

Future Colliders

Jacqueline Keintzel

Acknowledgements: Many colleauges from various design studies

4th Baltic School of High Energy Phyiscs and Accelerator Technologies Kuldiga, Latvia 05 – 09 August 2024

Current Accelerators

Ref :

https://nucleus.iaea.org/sites/accelerators/Pages/Interactive-Map-of-Accelerators.aspx

https://www-elsa.physik.uni-bonn.de/accelerator list.html

Many applications

- Medical accelerators •
- Light sources •
- Accelerator based neutron sources
- High Energy Physics (HEP) research
 - 7 colliders currently in operation
 - e.g: RHIC, LHC, SKEKB •

	Species	E_b, GeV	C, m	\mathcal{L}_{peak}^{max}	Years
VEPP-4M	e^+e^-	6	366	2×10^{31}	1979-
BEPC-I/II	e^+e^-	2.3	238	10^{33}	1989-
DAΦNE	e^+e^-	0.51	98	4.5×10^{32}	1997-
RHIC	p, i	255	3834	2.5×10^{32}	2000-
LHC	p, i	6500	2669	$2.1 imes 10^{34}$	2009-
VEPP2000	e^+e^-	1.0	24	4×10^{31}	2010-
S-KEKB	e^+e^-	7+4	3016	8×10^{35} *	2018-

RHIC at BNL

- Relativistic Heavy Icon Collider
- Located at

Brookhavn National Laboratory (BNL)

 First collider ever build dedicated to collide heavy ions

	(PHOBOS) Electron lenses	Polarized Jet Ta RHIC	arget (BRAHMS) Electron cooling
(s)PHENIX NAC EBIS NSI Booster		STAR	RF
BLIP	AGS	Tandome	
e)			

Operation	: 2000 – 2025 (planned)				
Circumference	: 3.8 km				
Max dipole field	: 3.5 T				
Energy	: 255 GeV polarized p				
	: 100 GeV/nucleon Au				
Species	: p to U (incl. asymmetric)				
Experiments	: BRAHMS, PHOBOS (complete				
STAR, PHENIXgsPHENIX					

4 14 14 14 1

RHIC Flexibility

- Great flexibility of ion collisions
 - Creation of quark gluon plasma
- Operation with polarized protons
 - Spin physics

SuperKEKB at KEK

- SuperKEKB at KEK (Kō Enerugī Kasokuki Kenkyū Kikō)
- Largest currently operating electron-positron collider
- Record instantaneous luminosity of 4.65 x 10³⁴ cm⁻²s⁻¹
- Asymmetric beam energies of 4 and 7 GeV for b-physics

Sudden Beam Loss - Example

- Timeline of SBL:
 - Horizontal oscillation
 - Vertical oscillation
 - Beam Losses

- Pressure burst at same time
 - Cause or consequence of SBL?

Courtesy: H. Ikeda

Beam Current Dependency

* Exclude SBLs and operation time on May17 and May30 (knocker study)

- Frequency (#SBL/hour) depends on the LER beam current
- · The frequency (#SBL/hour) in June is reduced
 - Thanks to knocking beam pipes at D10

(K.Uno)

Courtesy: H. Ikeda, S. Terui, Nakayama

Working Theory

- Clearing electrode(s) in wiggler(s) damaged
- Dust particles fall into beam, leading to SBL

- Knocker study has been performed
 - Knocker installed at D4 location
 - 3 SBL events have been triggered
 - Vacuum team investigating mitigation theories
 - Further knocking at same current did not lead to SBL
 - Future: installation of knocker at D10

Luminosity Projection

• Goal: 60 x 10³⁴ cm⁻²s⁻¹ instantaneous luminosity

- Current SuperKEKB challenges:
 - Sudden Beam Loss, mainly in positron ring
 - Beam Blow-Up
 - Beam-beam Blow-Up
 - Injection efficiency

LHC at CERN

- Large Hadron Collider (LHC) at CERN for hadron collisions with four big experiments
- Largest collider in existence with 27 km; last stage of the accelerator chain
- 14 TeV collision energy for proton-proton collisions; also heavy-ion collisions

Higgs Discovery at LHC

- Most recent nobel prize
- for high-energy physics in 2013
- Peter Higgs and Francois Englert

• Electron-positron colliders started in the 1960s

Ref: V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006, 2021.

Note: Possible start for various future machines later than shown in plots

The Very First: AdA

- Anello Di Accumulazione (AdA) with 4 m circumference
- Located at Frascati, Italy
- Operation from 1961 1965

- First proof of principle of e⁺e⁻ storage ring
- First observations of e⁺e⁻ annihilations
- Observation of the Touschek Effect

C. Bernardini, AdA: The First Electron-Positron Collider. Phys. perspect. 6, 156–183 (2004).

JACQUELINE KEINTZEL

Nobel Prizes HEP

- 2013: Francois Englert and Peter **Higgs** "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"
- 2008: Makoto Kobayashi and Toshihide Maskawa "for the discovery of the origin of the **broken symmetry** which predicts the existence of at least three families of quarks in nature"
- 2004: David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction"
- 1995: Martin L. Perl "for the discovery of the tau lepton" and Frederick Reines "for the detection of the neutrino"

• 1992: Georges Charpak - "for his invention and development of particle detectors, in particular the **multiwire proportional chamber**"

Nobel Prizes HEP

- 1990: Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the **quark model** in particle physics"
- 1984: Carlo Rubbia and Simon van der Meer "for their decisive contributions to the large project, which led to the discovery of the field particles **W** and **Z**, communicators of weak interaction"
- 1979: Sheldon Glashow, Abdus Salam and Steven Weinberg "for their contributions to the theory of the **unified weak and electromagnetic** interaction between elementary particles, including, inter alia, the prediction of the weak neutral current"
- 1976: Burton Richter and Samuel C.C. Ting "for their pioneering work in the discovery of a **heavy elementary particle** of a new kind"
- 1996: Murray Gell-Mann "for his contributions and discoveries concerning the classification of **elementary particles and their interactions**"

Nobel Prizes HEP

- 1986: Luis Alvarez "for his decisive contributions to elementary particle physics, in particular the discovery of a large number of resonance states, made possible through his development of the technique of using **hydrogen bubble chamber** and data analysis"
- 1965: Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman "for their **fundamental work in quantum electrodynamics**, with deep-ploughing consequences for the physics of elementary particles"
- 1960: Donald A. Glaser "for the invention of the bubble chamber"
- 1959: Emilio Segrè and Owen Chamberlain "for their discovery of the antiproton"
- 1957: Chen Ning Yang and Tsung-Dao Lee "for their penetrating investigation of the so-called **parity laws** which has led to important discoveries regarding the elementary particles"
- 1951: John Cockcroft and Ernest T.S. Walton "for their pioneer work on the **transmutation of atomic nuclei** by artificially accelerated atomic particles"
- 1949: Hideki Yukawa "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces"

History

- About 14 past circular electron-positron colliders
- About 3 past circular hadron colliders
- So far 1 electron-hadron collider
- 7 colliders currently in operation
- 2 approved future collider projects + 1 upgrade
- Possible option for the future
 - Circular, linear, novel concepts ?
 - Americas, Europe, Asia ?

