UNIVERSITÄT BONN Experiments in High Energy Physics Klaus Desch desch@uni-bonn.de

Institute of Particle Physics and Accelerator Technologies

BALTIC SCHOOL OF HIGH ENERGY PHYSICS AND ACCELERATOR TECHNOLOGIES 2024 August 5-9 Kuldiga, Latvia Experimental particle physics <u>at high energy colliders</u> with emphasis on LHC (currently running highest energy collider)

Today:

What we would like to measure (pheonomenology of hadron collisions) and how (detectors)

Tomorrow:

Where we are (measurement of the Higgs boson profile)

Challenge questions

PART I

It's a long long way from

It's a long long way from

a Geiger Counter

Higgs boson cross sections

Particle physics: study (most) microscopic structure of Nature

o What are the smallest/elementary building blocks of matter?o How does this matter interact (forces)?

o How does the microscopic structure shape our view of the Universe?

...dass ich erkenne, was die Welt im Innersten zusammenhält

(That I may detect the inmost force Which binds the world, and guides its course;)

Goethe, Faust

I. What we can measure (at colliders)

Can we detect an electron? yes Can we detect a muon? yes Can we detect a tau lepton? no* no* Can we detect a neutrino? Can we detect a quark? no Can we detect a gluon? no Can we detect a photon? yes Can we detect a W/Z boson? no Can we detect a Higgs boson? no

Detection (reconstruction) of most fundamental particles has to proceed indirectly <u>Infer</u> their presence from detection and reconstruction of measurable particles:

- decay
- hadronisation
- E/p conservation

This inference requires a lot of "theory" + "modelling" + "auxillary measurements" Note: also most hypothetical BSM particles would be only inferred from their decays

(a) Example: search for leptoquark pair production decaying to te or t $\!\mu$

Exceptions: e.g. magnetic monopoles, ,,long-lived'' neutral/charged heavy particles

Example: search for magnetic monopoles in ATLAS arXiv:2306.17642

I. What we would like to measure and <u>what we can measure</u>

Particles we can actually "see"

- need to reach the detector (travel distance $s = \beta \gamma c \tau \ge o(cm) c\tau = 1 cm \rightarrow \tau = 33 ps$))

- need to interact with the sensitive volume of the detector

How close can we get?

<u>I. electromagnetically</u>a) charged particlesb) photons

<u>2. through strong interaction (with subsequent e.-m. interactions)</u> all "stable" hadrons

 \rightarrow All detectors exploit the <u>electro-magnetic interaction</u>

Only very few particle species arrive in our detectors:

Photon, Electron/Positron, Muon/Antimuon, Charged Pions, Charged Kaons, Protons/Antiproton, Neutral "stable" hadrons ($K_{S/L}^0, n, \Lambda$) (and a few more strange hadrons, practically mostly irrelevant)

How close can we get?

LHCb Velo detector 5 mm to beam

Lepton vs. Hadron collisions

- p = composite particle: unknown energy of partons, parasitic parton collisions coloured initial state
- p = strongly interacting: huge SM backgrounds, highly selective trigger needed, radiation hard detectors needed

- e = pointlike particle: known and tunable energy of particles, kinematic contraints can be used only electroweak interaction in initial state polarisation of IS particles possible,
- e = electroweakly interacting low SM backgrounds, no trigger needed, detector design driven by precision

 \rightarrow if they were equally easy to accelerate leptons were the choice!

Lepton vs. Hadron collisions

Evergy locs per turu: Synchrotron radiation

$$\Delta E = P_0 \frac{2\pi R}{G} = \frac{e^2}{3\xi_0} \frac{\Lambda}{(mc^2)^4} \frac{E^4}{R}$$

$$\Delta E [kev] = 88.5 \frac{E^4 [Gev]}{R[m]}$$

for electrons

e.g.
E =150 GeV
R = 25 km
$$\Delta E$$
 = 1.8 GeV per turn

Can this be overcome?

We do have a powerful hadron collider: the LHC

Total cross-section of pp collisions is dominated by <u>Minimum Bias</u> events.

$$\sigma_{\rm tot} \approx 100 \; {\rm mb}$$

 $\langle p_t \rangle \approx 300 \text{ MeV}$

$$\frac{dn}{d\eta} \approx 7$$

 $\frac{dn}{d\varphi} \approx \text{const.}$

"Interesting" cross sections suppressed by ~10-9
 → multiple pp collisions per bunch crossing (25 ns) unavoidable.
 How can one mitigate pile-up?

Mean Number of Interactions per Crossing

How can one mitigate pile-up?

