong \alpha$$
 since $\alpha >> \frac{1}{\sqrt{2}}$

$$\frac{\Delta T}{T} = \left(\alpha - \frac{1}{\gamma^2}\right) \cdot \frac{dp}{p} = \eta \cdot \frac{dp}{p}$$

Ring is above "transition energy"

$$T_0 = \frac{L_0}{c\beta}$$

$$\frac{d\beta}{\beta} = \frac{1}{\gamma^2} \cdot \frac{dp}{p} \quad \text{(relativity)}$$

$$\frac{\Delta L}{L} = \alpha \cdot \frac{dp}{p}$$

$$\alpha >> \frac{1}{\gamma^2}$$

$$\alpha = \frac{1}{\gamma_{tr}^2}$$

isochronous ring:

$$\eta = 0$$
 or $\gamma = \gamma_{tr}$

Not only accelerators work above transition

Dante Aligieri Divine Comedy

Longitudinal motion: $P_{\gamma} \propto E^2 B^2$ damping of synchrotron oscillations

During one period of synchrotron oscillation:

 when the particle is in the upper half-plane, it loses more energy per turn, its energy gradually reduces

when the particle is in the lower half-plane, it loses less energy per turn, but receives U_0 on the average, so its energy deviation gradually reduces

The synchrotron motion is damped

the phase space trajectory is spiraling towards the origin

Robinson theorem: Damping partition numbers

- Transverse betatron oscillations are damped with
- Synchrotron oscillations are damped twice as fast

$$\tau_{x} = \tau_{z} = \frac{2ET_{0}}{U_{0}}$$

$$\tau_{\varepsilon} = \frac{ET_0}{U_0}$$

The total amount of damping (Robinson theorem) depends only on energy and loss per turn

$$\frac{1}{\tau_x} + \frac{1}{\tau_y} + \frac{1}{\tau_\varepsilon} = \frac{2U_0}{ET_0} = \frac{U_0}{2ET_0} (J_x + J_y + J_\varepsilon)$$

the sum of the partition numbers $J_x + J_z + J_\epsilon = 4$

$$J_{x} + J_{z} + J_{\varepsilon} = 4$$

Equilibrium beam sizes

Radiation effects in electron storage rings

Average radiated power restored by RF

Electron loses energy each turn to synchrotron radiation

$$U_0 \cong 10^{-3} \text{ of } E_0$$

RF cavities accelerate electrons back to the nominal energy

$$V_{RF} > U_0$$

Radiation damping

 Average rate of energy loss produces **DAMPING** of electron oscillations in all three degrees of freedom (if properly arranged!)

Quantum fluctuations

Statistical fluctuations in energy loss (from quantized emission of radiation)
 produce RANDOM EXCITATION of these oscillations

Equilibrium distributions

 The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam

Quantum nature of synchrotron radiation

Damping only

- If damping was the whole story, the beam emittance (size) would shrink to microscopic dimensions!*
- Lots of problems! (e.g. coherent radiation)

* How small? On the order of electron wavelength

$$E = \gamma mc^2 = h\nu = \frac{hc}{\lambda_e} \implies \lambda_e = \frac{1}{\gamma} \frac{h}{mc} = \frac{\lambda_C}{\gamma}$$

$$\lambda_C = 2.4 \cdot 10^{-12} m$$
 — Compton wavelength

Diffraction limited electron emittance

$$\varepsilon \ge \frac{\lambda_C}{4\pi\gamma} (\times N^{\frac{1}{3}} - \text{ fermions})$$

Quantum nature of synchrotron radiation

Quantum fluctuations

- Because the radiation is emitted in quanta, radiation itself takes care of the problem!
- It is sufficient to use quasi-classical picture:
 - » Emission time is very short
 - » Emission times are statistically independent (each emission - only a small change in electron energy)

Purely stochastic (Poisson) process

Visible quantum effects

I have always been somewhat amazed that a purely quantum effect can have gross macroscopic effects in large machines;

and, even more,

that Planck's constant has just the right magnitude needed to make practical the construction of large electron storage rings.

A significantly larger or smaller value of

would have posed serious -- perhaps insurmountable -- problems for the realization of large rings.

Mathew Sands

Quantum excitation of energy oscillations

Photons are emitted with typical energy at the rate (photons/second)

$$u_{ph} \approx \hbar \omega_{typ} = \hbar c \frac{\gamma^3}{\rho}$$

$$\mathcal{N} = \frac{P_{\gamma}}{u_{ph}}$$

Fluctuations in this rate excite oscillations

During a small interval Δt electron emits photons

$$N = \mathcal{N} \cdot \Delta t$$

losing energy of

$$N \cdot u_{ph}$$

Actually, because of fluctuations, the number is

$$N \pm \sqrt{N}$$

resulting in spread in energy loss

$$\pm \sqrt{N} \cdot u_{ph}$$

For large time intervals RF compensates the energy loss, providing damping towards the design energy E_{θ}