Colliders	Species	E_{cm} , GeV	C, m	$L, 10^{32}$	Years	Host lab, country
AdA	e^+e^-	0.5	4.1	10^{-7}	1964	Frascati/Orsay
VEP-1	e^-e^-	0.32	2.7	5×10^{-5}	1964-68	Novosibirsk, USSR
CBX	e^-e^-	1.0	11.8	2×10^{-4}	1965-68	Stanford, USA
VEPP-2	e^+e^-	1.34	11.5	4×10^{-4}	1966-70	Novosibirsk, USSR
ACO	e^+e^-	1.08	22	0.001	1967-72	Orsay, France
ADONE	e^+e^-	3.0	105	0.006	1969-93	Frascati, Italy
CEA	e^+e^-	6.0	226	$0.8 imes 10^{-4}$	1971-73	Cambridge, USA
ISR	pp	62.8	943	1.4	1971-80	CERN
SPEAR	e^+e^-	8.4	234	0.12	1972-90	SLAC, USA
DORIS	e^+e^-	11.2	289	0.33	1973-93	DESY, Germany
VEPP-2M	e^+e^-	1.4	18	0.05	1974-2000	Novosibirsk, USSR
VEPP-3	e^+e^-	3.1	74	2×10^{-5}	1974-75	Novosibirsk, USSR
DCI	e^+e^-	3.6	94.6	0.02	1977-84	Orsay, France
PETRA	e^+e^-	46.8	2304	0.24	1978-86	DESY, Germany
CESR	e^+e^-	12	768	13	1979-2008	Cornell, USA
PEP	e^+e^-	30	2200	0.6	1980-90	SLAC, USA
$Sp\bar{p}S$	$p\bar{p}$	910	6911	0.06	1981-90	CERN
TRISTAN	e^+e^-	64	3018	0.4	1987-95	KEK, Japan
Tevatron	$p\bar{p}$	1960	6283	4.3	1987-2011	Fermilab, USA
SLC	e^+e^-	100	2920	0.025	1989-98	SLAC, USA
LEP	e^+e^-	209.2	26659	1	1989-2000	CERN
HERA	ep	30 + 920	6336	0.75	1992-2007	DESY, Germany
PEP-II	e^+e^-	3.1 + 9	2200	120	1999-2008	SLAC, USA
KEKB	e^+e^-	3.5 + 8.0	3016	210	1999-2010	KEK, Japan
VEPP-4M	e^+e^-	12	366	0.22	1979-	Novosibirsk, Russia
BEPC-I/II	e^+e^-	4.6	238	10	1989-	IHEP, China
DAONE	e^+e^-	1.02	98	4.5	1997-	Frascati, Italy
RHIC	p, i	510	3834	2.5	2000-	BNL, USA
LHC	p, i	13600	26659	210	2009-	CERN
VEPP2000	e^+e^-	2.0	24	0.4	2010-	Novosibirsk, Russia
S-KEKB	e^+e^-	7+4	3016	6000*	2018-	KEK, Japan
NICA	p, i	13	503	1*	2024(tbd)	JINR, Russia
EIC	ep	10 + 275	3834	105*	2032(tbd)	BNL, USA

Ref: V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006, 2021; S. Nagaitesev

EIC at BNL

- Electron-Ion Collider, re-using RHIC tunnel
- Not a high-energy physics collider, but a nuclear physics collider
 - Nuclear physics scattering experiments
 - Collective and single-partice effects in strong interaction
- Aims to answer 3 fundamental nuclear physics questions:
 - How does nuclear mass arise?
 - How does nuclear spin arise?
 - What are emergent properties of dense gluon systems?

EIC at BNL

- Hadron storage ring: 40 275 GeV (existing)
 - 1160 bunches, 1 A beam current
 - Small vertical emittance
 - Strong cooling
- Electron storage ring: 2.5 18 GeV (new)
 - Up to 1160 polarized bunches
 - Large beam current of 2.5 A \rightarrow 9 MW SR power
 - Superconducting RF
- Rapid cycling synchrotron (RCS): 0.4 18 GeV (new)
- High luminosity interaction regions: (new)

High-Luminosity LHC

- HL-LHC is major upgrad of the LHC
- Main goals:
 - Total integrated luminosity of 3000 fb⁻¹ (10 x LHC)
 - Target of ~ 250 fb⁻¹ integrated luminosity per year
- Some changes:
 - New 11 T magnets with collimators in between
 - Higher bunch-charge
 - Smaller beta-function at the interaction point, achieved by Achromatic Telescopic Squeeze (ATS) Optics

	LHC 2024	HL-LHC
Protons per bunch	1.6 x 1011	2.2 x 10 ¹¹
Number of bunches	2352	2750
Normalized emittance	1.8 micron	2.5 micron
Beta*	30 cm	15 cm
Full crossing angle	320 microrad	500 microrad
Geometric reduction factor F	0.6	0.35
"Virtual" luminosity	4.2 x 10 ³⁴ cm ⁻² s ⁻¹	2.4 x 10 ³⁵ cm ⁻² s ⁻¹
Levelled luminosity	2.1 x 10 ³⁴ cm ⁻² s ⁻¹	5 x 10 ³⁴ cm ⁻² s ⁻¹

Particle Physics - Status

- Standard Model (SM) confirmed to high accuracy up to several TeV
- Higgs-boson discovered
 - At the mass predicted within the SM by LEP precision electro-weak measurements
- Absence of new physics at the TeV scale

- Need for a new, broad and ambitious program
 - → more precision
 - \rightarrow more energy
 - \rightarrow for more sensitivity for new physics

https://forumias.com/blog/the-standard-model-of-particle-physics-gets-a-jolt/#gsc.tab=0

Courtesy: R. Bruce, E. Metral

Considerations

• The What?

Hadrons (protons or ions)

- Mix of quarks and gluons
- Variety of processes
- Discoveries at physics frontiers
- Huge QCD background
- Typically high collision energy
- Main limitation: dipole field and ring size

Leptons

- Elementary particles colliding
- Low back-ground in experiments
- High-precision measurements
- Well-defined center-of-mass energy
- Main limitation: energy loss from synchrotron radiation

Considerations

- The What?
- The How?

Linear Collider

- Single-pass
- Single experiment
- Few magnets, many RF-cavities
- Main limitation: length of collider and accelerating technology

Circular Collider

- Multi-pass
- Multiple experiments
- More magnets, fewer RF-cavities
- Main limitation: Circumference of colliding to bend particles; SR energy loss for light particles

BSHEPAT 08-09 AUG 2024

Considerations

- The What?
- The How?
- The When?

Order

• Would a new lepton or hadron machine be the logical next step?

Technological readiness

- Completeness of designs/proposals
- High-field magnet technology
- Accelerating gradients
- Energy efficiency and sustainability

Ressources

• Are there enough ressources to build as many as we want?

Considerations

- The What?
- The How?
- The When?
- The Why?