Three reasons to use pseudorapidity (rather than polar angle):

- Differences of pseudorapidity are invariant under longitudinal boosts
- Occupancy vs. pseudorapidity ~ const (need higher angular granularity in forward direction)
- Jets are ~ ''round'' in $\Delta\eta\Delta\varphi\text{-space}$

Complications in hadron collisions I: pile-up

[Tully]

Complications in hadron collisions I: pile-up

Vertex resolution + Timing helps

BERGISCHE 2 parton scattering + <u>spectators</u> WUPPERTAL

 $S = X_{\lambda} X_{2} S$

19

 $x_{n} = \frac{M}{IS} e^{\lambda_{CM}} = \frac{E_{T}}{IS} \left(e^{\lambda_{3}} + e^{\lambda_{4}} \right)$ $X_2 = \frac{M}{15}e^{-\eta_{eH}} = \frac{E_T}{15}(e^{-\eta_3} + e^{-\eta_4})$

Proton scattering = scattering of quarks and gluons

Here the (12) system (initial state) is not at rest in the lab frame $f_{0} = f_{0} = f_{0}$

Note: this is a (rather strong) simplification!

- ignores the interaction of the rest of the two protons (,,underlying event")
- assumes that the incoming partons have no transverse momentum p_t
- assumes that the incoming partons do not radiate gluons before they interact

A more complete (but very complex) picture of ,,what's really happening"

[SHERPA team, F. Krauss et al]

We can see only, what is outside the circle

but we want to know, what's happening at the red dot.

Frightening...

Fortunately, there are concepts which work (surprisingly?) well!

Inside out: (theory)

- I. hard process (at higher order perturbation theory) "exact"
- 2. parton shower for outgoing and incoming (coloured) objects
- 3. transition from partons to hadrons ,,hadronisation"
- 4. decay of unstable hadrons \rightarrow observable particles

Outside in: (experiment)

Where do theory and experiment meet best?

- I. assign raw signals to observable particles (,,reconstruction'')
- 2. combine hadrons (and photons from $\pi^0 \rightarrow \gamma \gamma$) to jets
- 3. associate jets with partons (quarks, gluons) highly non-unique
- 4. combine objects (jets, leptons, miss. energy) to heavier objects (e.g. t)
- 5. measure "parton-level" cross-sections and compare them to theory

Jets

Jets: the (best?) link between measurable particles and ''calculable'' partons Jet definition should be:

- simple to implement in experimental analysis
- simple to implement in theoretical calculations
- well-defined in any order of perturbation theory
- yield finite cross-sections (infrared and collinear safety)
- insensitive to specifics of the hadronization model

Long history of algorithms.

Today sequential recombination algorithms dominate,

in particular <u>anti-k_T algorithm</u>

Jet Algorithms

Distance measures:
$$d_{ij} = 2 \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2}$$
 $d_{iB} = p_{t,i}^{2p} \Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + (\varphi_1 - \varphi_2)^2$
B = ,,beam''

Algorithm:

- I. if only one particle is left, call it jet and stop
- 2. find minimum of d_{ij} , d_{iB}
- 3. if minimum is d_{ij}, combine i and j, goto 1
- 4. if minimum is d_{iB}, declare particle i a final state jet, remove it from list, goto
- 5. stop if no particles remain in list
- ightarrow arbitrarily soft particle can become ,,jets'' ightarrow need to specify a minimum jet p_T
- $p = 1: k_T$ algorithm p = 0: Cambridge/Aachen algorithm $p = -1: anti-k_T$ algorithm:
- favours clusterings that involve hard particles (rather than soft particles)
- jets evolve from hard seed (grow inside out)
- still, collinear branchings are clustered first (collinear and infrared safe)
- but: not related to QCD branching/splitting functions

Recombination schemes:

Need to define how to combine the four vectors of particles i and j (in all algorithms)

Option A: simply add 4-momenta of particles (leads to ,,massive'' jets)

Option B:

$$E_{T,jet} = \sum_{i} E_{T,i}$$
$$\eta_{jet} = \frac{1}{E_{T,jet}} \sum_{i} E_{T,i} \eta_{i}$$
$$\phi_{jet} = \frac{1}{E_{T,jet}} \sum_{i} E_{T,i} \phi_{i}$$

 \rightarrow resulting jets are massless

 \rightarrow disadvantage: not invariant under longitudinal boosts if component particles are massive

Jet Algorithms: what they do...

Complications in hadron collisions II: parton density functions

3.1 Factorization theorem

Complications in hadron collisions II: parton density functions

-dependence on MF is a systematic uncertainty

Complications in hadron collisions II: parton density functions

pdf uncertainties for gg \rightarrow H Higgs production

End-to-end modelling: Monte Carlo generators

Does Nature know about this?

