Beyond the Standard Model

Review of Higgs physics Motivations for physics beyond the SM: Higgs mysteries Status of $g_{\mu} - 2$

SM Effective Field Theory to scan for new physics Dark matter: heavy fermions or light bosons? New physics in gravitational waves?

Summary of the Standard Model

• Particles and SU(3) × SU(2) × U(1) quantum numbers:

L_L E_R	$ \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \\ e_R^-, \mu_R^-, \tau_R^- \end{pmatrix} $	(1,2, -1) (1,1, -2)	
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$	

• Lagrangian: $\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a \ \mu\nu}$ gauge interactions + $i\bar{\psi} / D\psi + h.c.$ matter fermions + $\psi_i y_{ij} \psi_j \phi + h.c.$ Yukawa interactions + $|D_{\mu} \phi|^2 - V(\phi)$ Higgs potential Tested < 0.1% before LHC Testing now in progress

Higgs Boson Couplings

$$\Gamma(H \to f\bar{f}) = N_c \frac{G_F M_H}{4\pi\sqrt{2}} m_f^2, \quad N_C = 3 (1) \text{ for quarks (leptons)}$$

 $\Gamma(H \to VV) = \frac{G_F M_H^3}{8\pi\sqrt{2}} F(r) \left(\frac{1}{2}\right)_Z, \quad r = \frac{M_V}{M_H}$

LHC Measurements

It Walks and Quacks like a Higgs

Couplings scale ~ mass, with scale ~ v

ATLAS & CMS, arXiv:2309.03501

Emerging Decay Mode: $H \rightarrow Z\gamma$

Signal strength $\mu = 2.2 \pm 0.7$ times Standard Model value

Negligible change in NLO QCD Higher-order EW unimportant Statistics? BSM physics? Buccioni, Devoto, Djouadi, JE, Quevillon, Tancredi, arXiv:2312.12384 Chen, Chen, Qiao & Zhu, arXiv:2404.11441 Boto, Das, Romão, Saha & Silva, arXiv:2312.13050

QCD Corrections to $H \rightarrow Z\gamma$

Boto, Das, Romão, Saha & Silva, arXiv:2312.13050

Higher-Order Higgs Couplings

- Standard Model Lagrangian contains HHH, VVHH couplings in Higgs potential V(H), Higgs kinetic term $|D_{\mu}H|^2$, respectively
- Directly related to (m_H, m_W) and VVH, respectively
- Absence/modification would destroy consistency (renormalizability) of Standard Model
- Could be modified by, e.g., higher-order terms in effective field theory, e.g., H⁶ or |H|²|D_µH|² BSM physics?
- Parameterized by κ_{λ} , κ_{2V} , respectively

Measuring them is next frontier in Higgs measurements

Search for Triple-H Coupling

Diagrams for double-Higgs production

Loop corrections to single Higgs production

Search for HHH Coupling

Limit on double-Higgs production

Limits on triple-Higgs coupling

Evidence for VVHH Coupling

 $\kappa_{2V} = 1.02 \pm 0.23$ if other Higgs couplings have Standard Model values

Evidence for VVHH Coupling

... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding

« Empty » space is unstable LHC

LHC

LHC

LHC

- Dark matter
- Origin of matter
- Sizes of masses
- Masses of neutrinos
- Inflation
- Quantum gravity

Everything about Higgs is Puzzling

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$

• Pattern of Yukawa couplings y:

• Flavour problem

- Magnitude of mass term μ :
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ :
 - Stability of electroweak vacuum
- Cosmological constant term V₀:

 Dark energy Higher-dimensional interactions?

Loop Corrections to Higgs Mass²

• Consider generic fermion and boson loops:

Each is quadratically divergent:

 [^]
 d⁴k/k²

$$\Delta m_H^2 = -\frac{y_f}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + \dots]$$

• Leading divergence cancelled if

$$\lambda_S = y_f^2 \mathbf{x} \mathbf{2}$$

What lies beyond the Standard Model?

Supersymmetry?

