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Why care about ML in physics?



3Why ML in HEP?

2024

2014
1987

Data volume

Large amounts of data

1

1. labeled (Simulation) 
2. unlabeled (Detector)

ML wants lots of data

4

Computing Budget

Simulation & analysis 
is computationally 

expensive
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particle level

ML is fast

2

Complexity

High-dimensional & 
highly correlated 

data structure 

ML is expressive 
and flexible

Signal detection

3

ML has high accuracy 
and sensitivity

Rare and elusive signals 
among large backgrounds

> 150 paper/year

5

Increasing interest

ML is fun!

Future of HEP?
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5LHC analysis + ML

Quantum 
Theory

ℒ

Nature

Scattering 
Amplitudes

Detector 
simulation

Recon- 
struction

Recon- 
struction

Event 
selection

Event 
selection

2.2 Anomaly 
detection

1.1 Top 
Tagging

2.1 Generative Modelling

Pattern 
recognition

1.2 Optimal 
Inference

MC 
sampler

Shower + 
hadron. 

simulattion

Detector



6HEPML Living Review

• Check LivingReview for many 
ML4HEP applications

HEPML

https://iml-wg.github.io/HEPML-LivingReview/
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Lecture I (90min)

To
da

y

1. Introduction to Machine Learning

• Basic concepts of machine learning

• Classification and Regression

• Example: Top Tagging, MadMiner

Fr
id

ay

2. Generative Models for the LHC

• Normalizing flows

• CWoLA and Anomaly detection
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Introduction to Machine Learning
Part I



What is machine learning?
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ML pioneer
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Machine learning

Input Output Program

“Machine learning (ML) is the study 
of computer algorithms that can 
improve automatically through 
experience and by the use of 
data”

ML pioneer
Tom Mitchell



12What is machine learning?

1. algorithm: a method to perform a task of 
interest


2. experience: training data, which the algorithm 
can use to learn how to perform a task


3. improve: a way to measure the performance 
on the training data


4. automatically: a strategy to exploit the 
training data, without external input

ML pioneer
Tom Mitchell

“Machine learning (ML) is the study 
of computer algorithms that can 
improve automatically through 
experience and by the use of 
data”



13What is machine learning?

“Machine learning is just statistics on steroids. 
Lots and lots of steroids”

Co-founder of OpenAI
Ilya Sutskever



14What is machine learning?
What if feels like… (sometimes)

Aim of the lectures: 

Giving you the tools and ideas 
to use it right!



14What is machine learning?
What if feels like… (sometimes)

Aim of the lectures: 

Giving you the tools and ideas 
to use it right!

Be aware! 

The core of machine learning is to find 
structure in data - no more no less!



What is deep learning?
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A technique which enables 
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behaviour
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16What is deep learning?

Machine Learning

MACHINE LEARNING
Subset of Al technique which use 
statistical methods to enable 
machines to improve with 
experience

Artificial Intelligence
ARTIFICIAL INTELLIGENCE
A technique which enables 
machines to mimic human 
behaviour

Deep Learning

DEEP LEARNING
Subset of ML which make the 
computation of neural networks 
feasible



What are neural networks?



18Components of artificial neurons

y = f (
n

∑
i=1

ωixi + βi)

x2 !2 ⌃ f

activation
function

y

output

x1 !1

...
...

xn !n

weights

bias
�

inputs



19Deep neural network

yj = fj (∑
m

ω(n+1)
jm g(n)

m (⋯(∑
i

ω(2)
kl g(1)

l (∑
i

ω(1)
li xi + β(1)

l ) + β(2)
k )⋯) + β(n+1)

j )

hidden

layer 1

hidden

layer n

· · ·

Input Output



20Training objective and optimization
Performance measure

In order to train the neural network, we need a training objective or loss function: 

ℒtot =
N

∑
i

ℒ( fω(xi), yi)
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20Training objective and optimization
Performance measure

In order to train the neural network, we need a training objective or loss function: 

ℒtot =
N

∑
i

ℒ( fω(xi), yi)

Backpropagation

∇ωℒ( fω(x), y) =
dℒ( fω(x), y)

dω
= ∑

ij

∂ℒ
∂fj,ω

⋅
∂fj,ω
∂ωi

!= 0

Stochastic gradient descent

ωt+1 = ωt − η∇ωt
ℒb(ω), with ℒb(ω) =

b

∑
i

ℒ( fω(xi), yi)





global minimum

local minimum

Loss function

Lack of exploration

Lack of exploitation

22Optimizer and loss landscape
Finding the global minimum in a sea of local minima
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23Overfitting und regularization

Identify
• Test/validation set: 

independent samples for testing/
validation  



23Overfitting und regularization

Regularization
• L1 & L2 Regularization: penalty term 

in the loss function 

• Dropout: randomly sets the inputs to 
some nodes to zero

Identify
• Test/validation set: 

independent samples for testing/
validation  



How to choose the loss function?