- Higgs Particle
- Precision studies at a Higgs-Factory ~ 250 GeV

Next Energy Scale

Need to probe parton collisions up to 10 TeV

SM and Dark Matter

- SM seems incomplete
- Answers on dark matter and dark energy
- Matter antimatter asymmetry

- Electro-weak Measurements
- Studies at the ttbar-threshhold up to $\sim 500 \; \text{GeV}$

What We Want:

https://www.persoenlich.com/kategorie-werbung/eineeierlegende-wollmilchsau-fur-vw

JACQUELINE KEINTZEL

Decisions for the Future

- Europe: European strategy upgrade of particle physics (ESPP)
- USA: Particle Physics Project Priorization Panel (P5) and Snowmass Process
- China: Five year plan to decide on funding
- Japan: Yearly budget plan

JACQUELINE KEINTZEL

Future Landscape - Leptons

• Lower energy regime

• Higher energy regime

Future Landscape - Hadrons

• Next generation of circular hadron colliders to probe next order of magnitude of energies

Circular e+e- Colliders

2 Studies

- CERN, Switzerland
 - Future e+e- Circular Collider, FCC-ee
 - Future hadron Circular Collider, FCC-hh

- IHEP, China
 - Circular Electron Positron Collider, CEPC
 - Super proton-proton Collider, SppC

FCC Feasibility Study

Long-Term Goal: World-leading high energy physics infrastructure for 21st century to push particle-physics precision and energy frontiers far beyond present limits

FCC Mid-Term Report

• MTR Goal: Asses progress of feasibility study towards the final report by February 2024

JACQUELINE KEINTZEL

BSHEPAT

08-09 AUG 2024

Feasibility Study and Schedule

- **Goal:** Demonstration of the geological, technical, environmental, financial and administrative feasibility of the FCC-ee, including its optimisation
- Project preparatory phase with adequate resources immediately after Feasibility Study

FCC-ee Run Plan

- In principle 4 different energy stages
 - Z-pole
 - W-pair-production
 - ZH-production
 - top-pair threshhold

Working point	Z, years $1-2$	Z, later	WW, years 1-2	WW, later	ZH	$\mathbf{t}\overline{\mathbf{t}}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340 - 350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
$Lumi/year (ab^{-1})$	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	—	3	1	4
Number of events	$6 \times 10^{12} {\rm ~Z}$		2.4×10^8	WW	$1.45 \times 10^{6} \text{ ZH}$ + $45 \text{k WW} \rightarrow \text{H}$	$1.9 imes 10 + 330 \mathrm{k} + 80 \mathrm{k} \mathrm{WW}$	$b^{6} t \overline{t}$ ZH $V \rightarrow H$

Number of events are for the current baseline with 4 Interaction Points

Courtesy: C. Grojean

FCC-ee Physics Programme

BSHEPAT 08-09 AUG 2024

JACQUELINE KEINTZEL
Beyond the Collider Programme

- CDR baseline runs (2IPs)
- ---- Additional opportunities

- Many opportunities beyond the baseline plan
- Complementary experiments using e.g. beam dump, re-using synchrotron radiation photons

CEPC Status

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

CEPC Accelerator TDR released in December, 2023

CEPC Technical Design Report

Accelerator

arXiv:2312.14363 1114 authors 278 institutes (159 foreign institutes) 38 countries

> The CEPC Study Group December 2023

Distribution of CEPC Project TDR cost of 36.4B RMB (~4.7B Euro)

 Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

 Total
 364
 100%

1 Oth	204	100.00
Project management	3	0.8%
Accelerator	190	52%
Conventional facilities	101	28%
Gamma-ray beam lines	3	0.8%
Experiments	40	11%
Contingency (8%)	27	7.4%

CERN

5

CEPC Physics Progam

Higgs coupling precision can be improved by an order of magnititude

EW measurement can be improved by a large factor

Direct and indirect probe to new physics up to 10 TeV, an order of magntitude higher than the HL-LHC

✤ ~ 300 Journal / arXiv papers

CEPC Timeline

2012.9	2015.3	2018.11	2023.12	2025.6	2027	15 th five year plan (2026-2030)
proposed	Pre-CDR	CDR	Acc. TDR	Det. TDR	EDR	Start of construction

CEPC EDR Phase: 2024-2027

- CEPC Accelerator EDR starts with 35 WGs in 2024, to be completed in 2027
- CEPC Reference Detector TDR will be released by June, 2025
- CEPC proposal will be submitted to Chinese government for approval in 2025
- Upon approval, establish at least two international experiment collaborations
- CEPC construction starts during the 15th five year plan (2026-2030, e.g. 2027)
- CEPC construction complete around 2035, at the end of the 16th five year plan

EPC	Project Timeline	2022	2023	2024	2025	2026	2027	7 202	8 2029	2030	2031	2032	2033	2034	2035	2036
	Technical Design Report (TDR)		2023			1	15	th	F١	Y		16	th	F١	,	
erator	Engineering Design Report (EDR) R&D of a series of key technologies Prepare for mass production of devices though CIPC															
Accel	Civil engineering, campus construction					2026										
	Construction and installation of accelerator						202	7								
	New detector system design & Technical Design Report (TDR)							2020	1							
Detector	Detector construction, installation & joint commissioning with accelerator							202								
	Experiments operation															203
ation	Further strengthen international cooperation in the filed of Physics, detector and collider design															
Coopera	Sign formal agreements, establish at least two international experiment collaborations, finalize details of international contributions in accelerator.					2026		ċ								

Placement

• FCC-ee: 91 km circumference

• CEPC: 100 km circumference

Courtesy: CEPC

JACQUELINE KEINTZEL

Timeline and Schematic Layout

- FCC-ee:
 - Project approval possible in 2027
 - First collisions ~ 2045

- CEPC:
 - Project approval possible in 2026
 - First collisions ~ 2040 Optimistic?

Courtesy: CPC TDR

Energy Stages

- CERN, Switzerland
 - Future e+e- Circular Collider, FCC-ee
 - 4 Interaction Points

- IHEP, China
 - Circular Electron Positron Collider, CEPC
 - 2 Interaction Points

	E _{Beam} [GeV]	Mode	
First measurements of	45.6	Z-lineshape	
Special mode, monochromatization	62.5	H-energy	Not mentioned in TDR
	80	WW	
	120	ZH-production peak	First measurements of
	182.5	Top-pair-threshold	

Monochromatization

- 62.5 GeV beam energy corresponds to the **peak of Higgs-production** with narrow width of 4.2 MeV
- For minimization of collision energy spread -> monochromatization techniques required

Introducing dispersion

Courtesy: A. Faus-Golfe, H. Jiang and P. Raimondi

Introducing chromaticity

Non-zero local vertical chromaticity to reduce collision energy spread presently explored

Positron Production

- Positrons generated by electrons hitting high-Z-target
- Generated positrons have large emittance and energy spread \rightarrow must be reduced
- Novel capture techniques tested at P³ (PSI Positron Production), relevant for future colliders

N. Vallis et al, arXiv:2308.16803v2, 2023.

Synchrotron Radiation (SR)

• Electrons/Positrons about 2000 times lighter than protons $\rightarrow 10^{13}$ greater radiation losses

$$P_{\gamma} = \frac{2}{3} r_0 E_0 c \frac{\gamma_{\rm rel}^4 \beta_{\rm rel}^4}{\rho^2}$$

• Leads to a natural damping of the emittance over time

$$arepsilon(\mathbf{t}) = e^{-2\mathbf{t}/ au_{\mathrm{SR}}} \qquad au_{\mathrm{SR}} = rac{T_0 E}{j_{x,y} U}$$

W. Barletta, USPAS lectures on synchrotron radiation, 2009.

JACQUELINE KEINTZEL

Synchrotron Radiation Challenges

- At highest proposed energy mode of 182.5 GeV up to almost 10 GeV energy losses per turn
- Synchrotron radiation damping only ~ 40 turns, while about 2300 turns at 45.6 GeV
- Significant energy variation of a few % over the circumference
- Large energy gain required by RF-system
- Machine protection challenges

Quantum Excitation

- Photons emitted in discrete quanta following a random Poisson process
- Sudden loss leads to an instantaneous jump of the particle if emitted in dispersive region
- Introduced **noise** leads to emittance growth towards equilibrium

Blue: only synchrotron radiation; Orange: with quantum excitation

Parameters - CEPC

	Higgs	Z	W	tt				
Number of IPs	2							
Circumference (km)	100.0							
SR power per beam (MW)		3	0					
Energy (GeV)	120	45.5	80	180				
Bunch number	268	11934	1297	35				
Emittance (nm/pm)	0.64/1.3 0.27/1.4 0.87/1.7 1.4/4.7							
Beam size at IP σ_{x}/σ_{y} (um/nm)	14/36	6/35	13/42	39/113				
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9				
Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1				
RF frequency (MHz)		65	50					
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0 115 16 0.5							