Stabilize electroweak vacuum

New motivations from LHC

- Successful prediction for Higgs mass
 - Should be < 130 GeV in simple models
- Successful predictions for couplings
 - Should be within few % of SM values
- Naturalness, GUTs, string, dark matter, $g_{\mu} 2?...$,

Minimal Supersymmetric Extension of the Standard Model

Grand Unification

At one-loop order without/with supersymmetry:

$$b_{i} = \begin{pmatrix} 0 \\ -\frac{22}{3} \\ -11 \end{pmatrix} + N_{g} \begin{pmatrix} \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \\ \frac{4}{3} \end{pmatrix} + N_{H} \begin{pmatrix} \frac{1}{10} \\ \frac{1}{6} \\ 0 \end{pmatrix} b_{i} = \begin{pmatrix} 0 \\ -6 \\ -9 \end{pmatrix} + N_{g} \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} + N_{H} \begin{pmatrix} \frac{3}{10} \\ frac12 \\ 0 \end{pmatrix}$$

• At two-loop order without/with supersymmetry:

	$\begin{pmatrix} 0 \\ \end{pmatrix}$	0	0)		$\frac{19}{15}$	$\frac{3}{5}$	$\frac{44}{15}$		$\frac{9}{50}$	$\frac{9}{10}$	0		0	0	0)		$\binom{38}{15}$	$\frac{6}{5}$	$\frac{88}{15}$		$\frac{9}{50}$	$\frac{9}{10}$	0
$b_{ij} =$	0	$-\frac{136}{3}$	0	$+N_g$	$\frac{1}{5}$	$\frac{49}{3}$	4	$+ N_H$	$\frac{3}{10}$	$\frac{13}{6}$	0	$b_{ij} =$	0	-24	0	$+N_g$	$\frac{2}{5}$	14	8	$+ N_H$	$\frac{3}{10}$	$\frac{7}{2}$	0
	0	0	-102		$\frac{4}{30}$	$\frac{3}{2}$	$\frac{76}{3}$		0	0	0)		0	0	-54		$\left(\frac{11}{5}\right)$	3	$\left(\frac{68}{3}\right)$		0	0	0)

At three-loop order ...

LEP Data Consistent with Supersymmetric Grand Unification

Is "Empty Space" Unstable?

Is "Empty Space" Unstable?

- Dependence of instability scale on masses of Higgs boson and top quark, and strong coupling: $Log_{10}\frac{\Lambda}{GeV} = 10.5 - 1.3\left(\frac{m_t}{GeV} - 172.6\right) + 1.1\left(\frac{m_H}{GeV} - 125.1\right) + 0.6\left(\frac{\alpha_s(m_Z) - 0.1179}{0.0009}\right)$
- New LHC value of m_t :

 $m_t = 172.52 \pm 0.33 \text{ GeV}$

Franceschini et al, 2203.17197

ATLAS & CMS, CERN-LPCC-2023-02

• Latest experimental values: $m_H = 125.1 \pm 0.1 \text{ GeV}, \ \alpha_s(m_Z) = 0.1183 \pm 0.0009$ • Instability scale: $\log_{10} \frac{\Lambda}{\text{GeV}} = 10.9 \pm 0.8$ • Dominant uncertainties those in α_s and m_t

Nothing (yet) at the LHC

No supersymmetry

Nothing else, either

ATLAS Collaboration, arXiv:2402.01392

Survey of SUSY searches in pMSSM

Lines = chargino/neutralino exclusions in searches with simplifying assumptions on spectrum and decay modes Black = < 10% of pMSSM models excluded Cream = > 90% of pMSSM models excluded

Many low-mass pMSSM models consistent with constraints

"Not dead yet"

Monty Python and the Holy Grail

 $g_{\mu} - 2$: Dawn of new physics or its sunset?

Quo Vadis $g_{\mu} - 2$?