25Fits and interpolations

Approximate function

fω(x) ≈ f(x)

Maximize probability for fit output
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2πσj

exp −
| fj − fω(xj) |2

2σj
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| fj − fω(xj) |2

2σj
+ const
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25Fits and interpolations

Approximate function

fω(x) ≈ f(x)

Maximize probability for fit output

p(x |ω) = ∏
j

1

2πσj

exp −
| fj − fω(xj) |2

2σj

⇒ log p(x |ω) = − ∑
j

| fj − fω(xj) |2

2σj
+ const

Loss function of the fit

Minimize negative log-likelihood

ℒfit = ∑
j

ℒj

N
= ∑

j

| fj − fω(xj) |2

2σjN

Assumes Gaussian 
probablity distribution
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Loss function in fits

ℒ = ∑
j

ℒj = ∑
j

| fj − fθ(xj) |2

2σj
ℒfit =

1
N ∑

j

ℒj =
1
N ∑

j

| fj − fω(xj) |2

2σj

Typical ML Regression loss

ℒ =
1

2σN ∑
j

| fj − fω(xj) |2 ≡
1
2σ

MSE
if error  unknown 
or same for all

σj

Puts more weight solely on 
deviations of the function values!

Mean-absolute error

ℒMAE =
1
N ∑

j

| fj − fω(xj) |

Preprocessing of the training data

fj → fj − ⟨ fj⟩ fj →
fj

⟨ fj⟩
⋯fj → log fj
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pω(x) ≈ pdata(x)
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27What about Classification?

 Approximate data probability

pω(x) ≈ pdata(x)

ratio of the two likelihoods is the 
most powerful test statisticKullback-Leibler divergence

DKL(pdata |pω) = ⟨log
pdata(x)
pω(x) ⟩

pdata

= ∫ dx pdata(x) log
pdata(x)
pω(x)

Optimal test 
statistic



28Classification loss function
Classification loss

ℒclass = ∑
j=S,B

DKL(pdata,j |pω,,j)

= − ∑
{x}

[pdata,S log pω,S + pdata,B log pω,B] + const
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28Classification loss function
Classification loss

ℒclass = ∑
j=S,B

DKL(pdata,j |pω,,j)

= − ∑
{x}

[pdata,S log pω,S + pdata,B log pω,B] + const

Binary cross-entropy loss

ℒBCE = − ∑
{x}

[pdata,S log pω,S + (1 − pdata,S) log(1 − pω,S)]

Using pB = 1 − pS

Generalization (multi-class)

ℒCE = − ∑
j∈Ci

pdata,j log pω,j



29Useful libraries + algorithms

• scikit-learn: For most of the “basic” algorithms like Linear Regression and 
Boosted Decision Trees. Also useful for preprocessing, model combination, etc.


• XGBoost, LightGBM, CatBoost: For optimized tree-based models 


• TensorFlow, PyTorch, Jax: For deep learning models



The Landscape of Machine Learning



VAE

Simplifying Polylogs 
[2206.04115]

Model Building 
[2103.04759]

Analytic continuation 
[2112.13011]

Jet Clustering 
[2008.06064]

3D Pixel Clustering 
[2007.03083]

CaloGAN 
[1712.10321]

How to GAN 
[1907.03764]

EPiC-GAN 
[2301.08128]

MADNIS 
[2212.06172,..]

Precision Generation 
[2110.13632]

Jet Simulation 
[2203.00520]

OTUS 
[2101.08944]

CWoLA Hunting 
[1902.02634]

(R-)ANODE

[2001.04990,…]

CATHODE 
[2109.00546]

NNPDF 
[2109.02653]

Symbolic regression 
[2109.10414]

Matrix Elements 
[2206.14831]

MadMiner 
[1907.10621,…]

Bayesian Tagger 
[1904.10004]

Landscape of 
Top tagger 

[1902.09914]

Point Clouds 
[2102.05073]

Energy Flow Networks 
[1810.05165]

Unsupervised 
Learning

Clustering

Machine 
Learning

Regression

Supervised 
Learning

CaloFlow I-IV 
[2106.05285,…]

PC-JeDi 
[2303.05376] FPCD 

[2304.01266]
Generative 

Models

MEM 
[2210.00019]

Reinforcement 
Learning

String vacua & landscape 
[1903.11616, 2111.11466]

Flavor structure 
[2304.14176]

PELICAN 
[2211.00454]

Classification

JetGPT 
[2305.10475]

Transformer

GAN

Diffusion 
Models

DDPM & CFM 
[2305.10475]

NF
ELSA 

[2305.07696]

Normalized AE

[2206.14225]

Anomaly 
Detection
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Classification with Top Tagging
Example I
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36What is jet tagging?