Design and parameters dominated by choice to allow for 30 MW synchrotron radiation power per beam

Defines

→ RF system

→ Beam parameters

Longer circumference than FCC

Start at Higgs-mode

Parameters - FCC-ee

	Z	ww	ZH	ttbar						
Beam energy [GeV]	45.6	80	120	182.5	D					
SR power/beam [MW]		50								
SR losses/turn [GeV]	0.0394	0.374	1.89	10.42	ra					
Beam current [mA]	1270	137	26.7	4.9						
Bunches/beam [-]	11200	1780	440	60	D					
Bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55						
RF voltage 400/800MHz [GV]	0.08/0	1.0/0	2.1/0	2.1/9.4						
Horizontal β -function at IP [mm]	110	200	240	1000						
Vertical β -function at IP [mm]	0.7	1.0	1.0	1.6						
Horizontal emittance [nm]	0.71	2.17	0.71	1.59						
Vertical emittance [pm]	1.9	2.2	1.4	1.6						
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	141	20	5	1.25						
Integrated luminosity/IP/year [ab ⁻¹]	15	12	12	11						
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ ttba	ır pai					

Design and parameters dominated by choice to allow for 50 MW synchrotron radiation power per beam

Defines

→ RF system

→ Beam parameters

RF R&D Activities

- RF system is key technology for increasing energy efficiency for the FCC-ee and to reduce the power consumption
- Nb on Cu 400 MHz cavities, seamless cavity production and coating techniques
- Bulk Nb 800 MHz cavities, surface treatment techniques, cryomodule design
- RF power source R&D in synergy with HL-LHC

800 MHz cavity and CM design collaborations with **JLAB** and **FNAL**

BSHEPAT

08-09 AUG 2024

~7m

High-efficiency klystron R&D in collaborations with **THALES & CANON** Novel two-stage MBK klystron: CW, 400MHz, 1.28MW.

400 MHz cavity production in collaboration with **KEK**

Interaction Region Optics

- · Collision of small emittance, high current beams
- Crossing from the inside to limit SR photons to 100 keV
- Crab-waist collision scheme
- Local final focus chromaticity correction

Crab-Waist Scheme

- Large crossing angle and horizontal beam size
- Vertical β -function comparable to overlap area
- Crab-waist transformation with sextupoles

Powering sextupoles rotates the vertical β -function and aligns the minimum on the longitudinal axis on the other beam

A v

Without crab-waist transformation

With crab-waist transformation

Crab-Waist Demonstration

- Crab-waist scheme successfully depolyed at DAFNE, Italy \rightarrow Luminosity increase
- Currently being commissioned at SuperKEKB

Y. Ohnishi et al., Progr. of Theoretical and Experimental Physics, 2013 (3), 2013

P. Raimondi et al., arXiv:physics/0702033, 2007.M. Zobov et al., arXiv:1608.06150, 2016.

DAFNE, 2016.

Non-Linear Beam-Beam Force

- For small amplitudes effect similar to focusing quadrupole for e⁺e⁻ collisions
- Leads to beam-beam tune shift
- For head-on collisions:

$$\Delta Q_{y,\max} = \xi_{y} = \frac{Nr_{e}\beta_{y}^{*}}{2\pi\gamma\sigma_{y}^{*}\left(\sigma_{x}^{*}+\sigma_{y}^{*}\right)}$$

 $L = \frac{N^2 n_b f}{4 \pi \sigma_x^* \sigma_v^*} G \approx \frac{1}{e r_e} \left(\frac{1 + \sigma_y^* / \sigma_x^*}{2} \right)$

Beam-beam tune shift

Center of opposing bunch

Increases with decreasing vertical β-function!

 $\xi_y I$

Total beam current

radiation power

beam

Limited by e.g. synchrotron

Beam-Beam Limit

• Luminosity and vertical tune-shift parameter versus beam current for various e+e- colliders

- The tune shift saturates at some current value, above which the luminosity grows linearly
- Later "2nd beam-beam limit" found due to beam blow and tails at LEP

Multiple Interaction Points

- Question of superperiodicity (SP) depends on location of IPs (A, B, L, G)
- If machine is fully superperiodic (SP = 4) --> a ¼ turn equivalent to smaller ring with 1 collision per turn
- Superperiodicity broken due to lattice imperfections measurement and correction techniques

Top-Up Injection

- Used at SuperKEKB
- First demonstrated at KEKB and PEP-II
- Injection at collision energy into collider rings
- Continous injection to keep constant beam current
- Average luminosity ~ peak luminosity

Polarization Build-Up

 $\begin{array}{c} e^{-} \\ \text{More likely} \\ \text{(by factor ~25)} \end{array} \xrightarrow{e^{-}} \\ S \\ S \\ \text{Less likely} \end{array} \xrightarrow{e^{-}} \\ N \\ \end{array} \xrightarrow{e^{-}} \\ N \\ \end{array} \xrightarrow{e^{-}} \\ N \\ \xrightarrow{e^{-}} \\ \xrightarrow{N} \\$

- Statistically every 10^{10th} emitted synchrotron photon flips the spin
 - Probability depends on the initial spin orientation
 - Leads to a natural **polarization build-up** over time
 - Orientation is **anti-parallel** to the guiding magnetic field for e⁻
 - In a flat synchrotron only vertical bending \rightarrow vertical spin orientation
 - Known as Solokov-Ternov-Effekt
 - Maximum theoretical polarization of **92.4** %
 - In real accelerator max. polarization depends on various factors

Spin Tune

- Spin precesses through the lattice
- Spin tune ν: Number of spin precessions per turn
- In an error-free flat machine without solenoids:
- 45.6 GeV e⁺/e⁻ → 103.5 spin tune
- Purely vertical spin orientation

a ... gyro-magnetic anomaly y_{Rel} ... Lorentz-factor

$$v = a * \gamma_{Rel}$$

Principle: Spin tune measurement Beam energy determination

Courtesy: V. Caudan

FCC Polarization Scheme

- Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)
- Use on wigglers until ~5-10 % vertical polarization reached
- Switch wigglers off
- Inject ~10000 colliding bunches (~2 x 10¹¹ ppb)
- Measure beam energy with pilots while collisions take place
- Polarization used only to retrieve beam energy

CEPC Polarization Scheme

- Injection of polarized electrons and positrons in collider rings at Z and W
 - Longitudinal polarization for physics bunches
 - Transverse polarization for pilot bunches
 - More time for physics

• Possibly also polarized beams at H

Test Facility?