 New Fermilab result confirms previous measurements, uncertainty reduced by factor ~ 2

Contents lists available at ScienceDirect

Physics Reports

y

journal homepage: www.elsevier.com/locate/physrep

Theory Initiative

- Comprehensive review of calculations of the Standard Model contributions to $g_{\mu} 2$
- Including discussion of the uncertainties
- Particularly in calculation of leading-order vacuum polarisation

Aoyama et al, arXiv:2006.04822

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama ^{1,2,3}, N. Asmussen ⁴, M. Benayoun ⁵, J. Bijnens ⁶, T. Blum ^{7,8}, M. Bruno⁹, I. Caprini¹⁰, C.M. Carloni Calame¹¹, M. Cè^{9,12,13}, G. Colangelo^{14,*}, F. Curciarello ^{15,16}, H. Czyż ¹⁷, I. Danilkin ¹², M. Davier ^{18,*}, C.T.H. Davies ¹⁹, M. Della Morte ²⁰, S.I. Eidelman ^{21,22,*}, A.X. El-Khadra ^{23,24,*}, A. Gérardin ²⁵, D. Giusti ^{26,27}, M. Golterman ²⁸, Steven Gottlieb ²⁹, V. Gülpers ³⁰, F. Hagelstein ¹⁴, M. Hayakawa ^{31,2}, G. Herdoíza ³², D.W. Hertzog ³³, A. Hoecker ³⁴, M. Hoferichter 14,35,*, B.-L. Hoid ³⁶, R.J. Hudspith ^{12,13}, F. Ignatov ²¹, T. Izubuchi ^{37,8}, F. Jegerlehner ³⁸, L. Jin ^{7,8}, A. Keshavarzi ³⁹, T. Kinoshita ^{40,41}, B. Kubis ³⁶, A. Kupich ²¹, A. Kupść ^{42,43}, L. Laub ¹⁴, C. Lehner ^{26,37,*}, L. Lellouch ²⁵, I. Logashenko²¹, B. Malaescu⁵, K. Maltman^{44,45}, M.K. Marinković^{46,47} P. Masjuan^{48,49}, A.S. Meyer³⁷, H.B. Meyer^{12,13}, T. Mibe^{1,*}, K. Miura^{12,13,3} S.E. Müller⁵⁰, M. Nio^{2,51}, D. Nomura^{52,53}, A. Nyffeler^{12,*}, V. Pascalutsa¹², M. Passera⁵⁴, E. Perez del Rio⁵⁵, S. Peris^{48,49}, A. Portelli³⁰, M. Procura⁵⁶, C.F. Redmer¹², B.L. Roberts^{57,*}, P. Sánchez-Puertas⁴⁹, S. Serednyakov²¹, B. Shwartz²¹, S. Simula²⁷, D. Stöckinger⁵⁸, H. Stöckinger-Kim⁵⁸, P. Stoffer⁵⁹ T. Teubner^{60,*}, R. Van de Water²⁴, M. Vanderhaeghen^{12,13}, G. Venanzoni⁶¹, G. von Hippel¹², H. Wittig^{12,13}, Z. Zhang¹⁸, M.N. Achasov²¹, A. Bashir⁶², N. Cardoso⁴⁷, B. Chakraborty⁶³, E.-H. Chao¹², J. Charles²⁵, A. Crivellin^{64,65}, O. Deineka¹², A. Denig^{12,13}, C. DeTar⁶⁶, C.A. Dominguez⁶⁷, A.E. Dorokhov⁶⁸, V.P. Druzhinin²¹, G. Eichmann^{69,47}, M. Fael⁷⁰, C.S. Fischer⁷¹, E. Gámiz⁷², Z. Gelzer²³, J.R. Green⁹, S. Guellati-Khelifa⁷³, D. Hatton¹⁹, N. Hermansson-Truedsson¹⁴, S. Holz³⁶, B. Hörz⁷⁴, M. Knecht²⁵, J. Koponen¹, A.S. Kronfeld²⁴, J. Laiho⁷⁵, S. Leupold⁴², P.B. Mackenzie²⁴, W.J. Marciano³⁷, C. McNeile⁷⁶, D. Mohler^{12,13}, J. Monnard¹⁴, E.T. Neil⁷⁷, A.V. Nesterenko⁶⁸, K. Ottnad ¹², V. Pauk ¹², A.E. Radzhabov ⁷⁸, E. de Rafael ²⁵, K. Raya ⁷⁹, A. Risch ¹², A. Rodríguez-Sánchez⁶, P. Roig⁸⁰, T. San José^{12,13}, E.P. Solodov²¹, R. Sugar⁸¹, K. Yu. Todyshev²¹, A. Vainshtein⁸², A. Vaquero Avilés-Casco⁶⁶, E. Weil⁷¹, J. Wilhelm¹², R. Williams⁷¹, A.S. Zhevlakov⁷⁸