A jet is collimated shower of particles in the collider
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38What is jet tagging?

Gluon jet?

Light quark 
 jet?

Bottom quark  
jet?

Top quark  
jet?

Why?
• Discover new particles 

• Measure the SMFocus on top taggers
• Modern taggers are 

multi-class

ML algorithm?
• Complex and multi-

dimensional data

We want to know which particle produced the jet!



39What is jet tagging?
Light quark 

 jet?

Bottom quark  
jet?

Top quark  
jet?

Gluon jet?

Data most naturally as point cloud

Each input (jet, event,…) 
is a set of k-dimensional vectors 
(individual particles, hits,…)

Ji = { ⃗p1, …, ⃗pn}

[2312.00123]
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[1902.09914]

• Open dataset for the devolopment 
of better tagging algorithms  
for particle physics


• 2 million simulated examples


• Perfect class labels: 
S=top jet or B=light quark/gluon jet


• Input: momentum sorted list of  
200 particles/jets with  
3 features/particle 
(px, py, pz)
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• Open dataset for the devolopment 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• Perfect class labels: 
S=top jet or B=light quark/gluon jet


• Input: momentum sorted list of  
200 particles/jets with  
3 features/particle 
(px, py, pz)

[1902.09914]



41

Cut so that 30% of top quarks 
pass selection:

 is the inverse of the number of 
background jets that also pass
R30 Better

More 
complex

Evaluation metrics and results
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42Evaluation metrics and results
[2212.00046] + G. Kasieczka

Better

More 
complex

• Jets as images 
[1701.08784, 1803.00107]

• Point cloud 
[PFN 1810.05165]

• Point cloud with Graphs 
[1902.08570, 2007.13681]

• Point cloud with attention 
[2202.03772]

• Lorentz symmetries 
[1707.08966, 2201.08187, 2211.00454]



Regression with MadMiner
Example II

Brehmer, Cranmer, Louppe, Pavez [1805.00013, 1805.00020, 1805.12244]
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45Recap — HEP analysis

Theory 
parameters

θ

Evolution

Shower 
splittings

zs

Detector 
Interactions

zd

Observables
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Why has that not stopped us so far?
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ATLAS [1712.02304]

Run simulator for 
different , 

fill histograms
θ

̂p(x |θ) = p(x′ |θ) =

• Curse of dimensionality: Histograms don’t scale to high-dimensional x

• How to choose  ? Standard variables often lose information 
[1612.05261,1712.02350]

x′ 
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p(zp |θ)p(x |θ) = ∫ dzd ∫ dzs ∫ dzp

approximate shower + detector effects  
into transfer function

p(x |zp) = ∫ dzd ∫ dzs p(x |zd) p(zd |zs) p(zs |zp)Step 1



x

Theory 
parameters

θ

Parton-level 
momenta

zp

Shower 
splittings

zs

Latent variables

Detector 
Interactions

zd

Observables

Known from  
theory

50

p(x |zp)

Solve it by calculating the integral with ML

p(zp |θ)p(x |θ) = ∫ dzp



x

Theory 
parameters

θ

Parton-level 
momenta

zp

Shower 
splittings

zs

Latent variables

Detector 
Interactions

zd

Observables

Known from  
theory

50

p(x |zp)

Solve it by calculating the integral with ML

p(zp |θ)p(x |θ) = ∫ dzp

(Less) complicated  
integral

Likelihood  
still intractable



x

Theory 
parameters

θ

Parton-level 
momenta

zp

Shower 
splittings

zs

Latent variables

Detector 
Interactions

zd

Observables

Matrix Element Method [K. Kondo 1988]

Known from  
theory

50

p(x |zp)

Solve it by calculating the integral with ML

p(zp |θ)p(x |θ) = ∫ dzp

(Less) complicated  
integral

Likelihood  
still intractable



x

Theory 
parameters

θ

Parton-level 
momenta

zp

Shower 
splittings

zs

Latent variables

Detector 
Interactions

zd

Observables

Matrix Element Method [K. Kondo 1988] + ML [2210.00019, 2310.07752]
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p(x |zp)