Linear RF e+e- Colliders

2 Major Studies

• CERN: Compact Linear Collider (CLIC)

• Japan: International Linear Collider (ILC)

Physics Potential

- Higgs and electro-weak factory up to a few TeV collision energy
- High longitudinally polarized beams (80 / 20-30 % electrons / positrons) essential part of physics program

BSHEPAT 08-09 AUG 2024

General Linear Collider

- Main parts of linear colliders:
 - RTML (Ring To Main Linac): injectors to achieve low emittance
 - Main linac for electrons and positrons \rightarrow RF and acceleration main technological challenges
 - BDS: beam delivery system to achieve nano-beams
- Staged:
 - Possibility to expand to reach higher energies with new/improved technology


```
ILC
```

- 1.3 GHz superconducting RF
- 35 MV/m accelerating gradient
- Located in Japan
- TDR published in 2013

ILC Approval Process

Promotion scheme of ILC / relation of Stakeholder

(CERN)

ILC Scheme

ILC Cavities

- 1.3 GHz superconducting RF
- 35 MV/m accelerating gradient
- Standing wave structure
- Theoretical field limit 50 60 MV/m
- 8000 cavities needed

- Long pulse
- Large structure \rightarrow low wakefields
- High effiviency thanks to superconductivity
- Long linac due to limited gradient
- Large damping ring

Positron Production

- Electrons pass undulator
- Radiate photons
- Hit Ti-alloy target to create e+e- pairs
- Goal: positron yield of 1.5
- 30% positron polarization

ILC Parameters

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	Ul	pgrades		
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000	٦
Luminosity	$L = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1	J
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)	
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4	
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450	
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74	
Linac bunch interval	$\Delta t_{ m b}$	ns	554	366	554/366	554/366	366	366	
Beam current in pulse	$I_{\rm pulse}$	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6	
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897	
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2	
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225	
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathbf{x}}$	$\mu \mathrm{m}$	5	5	5	5	5	5	
Norm. vert. emitt. at IP	$\gamma \epsilon_{\mathrm{y}}$	nm	35	35	35	35	35	30	
RMS hor. beam size at IP	σ^*_{x}	nm	516	516	1120	474	516	335	٦
RMS vert. beam size at IP	σ_v^*	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7	J
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99 %	58.3%	73%	44.5%	
Beamstrahlung energy loss	$\delta_{ m BS}$		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%	
Site AC power	P_{site}	MW	111	138	94/115	173/215	198	300	
Site length	$L_{\rm site}$	\mathbf{km}	20.5	20.5	20.5	31	31	40	

ATF

- Accelerator Test Facility, located at KEK, Japan
- Goal: Demonstrate key challenges for future linear colliders
 - Achieving small vertical beam size of a few nm
 - Demonstrate a few nm orbit stabilisation at the IP

CLIC

- 12 GHz nomal conducting cavitiy
- 100 MV/m acceleration
- Initial phase:
 - 11 km length
 - 380 GeV center-of-mass energy
- Final stage:
 - Extentable up to 50 km
 - Up to 3 TeV center-of-mass energy
- Novel acceleration scheme

- 12 GHz nomal conducting cavitiy
- 100 MV/m acceleration
- Initial phase:
 - 11 km length
 - 380 GeV center-of-mass energy
- Final stage:
 - Extentable up to 50 km
 - Up to 3 TeV center-of-mass energy
- Novel acceleration scheme

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	2.3	3.7	5.9
Lum. above 99% of \sqrt{s}	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	1.3	1.4	2
Total int. lum. per year	fb^{-1}	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim 60/1.5$	$\sim 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

CLIC Timeline

- Technology-driven schedule from start of construction
- Preparation phase before estimated to ~5 years

CLIC Cavities

- 12 GHz nomal conducting cavitiy
- 100 MV /m

- High gradient \rightarrow short linac
- Small structure \rightarrow strong wakefields
- Small daming ring

• 25000 cavities needed

Drive Beam Acceleration

Courtesy: R. Bruce

Acceleration Scheme

- High current drive beam is decelerated
- Generates electro-magnetic field
- Transferred in waveguides to beam

Courtesy: S. Stapnes

CLIC 380 GeV

CLIC 3 TeV

- Experimental validation at CLIC Test Facility at CERN, decommissioned in 2016, parts re-used for CLEAR
- For CLIC required 100 MV/m accelerating gradient achieved

ILC at CERN

- Carbon footprint of all LC projects << Carbon footprint of circular machines
- Until ~500 GeV power consumption remains in ball park of current CERN power consumption
- Estimated operation cost for ILC ~390 MILC (plus 700-1000 FTE)
- Compare with 1.3 BCHF for FCCee as estimated by German BMBF

Cool Copper Collider - C³

- New approach for a normal conducting linear electron collider
- Based on cold copper distributed coupling accelerating cavities
- Compact design with only 8 km footprint to achievet 250 and 500 GeV collision energy

SLAC-PUB-17629 November 1, 2021

 C^3 : A "Cool" Route to the Higgs Boson and Beyond

Mei Bai, Tim Barklow, Rainer Bartoldus, Martin Breidenbach^{*}, Philippe Grenier, Zhirong Huang, Michael Kagan, Zenghai Li, Thomas W. Markiewicz, Emilio A. Nanni^{*}, Mamdouh Nasr, Cho-Kuen Ng, Marco Oriunno, Michael E. Peskin^{*}, Thomas G. Rizzo, Ariel G. Schwartzman, Dong Su, Sami Tantawi, Caterina Vernieri^{*}, Glen White, Charles C. Young

Cool Copper Collider - C³

Circular Hadron Colliders

2 Studies

- CERN, Switzerland
 - Future e+e- Circular Collider, FCC-ee
 - Future hadron Circular Collider, FCC-hh

- IHEP, China
 - Circular Electron Positron Collider, CEPC
 - Super proton-proton Collider, SppC

FCC Integrated Program

CEPC-SppC Program

Compatible lattice designs

FCC-hh Overview

- 91 km hadron collider as successor of the FCC-ee
- 14 20 T dipole magnets
- 81 115 TeV center-of-mass energy
- 8 long straight sections with various functionalities
- 4 IPs for hadron-hadron collissions
- Electron-hadron IP could be included

SppC Overview

- 100 km hadron collider as successor of CEPC in same tunnel
- Previously: 12 T for 75 TeV center-of-mass energy
- TDR: 24 T for 125 TeV center-of-mass energy
- 8 long straight sections with various functionalities
- 2 IPs for hadron-hadron collissions
- 1 IP for hadron-electron collissions

Physics Goals

- Aim to explore next order of magnitude of HEP collision experiments \rightarrow beam energy of 42 to 60 TeV for protons
 - \rightarrow Increase beam energy by factor 6 to 8.5 compared to LHC
 - \rightarrow Increase circumference by almost factor 3 compared to LHC
- Huge integrated luminosity of 20 000 fb-1 per experiment over full operation time
 - \rightarrow Increase by factor ~7 with respect to HL-LHC
- · Possibility to perform electron-ion collisions in one IP
 - \rightarrow Incredibly rich physics program

FCC Physics Potential

Integrated FCC offers multi-stage facility with broad and diverse physics potential

	√s	L /IP (cm ⁻² s ⁻¹)	Int L/IP/y (ab-1)	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top	182 x 10 ³⁴ 19.4 7.3 1.33	22 2.3 0.9 0.16	2-4 experiments Total ~ 15 years of operation
рр FCC-hh	100 TeV	5-30 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <u>s_{NN}</u> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
<mark>ep</mark> Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	$\sqrt{s_{eN}}$ = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

- FCC-ee:
 - Highest luminosities at Z, W and H of all proposed Higgs and electro-weak factories
 - Indirect discovery potential up to 70 TeV
- FCC-hh:
 - Direct exploration of next energy frontier (~10x LHC)
 - Also heavy ion collision experiments possible

• FCC-eh:

Possibly also electron-proton (ion) collisions

FCC-hh Parameters

	FCC-hh	HL-LHC	LHC	
Collision energy [TeV]	81 - 115	14		
Dipole field [T]	14 - 20	8.33		
Circumference [km]	90.7	26.7		
Beam current [A]	0.5	1.1	0.58	
Bunch intensity [10 ¹¹]	1	2.2	1.15	
SR power/ring [kW]	1020 - 4250	7.3	3.6	
SR power/length [W/m/A]	13-54	0.33	0.17	
Events/bunch crossing [#]	~1000	132	27	
Stored beam energy [GJ]	6.1 - 8.9	0.7	0.36	
Luminosity/IP [10 ³⁴ cm ⁻² S ⁻¹]	~30	5*	1	
Integrated luminosity/IP/year [ab-1]	20000	3000	300	

Direct discovery potential up to 40 TeV

With fixed circumference the dipole field defines achievable beam and collission energy

Challenges

- High field superconducting magnets up to 20 T
- Power load from SR (cryo, vacuum, ..)
- Stored beam energy 9 GJ
- Number of events in detectors
- T.