Steady state: typical deviations from E_{θ} \approx typical fluctuations in energy during a damping time τ_{ε}

Equilibrium energy spread: rough estimate

We then expect the rms energy spread to be $\sigma_{\varepsilon} \approx \sqrt{N \cdot \tau_{\varepsilon} \cdot u_{ph}}$

$$\sigma_{\varepsilon} pprox \sqrt{N \cdot au_{arepsilon}} \cdot u_{ph}$$

$$\tau_{\varepsilon} \approx \frac{E_0}{P_{\gamma}}$$

and since
$$\tau_{\varepsilon} \approx \frac{E_0}{P_{\gamma}}$$
 and $P_{\gamma} = N \cdot u_{ph}$

$$\sigma_{\varepsilon} \approx \sqrt{E_0 \cdot u_{ph}}$$

 $\sigma_{\varepsilon} \approx \sqrt{E_0 \cdot u_{ph}}$ geometric mean of the electron and photon energies!

Relative energy spread can be written then as:

$$\frac{\sigma_{\varepsilon}}{E_0} \approx \gamma \sqrt{\frac{\hat{\pi}e}{\rho}}$$

$$\frac{\sigma_{\varepsilon}}{E_0} \approx \gamma \sqrt{\frac{\hbar e}{\rho}} \qquad \qquad \hat{\pi}_e = \frac{\hbar}{m_e c} \approx 4 \cdot 10^{-13} m$$

it is roughly constant for all rings

• typically
$$\rho \propto E^2$$

Equilibrium bunch length

Bunch length is related to the energy spread

 Energy deviation and time of arrival (or position along the bunch) are conjugate variables (synchrotron oscillations)

recall that

$$\Omega_{\!\scriptscriptstyle S} \propto \sqrt{V_{RF}}$$

$$\sigma_{\tau} = \frac{\alpha}{\Omega_{s}} \left(\frac{\sigma_{\varepsilon}}{E} \right)$$

$$\hat{\mathbf{\tau}} = \frac{\alpha}{\Omega_{\rm S}} \left(\frac{\hat{\mathbf{\varepsilon}}}{E} \right)$$

Two ways to obtain short bunches:

RF voltage (power!)

$$\sigma_{ au} \propto 1/\sqrt{V_{RF}}$$

■ Momentum compaction factor in the limit of $\alpha = 0$ isochronous ring: particle position along the bunch is frozen

$$\sigma_{ au} \propto lpha$$

Excitation of betatron oscillations

$$\Delta x_{\beta} = -D \cdot \frac{\varepsilon_{\gamma}}{E}$$

 $\Delta x_{\beta} = -D \cdot \frac{\varepsilon_{\gamma}}{E} \quad \text{Courant Snyder invariant} \quad \Delta x_{\beta}' = -D' \cdot \frac{\varepsilon_{\gamma}}{E}$

$$\Delta x_{\beta}' = -D' \cdot \frac{\mathcal{E}_{\gamma}}{F}$$

$$\Delta \varepsilon = \gamma \Delta x_{\beta}^{2} + 2\alpha \Delta x_{\beta} \Delta x_{\beta}' + \beta \Delta x_{\beta}'^{2} = \left[\gamma D^{2} + 2\alpha DD' + \beta D'^{2} \right] \cdot \left(\frac{\varepsilon_{\gamma}}{E} \right)^{2}$$

Excitation of betatron oscillations

Electron emitting a photon

- · at a place with non-zero dispersion
- starts a betatron oscillation around a new reference orbit

$$x_{\beta} \approx D \cdot \frac{\mathcal{E}_{\gamma}}{E}$$

Horizontal oscillations: equilibrium

Emission of photons is a random process

- Again we have random walk, now in x. How far particle will wander away is limited by the radiation damping
- The balance is achieved on the time scale of the damping time $\tau_x = 2 \tau_\epsilon$

$$\sigma_{x\beta} \approx \sqrt{\mathcal{N} \cdot \tau_{x}} \cdot D \cdot \frac{\varepsilon_{\gamma}}{E} = \sqrt{2} \cdot D \cdot \frac{\sigma_{\varepsilon}}{E}$$

■ Typical horizontal beam size ~ 1 mm

Quantum effect visible to the naked eye!

Vertical size - determined by coupling

Equilibrium horizontal emittance

Detailed calculations for isomagnetic lattice

$$\varepsilon_{x0} \equiv \frac{\sigma_{x\beta}^2}{\beta} = \frac{C_q E^2}{J_x} \cdot \frac{\langle \mathcal{H} \rangle_{mag}}{\rho}$$

where

$$\mathcal{H} = \gamma D^2 + 2\alpha DD' + \beta D'^2$$
$$= \frac{1}{\beta} [D^2 + (\beta D' + \alpha D)^2]$$

and $\langle \mathcal{H} \rangle_{mag}$ is average value in the bending magnets

Beam emittance

Betatron oscillations

Area = $\pi \cdot \varepsilon$

• Particles in the beam execute betatron oscillations with different amplitudes. X'