¹Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
²Nishina Center, RIKEN, Wako 351-0198, Japan

³ Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan ⁴ School of Physics and Astronomy, University of Southampton, Southampton S017 1BJ, United Kingdom ⁵ LPNHE, Sorbonne Université. Université de Paris, CNRS/IN2P3, Paris, France

E-mail address: MUON-GM2-THEORY-SC@fnal.gov (G. Colangelo, M. Davier, S.I. Eidelman, A.X. El-Khadra, M. Hoferichter, C. Lehner, T. Mibe, A. Nyffeler, B.L. Roberts, T. Teubner).

https://doi.org/10.1016/j.physrep.2020.07.006

0370-1573/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons org/licenses/by-nc-nd/4.0/).

⁸ Corresponding authors

Hadronic Vacuum Polarization

- Most important contribution is from low energies ≤ 1 GeV, dominated by ρ and ω peaks, taking account of interference effects
- Uncertainties dominated by ρ and ω region, and by region between 1 and 2 GeV (ϕ , etc.)
- High energies under good control from perturbative QCD

$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$$

= 693.1(4.0) × 10⁻¹⁰.

Aoyama et al, arXiv:2006.04822

Lattice Calculations of Hadronic Vacuum Polarization

$$\left[a_{\mu}^{\mathrm{HVP}} + \left[a_{\mu}^{\mathrm{QED}} + a_{\mu}^{\mathrm{Weak}} + a_{\mu}^{\mathrm{HLbL}}
ight]
ight> a_{\mu}^{\mathrm{SM}}$$

Aoyama et al, arXiv:2006.04822

Recent Lattice Calculations

Updated CMD-3 Measurement of HVP

$$e^+e^- \rightarrow \pi^+\pi^-$$
 form factor

CMD-3 Collaboration, arXiv:2309.12910

Comparison with previous results

 $(g_{\mu} - 2) - \text{HVP}$ discrepancy $\Delta a_{\mu} = (49 \pm 55) \times 10^{-11}$ Consistent with no BSM signal

New Lattice Calculation of $g_{\mu} - 2$

Boccaletti et al, arXiv:2407.10913

$g_{\mu} - 2$ in Benchmark SUSY Scenarios

Comparison of experimental and theoretical estimates of Δa_{μ} with calculations in supersymmetric models including benchmarks

Impacts on Other Observables

• Important effects on $g_e - 2$, HFS, lesser effects on $\alpha_{\rm em}$, $\sin^2 \theta_W$

Luzio, Keshavarzi, Masiero & Paradisi, arXiv:2407.01123

$g_{\mu} - 2$ in SUSY Models

- LHC constraints on strongly-interacting sparticles exclude significant contribution to $g_{\mu} 2$ in CMSSM
- Violate universality in gaugino masses: $M_1 \neq M_2 \neq M_3$? NUGM
- Violate universality in sfermion and Higgs supersymmetrybreaking masses: $m_{\tilde{t}}, m_{\tilde{b}}, m_{\tilde{\tau}} \neq$ other squarks, sleptons and Higgs masses? NUHM3
- Can accommodate "any" value of $g_{\mu} 2$

LHC vs Supersymmetry

- LHC favours squarks & gluinos > 2 TeV (but loopholes)
- Does not exclude lighter electroweakly-interacting particles, e.g., sleptons

• Most models have $m_{\tilde{\mu}_L} > m_{\tilde{\mu}_R}$ but $m_{\tilde{\mu}_R} \simeq m_{\tilde{e}_R}$: relevant constraint

ATLAS Collaboration

Non-Universal SUSY Scenarios

Non-Universal SUSY Scenarios

Dark matter density, m_H and scattering cross sections

Comparison of Benchmarks with ATLAS Limits