With FCC-hh after FCC-ee significantly more time for high-field magnet R&D

Courtesy: CEPC-SppC TDR

SppC Parameters

With fixed circumference the dipole field defines achievable beam and collission energy

Compared to FCC-hh higher collision energy of 125 GeV

Challenges

- High field superconducting magnets of 20.3 T
- Power load from SR (cryo, vacuum, ..)
- Stored beam energy 4 GJ
- Number of events in detectors

-

Parameter	Value	Unit					
General design parameters							
Circumference	100	km					
Beam energy	62.5	TeV					
Lorentz gamma	66631						
Dipole field	20.3	Т					
Dipole curvature radius	10258.3	m					
Arc filling factor	0.79						
Total dipole magnet length	64.455	km					
Arc length	81.8	km					
Number of long straight sections	8						
Total straight section length	18.2	km					
Energy gain factor in collider rings	19.53						
Injection energy	3.2	TeV					
Number of IPs	2						
Revolution frequency	3.00	kHz					
Physics performance and beam parameters							
Initial luminosity per IP	4.3×10 ³⁴	cm ⁻² s ⁻¹					
Beta function at collision	0.50	m					
Circulating beam current	0.19	A					
Nominal beam-beam tune shift limit per IP	0.015						
Bunch separation	25	ns					
Number of bunches	10082						
Bunch population	4.0×10 ¹⁰						
Accumulated particles per beam	4.0×10 ¹⁴						
Normalized rms transverse emittance	1.2	μm					
Beam lifetime due to burn-off	8.1	hours					
Total inelastic cross section	161	mb					
Reduction factor in luminosity	0.81						
Full crossing angle	73	µrad					
rms bunch length	60	mm					
rms IP spot size	3.0	μm					
Beta at the first parasitic encounter	28.6	m					
rms spot size at the first parasitic encounter	22.7	μm					
Stored energy per beam	4.0	GJ					
SR power per beam	2.2	MW					
SR heat load at arc per aperture	27.4	W/m					
Energy loss per turn	11.6	MeV					

High Field Magnets: Nb₃Sn

- PSI CCT CD1 quenches 19 1.9 K 1.9 K 4.5 K 4.5 K SM18 - 4.5 K 18 17 16 Current [kA] 12 Contraction and States 4 **5 F - 118** 12 12 11 10 0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 **Event number**
- PSI Nb₃Sn main test carried out in 2022/2023
- Training via quenches (loss of superconductivity)
 - Controlled quenches help to achieve full field
- 100 % of maximum field achieved at 4.5 K
- Goal: demonstrate robust and cost efficient $\rm Nb_{3}Sn$ technology for next ESPPU

B₀ target of 14 T, at T_{op}: 4.2 K Eng margin of 10% B₀ short sample @ 1.9 K: 16 T Stainless steel shell Iron yoke Coil collar Former Non-magnetic poles Nb₃Sn conductor

High Field Magnets: HTS

• Bottom line: HTS technology must catch up over the coming 10 years

Permanent Magnets

- Permanent magnets highly suitable for transfer line specifications
 - Less stringent field requirements
 - Already used in accelerators, although smaller scale
 - Small temperature dependence
 - Could be more cost effective

Iron dominated concept

Shimmed Halbach Concept

Zero to low cost Significant cost Major cost driver Costs	Iron dominated electromagnet	Iron dominated permenant magnet	Shimmed Halbach
Captital investm	nent costs	i.	
Magnetic Iron			
Copper conductor			
Permanent magnet blocks			
Infrastructure			
(cooling, converters, cabling, etc.)			
Construction			
Ongoing o	costs		
Maintenance			
Electricity (inc. cooling plant)			

CERN

BSHEPAT 08-09 AUG 2024

Collimation

- LHC: 362 MJ and FCC: 8.3 GJ stored beam energy
- Loss of even very small fraction of the beam could cause
 - Damage to impacted elements
 - Heating of superconducting magnets and quench
- Collimator robustness to be addressed

β_{x, y} [m]

Courtesy: R. Bruce

Material Robustness

• Very challenging to find materials and engineering design

Type: Directional Deformation(Z Axis

Global Coordinate Syste

7/06/2019 16:03

246.4 Ma

204.65

162.91

121.17 79.425

37.682 -4.0612 -45.804 -87.548 -129.29 M

Unit: um

Time: 1

Deflection = $375 \,\mu m$

- Typically multi-particle simulations to evaluate e.g.
 - Energy deposition
 - Peak power and power density
 - Peak temperatures

T_{max} = 330 °C

- Deformations
- Melting

Type: Temperatu

17/06/2019 15:55

296.44

262.76

229.08

195.4 161.72 128.04 94.36 60.68

330.12 Max

Unit °C

Time: 11.01

Beam Dump

- Beam dump system to extract and dispose full beam within one turn (failure or at the end of a fill)
- FCC-hh with 8.3 GJ could drill 300 m long hole in copper
- Beam distributed transversely onto beam dump
 - Dynamic magnetic field
 - Material with low density

Beam Screen

- About 5 MW synchrotron radiation power loss per beam around the ring
- · Beam screen design to intercept photons
- Cooling of beamscreen essential to keep temperature of 50 K
- Electrons inside vacuum chamber release more electrons \rightarrow electron cloud
- Leads to heating, instabilities, vacuum issues, etc.
- Special beam screen designs and coatings required

Energy Recovery Linacs

Courtesy: R. Bruce

Motivation

- Could be combined with hadron storage ring \rightarrow LHeC or FCC-eh
- Improved understanding of deep inelastic lepton-hadron scattering
- Novel insights on QCD \rightarrow high intensity electron beam required
- First electron-hadron collisions since HERA, Germany

Parameter	Unit	LHeC				FCC-eh		
		CDR	$\operatorname{Run}5$	${\rm Run}\; 6$	Dedicated	$E_p = 20 \text{ TeV}$	$E_p = 50 \mathrm{TeV}$	
E_e	GeV	60	30	50	50	60	60	
N_p	1011	1.7	2.2	2.2	2.2	1	1	
ϵ_p	μm	3.7	2.5	2.5	2.5	2.2	2.2	
I_e	mA	6.4	15	20	50	20	20	
N_e	10^{9}	1	2.3	3.1	7.8	3.1	3.1	
β^*	cm	10	10	7	7	12	15	
Luminosity	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	1	5	9	23	8	15	

Principle

- Same accelerating structure in straight part
- Bend of particles in arc structure
- Multi-turn acceleration
- Small footprint, especially if permanent magnets are used
- High intensities
- High brilliance
- Use for high-power electron-hadron colliders

Loss compensation 2 (90m) Loss compensation 1 (140m) 60 GeV ERL Linac 1 (1008m) Injector Linac 1 Injector Matching/splitter Matching/combine Arc 1,3,5 Arc 2,4,6 50 GeV ERL Arc 2,4,6 Bypass (3142m) Linac 2 Linac 2 (1008m) Matching/combiner (31m) **IP** line Detector Matching/splitter (30m)

Figure 2.2: Schematic view of the three-turn LHeC configuration with two oppositely positioned electron linacs and three arcs housed in the same tunnel. Two configurations are shown: Outer: Default $E_e =$ 60 GeV with linacs of about 1 km length and 1 km arc radius leading to an ERL circumference of about 9 km, or 1/3 of the LHC length. Inner: Sketch for $E_e = 50$ GeV with linacs of about 0.8 km length and 0.55 km arc radius leading to an ERL circumference of 5.4 km, or 1/5 of the LHC length, which is smaller than the size of the SPS. The 1/5 circumference configuration is flexible: it entails the possibility to stage the project as funds of physics dictate by using only partially equipped linacs, and it also permits upgrading to somewhat higher energies if one admits increased synchrotron power losses and operates at higher gradients.