Colour Reconnections String Interactions

PART 2

Detectors

Peter Higgs (1929 - 2024) assembling the ATLAS detector...

Electro-magnetic interaction: Charged Particles

I. Ionization → Charge

Charged Particles

2. Excitation → Light

3. Scattering → Deflection

4. Bremsstrahlung → E-loss, deflection

5. Cerenkov radiation 6. Transition radiation Interaction with the atomic electrons. The incoming particle loses energy and the atoms are <u>excited</u> or <u>ionized.</u>

Is there more?

Interaction with the atomic nucleus. The particle is deflected (scattered) causing <u>multiple scattering</u> of the particle in the material. During this scattering a <u>Bremsstrahlung</u> photon can be emitted. In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as <u>Cherenkov Radiation</u>. When the particle crosses the boundary between two media, there is a probability of the order of 1% to produced and X ray photon, called <u>Transition radiation</u>.

Electro-magnetic interaction: Charged particles: Excitation + Ionization

Excitation + Ionization \rightarrow "Universal energy loss – only depending on $\beta\gamma$

I is the mean excitation energy.

• F is the maximum possible energy transfer to a shell electron, occurring in a central collision).

Density effect. Medium is polarized Which reduces the log. rise.

Electro-magnetic interaction: Charged particles: Excitation + Ionization

Z/A matters...

Example 1: $Z\approx 0.5~A$ 1/p dE/dx \approx 1.4 MeV cm $^2/g$ for ßy ≈ 3

Iron: d = 100 cm; ρ = 7.87 g/cm³ dE \approx 1.4 * 100 * 7.87 MeV = 1102 MeV \rightarrow 1 GeV Muon can traverse 1m of Iron

Argon: d = 1 cm; ρ = 1.78 10⁻³ g/cm³ dE ≈ 1.4 * 1 * 1.78 keV = 2.5 keV

Need ~ 26 eV to ionize an Ar atom \rightarrow ~100 ionization electrons / cm

$$\frac{1}{\rho}\frac{dE}{dx} = -4\pi r_e^2 m_e c^2 \frac{Z_1^2}{\beta^2} N_A \frac{Z}{A} \left[\ln \frac{2m_e c^2 \beta^2 \gamma^2 F}{I} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Bethe-Bloch equation

$$\delta(\beta\gamma) = \ln h\omega_p/I {+} \ln \beta\gamma {-} \frac{1}{2}$$

Density effect. Medium is polarized Which reduces the log. rise. Electro-magnetic interaction: Charged particles: Excitation + Ionization

"Universe lenergy loss – only depending on $\beta\gamma$ \rightarrow if more used to determine a particle is measured, dE/dx measurement can be used to determine TPC TPC

Electro-magnetic interaction: Charged particles: Bremsstrahlumg

10⁰

 10^{0}

 10^{1}

10³

10⁴

 10^{2}

Electro-magnetic interaction: Charged particles: Bremsstrahlung

$$E(x) = E_0 e^{-\frac{x}{X_0}}$$

Radiation length $X_0 =$ amount of material (of a given composition) to be traversed until a particle has radiated off (1-1/e) = 63% of its energy.

For total absorption (electro-magnetic calorimeter) we need several X_0 of material

For non-destructive (tracking) measurements we need to minimize the number/fraction of $X_0{\rm \sc s}$

 X_0 governs:

- bremsstrahlung
 - photon pair production
 - multiple Coulomb scattering

Electro-magnetic interaction: Charged particles: Bremsstrahlung

Radiation length	Material	Ζ	$\langle Z/A \rangle$ (mol/g)	$\begin{array}{c} \text{Density} \\ (\text{g/cm}^3) \end{array}$	X (g/cm ²)	(cm)	$\frac{E_c}{(\text{MeV})}$	
0		elemental solids						
	Be	4	0.444	1.85	65.19	(35.2)	113.7	
	$\mathop{\mathrm{C}}_{\mathrm{(graphite)}}$	6	0.500	2.21	42.70	19.3	81.7	
	Al	13	0.482	2.70	24.01	8.9	42.7	
	Si	14	0.499	2.33	21.82	9.36	40.2	
	Fe	26	0.466	7.87	13.84	1.76	21.7	
nucleus	Cu	29	0.456	8.96	12.86	1.44	19.4	
	${ m Ge}$	32	0.441	5.32	12.25	2.30	18.2	
• e ⁻	\mathbf{W}	74	0.403	19.30	6.76	0.35	8.0	
	Pb	82	0.396	11.35	6.37	0.56	7.4	
D	U	92	0.387	18.95	6.00	0.32	6.7	
Bremsstrahlung		scintillators						
	NaI	$11,\!53$	0.427	3.67	9.49	2.59	13.4	
	CsI	$55,\!53$	0.416	4.51	8.39	1.86	11.2	
	BaF_2	56,9	0.422	4.89	9.91	2.03	13.8	
	$PbWO_4$	82,74,8	0.413	8.30	7.39	(0.89)	9.6	
	polystyrene	$1,\!6$	0.538	1.06	43.79	41.3	93.1	
		gases $(20 ^{\circ}\text{C}, 1 \text{atm})$						
	H_2	1	0.992	0.084×10^{-3}	63.04	750500	344.8	
	не́	2	0.500	0.166×10^{-3}	94.32	568200	257.1	
	air	$7,\!8$	0.499	1.205×10^{-3}	36.62	30 390	87.9	
	Ar	18	0.451	1.66×10^{-3}	19.55	(11777)	38.0	
	Xe	54	0.411	5.48×10^{-3}	8.48	1547	12.3	
		other materials						
	H_2O (liquid)	1, 8	0.555	1.0	36.1	36.1	78.3	
	standard rock	11	0.500	2.65	26.5	10.0	49.1	
	photoemulsion			3.82	11.33	2.97	17.4	

Electro-magnetic interaction: Multiple Coulomb scattering

- Multiple coulomb scattering limits the momentum resolution of any tracking detector at low particle momenta
- name of the game for tracker construction: "no" material!

A fact of life: you always need more material than you thought!

• Never forget that your detector needs support, cooling, power cables. data cables, control cables

Electro-magnetic interaction: tracking – vertex detection

ALICE ITS3 Pixel detector development

ALICE

Electro-magnetic interaction: photons

Electro-magnetic interaction: photons

Photons

Photoeffect
 Compton scattering
 Pair production

[Wermes, Kolanoski]

Let's build detectors...

4π Detectors

few KD crazy ideas:

- continuous transition from non-destructive to destructive?
- single optical photon detection
- ultra-sensitive sensing (quantum sensing, ...) (see e.g. <u>M. Doser (CERN) at ICHEP24</u>)
- "contact-less" sensing?

(your crazy idea here...)

4π detectors

Quite significant differences, e.g.

4T Calo inside Si only PbWO₄ crystals ''instrumented iron''

(many more)

pros an cons?

High-Luminosity upgrade of ATLAS and CMS

- increased luminosity (5 10³⁴ cm⁻²s⁻¹) is achieved by more intense and stronger focused beams
- new equipment will be installed in about 1.2 km of the LHC's total length
 - new focusing magnets and beam optics
 - installed around ATLAS and CMS
 - crab cavities
 - installed around ATLAS and CMS
 - about 100 new collimators for machine protection
 - new crystal collimators for at cleaning insertions for ion beam operation
 - superconducting power links (100kA @ 50 K)
 - upgrade of the accelerator chain

ATLAS ITk – a completely new tracking detector for ATLAS

higher luminosity achieved through a higher number of proton-proton interactions per bunch-crossing

- significantly messier events at the HL-LHC! To reach its physics goals, ATLAS must
 - measure all relevant final state quantities with a precision at least comparable to Run 3
 - withstand significantly higher radiation levels (factor 10)
 - improve the triggering capabilities of the system (10x higher rate while maintaining the same pT thresholds)
 - improve readout capabilities: all detectors must be read out at 1 MHz effective trigger rate^

ATLAS ITk – layout

- 5 layers
- 3 subsystems
- 5 module flavours
- 3 sensor flavours
- 8.372 modules
- 13 m² active silicon
- 5 Gpixels

Inner System Outer Barrel Outer Endcaps

HL-LHC detector upgrades are a major stress test for the experimental collaborations!

Precise Detector Simulations at various levels of detail

CMS detector simulation GEANT

ATLAS detector simulation GEANT

Electrons avalanche multiplication, GARFIELD++

Electric Fields in a Micromegas detector, e.g. COMSOL

Silicon sensor simulation, TCAD

[after Riegler]

From raw data to results: many steps and tasks

- data quality
- reconstruction of sub-detector data
 - calibration (charge calibration, correct for imperfections, time drifts, alignment)
 - track finding + fitting
 - calorimeter cluster reconstruction, particle flow
- global track reconstruction

Much tedious work But also a rewarding playground for huge improvements ML, AI!