Solve it by calculating the integral with ML

p(zp |θ)p(x |θ) = ∫ dzp

(Less) complicated  
integral

Likelihood  
still intractable

Step 2
Use ML to 
speed-up 
integration

Use ML to 
parametrize 
transfer function

̂pω(x |zp)⟨
f(zp)

gω(zp) ⟩



Solving it with likelihood-free inference
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52The MadMiner approach

“Mining gold”: Extract 
 additional information 

 from simulator
Use this information to 

train estimator for likelihood ratio
Set new constrains with  

standard hypothesis tests

Brehmer, Cranmer, Louppe, Pavez [1805.00013, 1805.00020, 1805.12244]
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54Mining gold from the simulator
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Parton-level likelihood 
can be evaluated!

⇒ For each generated event, we can calculate the joint likelihood ratio conditional on its evolution:

r(x, z |θ0, θ1) ≡
p(x, zd, zs, zp |θ0)
p(x, zd, zs, zp |θ1)

=
p(x |zd)
p(x |zd)

p(zd |zs)
p(zd |zs)

p(zs |zp)
p(zs |zp)

p(zp |θ0)
p(zp |θ1)
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p(x, zd, zs, zp |θ1)

We want the likelihood ratio function
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p(x |θ0)
p(x |θ1)

[1805.00020]

 are  
scattered around 
r(x, z |θ0, θ1)

r(x |θ0, θ1)



57The value of gold

We can calculate the joint likelihood ratio

r(x, z |θ0, θ1) ≡
p(x, zd, zs, zp |θ0)
p(x, zd, zs, zp |θ1)

We want the likelihood ratio function

r(x |θ0, θ1) ≡
p(x |θ0)
p(x |θ1)

With , we define the functionalr(x, z |θ0, θ1)

One can show it is minimized by

̂r(x |θ0, θ1) = r(x |θ0, θ1)

Lr[ ̂r(x |θ0, θ1)] = ∫ dx∫ dz p(x, z |θ1) [ ̂r(x |θ0, θ1) − r(x, z |θ0, θ1)]2r(x, z |θ0, θ1)
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58Machine learning = applied calculus 

∫ dx∫ dz p(x, z |α1) [ ̂r(x |θ0, θ1) − r(x, z |θ0, θ1)]2arg min=̂r(x |θ0, θ1) ̂r(x |θ0, θ1)

We can get a precise estimator by numerically minimizing a functional:

̂r(x |θ0, θ1)

Lr[ ̂r(x |θ0, θ1)]̂r(x |θ0, θ1)

We do this via Machine Learning:

• Functional Lr

• Variational familiy ̂rω(x |θ0, θ1)

Loss function

ℒMSE =
1
N ∑

i
[ ̂rω(xi |θ0, θ1) − r(xi, zi |θ0, θ1)]2̂rω(xi |θ0, θ1)

• Exact minimization

Flexible parametric function (e.g. neural network)

Numerical optimization algorithm (eg. Stochastic gradient descent)
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60Constraining EFT parameters with ML
Higgs production in weak boson fusion:

Exciting new physics might hide here! 
 We parameterize it with two EFT coefficients

at least 16-dimensional 
 observable space
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61Better sensitivity to new physics

Results are based on 36 observed events, assuming SM

[1805.00013]

Likelihood function

[1805.00013]

Expected exclusion limits at 68%, 95%, 99.7% CL

MadMiner 
 enables stronger 

limits than 
 2D histogram

Limits from MadMiner 
 indistinguishable from 

true likelihood 
(usually we don’t have that)



Bonus material
Appendix



63Variational calculus

L[ ̂g(x)] = ∫ dx∫ dz p(x, z |θ)[g(x, z) − ̂g(x)]

= ∫ dx [ ̂g2(x)∫ dz p(x, z |θ) − 2 ̂g(x)∫ dz p(x, z |θ) g(x, z) + ∫ dz p(x, z |θ) g2(x, z)]
=F(x)

0 =
δF
δ ̂g

g*

= 2 ̂g ∫ dz p(x, z |θ)

=p(x|θ)

− 2∫ dz p(x, z |θ) g(x, z)

g*(x) =
1

p(x |θ) ∫ dz p(x, z, |θ) g(x, z)

Choose

g(x, z) =
p(x, z, |θ0)
p(x, z, |θ1)