The LHeC

- With 50 GeV electron and 7 TeV proton beam \rightarrow 1.2 TeV center-of-mass energy; requires re-design of IR2
- Additional infrastructure for ERL required

Main Challenges

- Compact and efficient electron acceleration
 - \rightarrow SRF technologies, limit power consumption
- IR region design and integration in LHC and FCC-hh
 - \rightarrow Optics, synchrotron radiation
- Integrated luminosity of 1000 x HERA

BINP, BNL/Cornell (cBETA), Daresbury, IJC, Jlab, +

SCRF: High Q₀, complete Cryomodule

CERN, Jlab, Orsay +
PERLE

- ERL located at Orsay, aims to
- Demonstrate high current (20 mA) multi (3) turn ERL operation
- Test technology of 5-cell 800 MHz SRF cavities (also requried for ttbar at FCC)

Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance $\gamma \epsilon_{x,y}$	mm mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

μ+μ- Colliders

Motivation

- μ are elementary particles \rightarrow full collision energy available for particle production
- 10 to 14 TeV μ collisions comparable to 100 to 200 TeV proton collisions
 - \rightarrow Significant energy reach for possible physics discoveries

Motivation

• μ are elementary particles \rightarrow full collision energy available for particle production

- 10 to 14 TeV μ collisions comparable to 100 to 200 TeV proton collisions
 - \rightarrow Significant energy reach for possible physics discoveries
- Luminosity must increase with beam energy
- A new type of collider:
 - With $m_{\mu} = 106 \text{ MeV/c}^2$ lower SR than electrons
 - Center-of-mass energy equivalent to possible future hadron colliders

Physics Motivation

• μ are elementary particles \rightarrow full collision energy available for particle production

Neutrino beam physics

Lepton PDF

- High energy fundamental particles can split themselves in other particles.
- Derived from first principles.
- Can be tested in multi-TeV colliders.

Tentative Timeline

Luminosity

Tentative Parameters

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
Ν	10 ¹²	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
ε	MeV m	7.5	7.5	7.5
σ _E / Ε	%	0.1	0.1	0.1
σ	mm	5	1.5	1.07
β	mm	5	1.5	1.07
3	μm	25	25	25
$\sigma_{x,y}$	μm	3.0	0.9	0.63

CERN

Overview

• BUT: μ decay is only y* 2.2 μ s

Proton Driver	Front End	Cooling	Acceleration	Collider Ring
SC Linac Accumulator Buncher Combiner	MW-Class Target Capture Sol. Decay Channel Buncher Phase Rotator	Initial 6D Cooling Charge Separator 6D Cooling Merge 6D Cooling 6D Cooling Final Cooling	Accelerators: Linacs, RLA or FFAG, RCS	E _{COM} : Higgs Factory to ~10 TeV $\overline{\mu^{\dagger}}$ $\overline{\mu^{-}}$
 High power proton beam (short intense bunches) and low repetition rate on target. 		 Stages of muon ionisation cooling in matter. Merging of u bunches into 	 Low energy acceleration with recirculating linacs. Acceleration to collision energy in a 	
 Target and capture char 	nel, protons	one bunch.	sequence of pulsed synchro	otrons.
produce pions which de	cay into muons.		• Collider packed with high fi	eld magnets to
 Large energy spread μ b sequence of bunches. 	eam split to		minimise circumference and luminosity.	d maximise

Production of **µ**

- High power proton beam for μ -production via pions decay
 - 5 GeV proton beam
 - 5 x 10¹⁴ protons / pulse
 - 5 Hz repetition

BSHEPAT

08-09 AUG 2024

- Proton bunches must be collected, transport to target
- High muon/pion production yield for target

Cooling

- Generated μ -bunch has too large emittances
- 6D cooling techniques required to reduce emittances (ionization cooling)

Ionization Cooling

- 4D cooling: Transverse emittance reducing on the costs of the longitudinal one
- High field solenoids to minimize beta-function and reduce scattering
- High RF gradients to quickly compensate for ionization energy loss

$$\frac{d\varepsilon_{\perp,\mathrm{N}}}{ds} = -\frac{\varepsilon_{\perp,\mathrm{N}}}{\beta^2 E} \left\langle \frac{\partial E}{\partial s} \right\rangle + \frac{\beta_{\perp} pc}{2 m_{\mu} c^2} \frac{d\langle \vartheta^2 \rangle}{ds}.$$

Cooling due to energy deposition

Heating due to scattering

Solenoids

- HTS solenoid developments
 - Goal for final cooling: 40 T

Courtesy: D. Schulte

- Target solenoid
 - Goal: 20 T at 20 K
 - 15 T Nb₃Sn with 5 T resistive insert or 20 T HTS seems feasible

Acceleration Complex

- Core is sequence of hybrid pulsed synchrotrons, since conventional rapid cycling too slow
- Key challenges
 - Fast-ramping normal conducting magnets with HTS alternative
 - RF with transient beam loading
 - Efficient power converters

Muon Decay and Neutrino Flux

Collider Ring

- Up to 2 interaction points
- Beam optics designed and required parameters achieved at the interaction point
- Significant shielding required due to decay of muons
- Generated neutrinos could create secondary particles \rightarrow backgrounds

Muon Decay - Detector Background

- Muons decays produce electons and positrons
 - · First results show background independent of energy
- Detector design considerations, based on CLIC detector
 - Masks to mitigate backgrounds
 - Tracking of detector radiation level
 - Studies with beam-induced background ongoing
- Detector concepts up to 3 TeV
- For 10 TeV being investigated

MICE

- Muon Ionization Cooling Experiment: Principle of ionization cooling has been demonstrated
- Outlook: integration of magnets, RF, absorbers, vacuum remains challenge

Article Open access Published: 05 February 2020

Demonstration of cooling by the Muon Ionization Cooling Experiment

MICE collaboration

Nature 578, 53–59 (2020) | Cite this article

Test Facility

- Requires high power proton beam (e.g. CERN, FNAL, ESS)
- Main goal: Demonstrate future $\mu\mu$ collider
 - Muon cooling technologies
 - Magnet technology and prototypes
 - Detector technology

- Timeline for magnet technology for 3 TeV
 - HTS solenoids
 - Nb3Sn 11 T magnets for collider ring

Staging Approaches

- Scenario 1: Energy staging
 - Start at lower energy, e.g. 3 TeV
 - Construction of additional rings later
 - First stage requires fewer budget
- Scenario 2: Luminosity staging
 - Start at full energy, but less performant magnets
 - More power for collider required

Detour: Plasma Wakefield Acceleration

Plasma Wakefield Acceleration

PLASMA is the 4th state of matter

Quasi-neutrality: the overall charge of a plasma is about zero.

Collective effects: Charged particles must be close enough together that each particle influences many nearby charged particles.

Electrostatic interactions dominate over collisions or ordinary gas kinetics.