- combined high-level ''object'' reconstruction
 - muons, electrons, photons, taus, jets, b-jets, missing transverse energy (MET)
 - dedicated object reconstruction (e.g. jet substructure, di-tau jets, ...)
 - overlap removal

is it justified to have 3000 authors on every paper?

From raw data to results: many steps and tasks

Example: tagging of b-quark jets (same detector, smarter algorithms)

ATLAS: Eur. Phys. J. C 83 (2023) 681, FTAG-2023-01

similar progress in CMS

BDT's \rightarrow feed forward deep ANN \rightarrow Graph NNs, transformer NNs, ...

The very broad picture:

The Standard Model rules!

- incredible multitude of measurements with ever-increasing precision
- first round of characterization of the Higgs boson
- hundreds to thousands of targeted and "blue-sky" searches for new particles
- to come: HL-LHC 10-20 x more data than today better detectors further improved analysis techniques

A few more remarks on the Higgs boson...

Ref.TH.2093-CERN

Remark I

CM-P00061607

Oct 1975

1441 citatations

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John Ellis, Mary K. Gaillard ^{*)} and D.V. Nanopoulos ⁺⁾ CERN -- Geneva

ABSTRACT

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of the Higgs boson, we give a speculative cosmological argument for a small mass. If its mass is similar to that of the pion, the Higgs boson may be visible in the reactions $\pi - p \rightarrow Hn$ or $\sqrt{p} \rightarrow Hp$ near threshold. If its mass is \lesssim 300 MeV, the Higgs boson may be present in the decays of kaons with a branching ratio 0(10-7), or in the decays of one of the new particles : $3.7 \rightarrow 3.1 + H$ with a branching ratio O(10-4). If its mass is < 4 GeV the Higgs boson may be visible in the reaction $pp \rightarrow H + X_*$ $H \rightarrow \mu + \mu - .$ If the Higgs boson has a mass $\leq 2m_{\mu}$, the decays $H \rightarrow e^+e^-$ and $H \rightarrow \gamma\gamma$ dominate, and the lifetime is $0(2 \times 10^{-5} \text{ to } 2 \times 10^{-12})$ seconds. As thresholds for heavier particles (pions, strange particles, new particles) are crossed, decays into them become dominant, and the lifetime decreases rapidly to 0(10-20) sec for a Higgs boson of mass 10 GeV. Decay branching ratios in principle enable the quark masses to be determined.

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm $^{3),4)}$ and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

Different approaches to access the total width:

1. BR $(H \to X_i) = \frac{\Gamma_i}{\Gamma_{tot}}$, $\Gamma_{tot} = \sum_i \Gamma_i$ need to measure all decays, difficult at LHC

2.
$$\Gamma = \frac{1}{r}$$
 Higgs lifetime (SM) = 1.6 10⁻²² s too short
 $S = \Gamma_{BW}$ lineshape $T_{SN} = 4.1 \text{ MeV}$ too long-

4. Rather recent observation: exploit interference in:

The total width of the Higgs boson Higgs Boson Width

Higgs: CP quantum numbers

• Higgs CP = -I in the SM

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{\upsilon} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_5 \tau) H$$

- What if H is not a CP eigenstate?
- Higgs as a source of additional CP violation?
- Need to access transverse spin correlations in $H \rightarrow \tau^+ \tau^-$

Higgs: CP quantum numbers

looks SM-like ⊗

 $\phi_{\tau}^{\text{obs.}} = 9 \pm 16^{\circ} (68\% \text{ CL}).$

Remark 4

Higgs to muons

The rarest Higgs decay "seen" so

Can you see it? \odot $\mu = 1.19^{+0.44}_{-0.42}$

Observed (expected) significance: 3.0 (2.5) σ

Dhua Latt D 012 (2021) 125000 For 1.5 GeV $< m_{\rm H} < 4$ GeV, production at very high energies and detection as a small bump sitting on top of the Drell-Yan $\frac{39}{(1, 1)}$ continuum seems the only possibility *). Combining the cross-section estimate (3.29) with the branching ratios of Fig. 1, we find

$$\frac{\sigma(pp \rightarrow H + \chi)}{\sigma(pp \rightarrow (r^+ r^-) + \chi)} \simeq \frac{Q}{\Delta Q} \times O(3 \times 10^2 + 0.10^5)$$
[1 Filis et al. 1975]
(5.2)

which is not encouraging.

Higgs self coupling

a multi-boson process, finally 😊

Determines the shape of the Higgs potential Exactly fixed in the SM But not constrained by any measurement yet...

LHC: Di-Higgs production is sensitive But very tiny cross section Major motivation for HL-LHC

Higgs analyses

Remark 5

THE END