Transverse beam distribution

- · Gaussian (electrons)
- "Typical" particle: 1σ ellipse (in a place where $\alpha = \beta' = 0$)

Units of ε $[m \cdot rad]$

Emittance
$$\equiv \frac{\sigma_x^2}{\beta}$$

$$\sigma_{x} = \sqrt{\epsilon \beta}$$

$$\sigma_{x'} = \sqrt{\epsilon / \beta}$$

$$\varepsilon = \sigma_{\chi} \cdot \sigma_{\chi'}$$

 σ_{X}^{X}

$$\beta = \frac{\sigma_x}{\sigma_{x'}}$$

ECTROMAGNETIC SPEC Soccer Water Field Baseball Period Cell Molecule **Bacteria Virus** House Protein WAVELENGTH SIZE WAVELENGTH (in meters) 103 10-1 10-2 10-3 10-5 10-8 10-10 10-11 10-12 COMMON "HARD" X RAYS RADIO WAVES INFRARED ULTRAVIOLET NAME VISIBLE GAMMA RAYS **MICROWAVES** "SOFT" X RAYS ACCELERATOR-**BASED LIGHT** SOURCES TERAHERTZ "HARD" X RAYS COMMON SOURCES Radioactive FM Radio Microwave Radar **Light Bulb** Elements X-Ray Oven **UV Lamp** Machine **FREQUENCY** (waves per 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 106 second) ENERGY OF ONE PHOTON (electron volts) 10-4 10-3 10-2 10² 105 10-5 101 103 104 106 10-1

Wavelength continuously tunable!

Imaging things

on all length and time scales using accelerators,

e.g. latest X-Ray and computational technologies (developed at accelerators)

Synchrotron Light Sources: about 50 storage ring based

The «brightness» of a light source

Brightness = constant
$$x - \frac{F}{S \times \Omega}$$

X – Rays Brightness

Average Brightness

the automobile.

Easter morning 1900: 5th / Easter morning 1913: 5th Ave, New York City. Spot the horse.

Brightness: disruptive change

- X-ray Tubes
- Storage Rings
- FELs
- ? Compact sources ?

Particle beam emittance

Emittance = $S \times \Omega$

LEAPS is the largest consortium of analytical facilities world-wide and further expanding its service to an interdisciplinary European user community

19 facilities - 16 institutions - 10 countries

- > **300** operating End Stations
- > 1.000.000 h beamtime /year
- > 7'000 publications/year
- > **15** spin off companies
- > **35.000** users from all EU & beyond researchers from all research areas

Construction and Operation (~ 800 M€/year) through national funding Investment: 1.6 B€; 1.5 B€ upgrade programs

Synchrotrons

ESRF & PETRA III 6 GeV

Alba, Diamond, Elettra, Max IV, SLS, Soleil
2-3 GeV

ASTRID, BESSY II, DAFNE, Max IV, PTB, Solaris < 2 GeV

FELs from Hard X rays to IR

European XFEL

FERMI

FELBE

FLASH

FELIX

Transverse coherence

- High brightness gives coherence
- Wave optics methods for X-rays (all chapters in Born & Wolf)
- Holography

The knee of a spider

phase contrast imaging

Phase contrast X-Ray imaging: improved soft tissue contrast

X-ray Radiography of a fish

conventional Absorption

a (+ details c , e, g)

b

(+ details d, f, h)

Imaging for Life Science Applications

Muscles and tracheal network during flight

Fake news?

Intel Core Pentium G3260 (3300) Dual Core, 22 nm

Holler et al., Nature 543, 402–406 (16 March 2017)

X-Ray tomography

Architecture of artificial and natural intelligence on all scales

Nature Electronics 2, 464-470 (2019)

New X-ray world record: Looking inside a microchip with 4 nanometre precision | News & Events | PSI

Brain of a mouse in 3-D Miettinen et al.

Towards understanding the healthy and diseased brain

1 in 6 humans suffer from a neurological disease e.g. Alzheimer's, MS, depression, epilepsy, migraine, drug addiction, etc.

- > 1 billion people affected
- > 1,000 known brain diseases

Cures are lacking

Symptomatic treatments are scarce

The challenge: Visualizing the structure across scales

1878: E. Muybridge at Stanford
Tracing motion of animals
by spark photography

L. Stanford

E. Muybridge, Animals in Motion, ed. by L. S. Brown (Dover Pub. Co., New York 1957).

ENGINES OF DISCOVERY

A Century of Particle Accelerators

« Le seul véritable voyage ... ce ne serait pas d'aller vers de nouveaux paysages, mais d'avoir d'autres yeux, de voir l'univers avec les yeux d'un autre, de cent autres, de voir les cent univers que chacun d'eux voit, que chacun d'eux est. »

(Marcel Proust, La Prisonnière, 1923)

"The real voyage of discovery consists not in seeking new landscapes but in having new eyes"

Marcel Proust

Andrew Sessler · Edmund Wilson