Plasma WAKEFIELDS are the fields created by collective motion of plasma particles are called.

e⁻ acceleration

ACCELERATION of charged particles

when they experience an electric field. Strength of the acceleration: 'Accelerating gradient' : ~MV/m

Acceleration

• RF based acceleration

Surface of Copper Cell After Breakdown Events

Accelerating fields are limited to <100 MV/m

In metallic structures, a too high field level leads to **break down** of surfaces, creating electric discharge. Fields cannot be sustained; structures might be damaged. • Plasma wakefield acceleration

Plasma is already ionized or "broken-down" and can sustain electric fields up to three orders of magnitude higher gradients

- \rightarrow order of 100 GV/m.
- → ~1000 factor stronger acceleration!

Comparison

- In linear colliders:
- \rightarrow energy reach = length x gradient
- Same beam energy achieved despite drastically smaller facilities if based on plasma wakefield acceleration

Principle

- Drive beam (laser or charged particle beam) excites plasma wave and wake
- Due to space charge electrons from plasma are expelled and rush back on axis
- Converion of the transverse electric field of a drive bunch into a longitudinal electric field in the plasma

Principle

- Drive beam (laser or charged particle beam) excites plasma wave and wake
- Due to space charge electrons from plasma are expelled and rush back on axis
- Converion of the transverse electric field of a drive bunch into a longitudinal electric field in the plasma
- Witness bunch accelerated with gradients of ~ GV/m (e.g. at AWAKE at CERN)

BSHEPAT

08-09 AUG 2024

Analogy

Boat \rightarrow particle beam (drive beam)

Surfer → accelerated particle beam (witness beam)

AWAKE RUN 1 (2016-2018)

p+ self-modulation 2 GeV e- acceleration RUN 2 (2021-2032) e- acceleration to several GeV, beam quality control, scalability 2031 2032 2033 2022 2023 2024 2025 2026 2027 2028 2029 2030 2015 2016 2017 2018 2019 2020 2021 2014 2013 153 LS2 Run 2c Run 2d Run 2c Run 2b CNGS Run 2 Run 2a **Run 1 Preparation** Run 1 dismantling installation Preparation Advanced WAKEfield experiment

- Accelerator R&D experiment at CERN
 - Unique facility driving wakefields in plasma with a proton bunch
 - Highly relativistic protons with high energy (>kJ) available
 - Accelerating externally injected electrons to GeV scale

➔ First applications >2033

CEPC Alternative Injector

• Idea: compact wakefield accelerator as pre-injector for CEPC complex

Comparison

Snowmass Report

On the Feasibility of Future Colliders: Report of the Snowmass'21 Implementation Task Force

Thomas Roser,¹ Reinhard Brinkmann,² Sarah Cousineau,³ Dmitri Denisov,¹ Spencer Gessner,⁴ Steve Gourlay,^{5,6} Philippe Lebrun,⁷ Meenakshi Narain,⁸ Katsunobu Oide,⁹ Tor Raubenheimer,⁴ John Seeman,⁴ Vladimir Shiltsev,⁶ Jim Strait,^{5,6} Marlene Turner,⁵ Lian-Tao Wang.¹⁰

https://arxiv.org/pdf/2208.06030

Higgs Factories

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
FCC-ee ^{1,2}	0.24	7.7 (28.9)	0-2	13-18	12-18	290
	(0.09-0.37)					
CEPC ^{1,2}	0.24	8.3 (16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
CCC ³ (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25-0.55)					
Muon Collider	0.13	0.01	>10	19-24	4-7	200
Higgs Factory ³						

Courtesy: Snowmass Report, 2022.

TeV Lepton Machines

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	[10 ³⁴ cm ⁻² s ⁻¹]	R&D	physics	[2021 B\$]	[MW]
High Energy ILC	3	6.1	5-10	19-24	18-30	~400
	(1-3)					
High Energy CLIC	3	5.9	3-5	19-24	18-30	~550
	(1.5-3)					
High Energy CCC	3	6.0	3-5	19-24	12-18	~700
	(1-3)					
Muon Collider	3	2.3 (4.6)	>10	19-24	7-12	~230
	(1.5-14)					

Energy Frontier

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating	
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power	
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]	
Muon Collider	10	20 (40)	>10	>25	12-18	~300	
	(1.5-14)						
FCC-hh	100	30 (60)	>10	>25	30-50	~560	
SPPC	125	13 (26)	>10	>25	30-80	~400	
	(75-125)						

Summary

Colliders

	Circular e+e- colliders	Linear RF e+e- colliders	Circular hadron colliders	Muons
Machines	FCC-ee, CEPC	CLIC, ILC, C ³	FCC-hh, SppC	Muon collider
Collision energy up to	~ 365 GeV	~ few TeV	+/- 100 TeV	10 TeV
Key Technology	RF	RF	High-field magnets	High-field magnets, cooling, demonstrator
First collisions	~ 15 years	<~ 15 years	> 25 years	~ 20 years Optimistic?

- Novel acceleration concepts based on plasma wakefield acceleration → Higher gradients achievable
- \rightarrow More compact accelerators

Can be combined with energy recovery linacs \rightarrow FCC-eh

Detour: Linear Proton Colliders

- Not sufficient energy reach for frontier physics, but used for e.g. nuclear applications
- Myrrha designed with 400 m proton linac to achieve 600 GeV beam energy for 4 mA current

The world's Ist large scale Accelerator Driven System

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the world's first large scale Accelerator Driven System (ADS) that consists of a subcritical nuclear reactor driven by a high power linear accelerator. With the subcritical concentration of fission material, the nuclear reaction is sustained by the particle accelerator only. Turning off the proton beam results in an immediate and safe halt of the nuclear reactions.

https://www.myrrha.be/

Recommendations

P5 - USA

- Particle Physics Project Priorization Panel (P5), every 10 years in the US, recently in 2023
- Recommendation 1: Reaffirm critical importance of the ongoing projects
 - HL-LHC including ATLAS and CMS detectors
- Recommendation 2: New exciting initiatives
 - An off-shore Higgs factory with international partners, FCC/ILC

Decadal Overview of Future Large-Scale Projects		
Frontier/Decade	2025 - 2035	2035 -2045
Energy Frontier	U.S. Initiative for the Targeted Development of Future Colliders and their Detectors	
		Higgs Factory
Neutrino Frontier	LBNF/DUNE Phase I & PIP- II	DUNE Phase II (incl. proton injector)
Cosmic Frontier	Cosmic Microwave Background - S4	Next Gen. Grav. Wave Observatory [*]
	Spectroscopic Survey - $S5^*$	Line Intensity Mapping [*]
	Multi-Scale Dark Matter Program (incl. Gen-3 WIMP searches)	
Rare Process Frontier		Advanced Muon Facility

ESPP - Europe

- In 2020 the European strategy upgrade of particle physics (ESPP) expressed the long-term plan for particle colliders:
 - An electron-positron Higgs factory is the highest-priority next collider.
 - Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a center-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.

Personal Opinion: Why FCC?

Physics

Timeline

Community

- Immense physics potential for lepton and hadron colliders
- Luminosity frontier: Precision physics experimements
- Energy frontier: Discovery potential thanks to 100 TeV $\rm E_{cm}$ for FCC-hh

- FCC-ee technology is mature; collisions could start few years after HL-LHC
- Integrated FCC project allows for ~20 more years magnet R&D
- Optimized overall investment

- 4 collision points for high-energy physics experiments
- Many other possibilities (fixedtarget, use of beam dump, ..)
- Only facility to commensurate the size of the CERN community

Thank you!

Jacqueline Keintzel Acknowledgements: Many colleauges from various design studies

4th Baltic School of High Energy Phyiscs and Accelerator Technologies Kuldiga, Latvia 05 – 09 August 2024