Best practices: the theoretical and
practical underpinnings of writing
code that's less bad

Axel Naumann, CERN EP-SFT
Openlab Summer Student Lectures, 2024-07-22

How lo Write
Bad Code

Axel Naumann, CERN PH-SFT
Openlab Summer Student Lectures, 2024-07-22

Bugs!

Axel Naumann, CERN PH-SFT
Openlab Summer Student Lectures, 2024-07-22

<prelude>

Why Axel?

 Because | can write expert-level bad code.

Why Axel?

20 years of ROOT development: the tool for every physicist’s analysis
Member of the ISO C++ committee (e.g. std::variant)
Experience from introducing a static analysis tool at CERN

Chair of the CERN Open Source Program Office

Disclaimer

* | am not your best practices superhero
 Focus on C++

e experience, usage, need

blogs.elconfidencial.com

Why you?

 Because you have an impact!
e your code is part of XYZ, or on top of XY/Z, or replaces XYZ
* you have colleagues, we listen to people with ideas!

* | see lots of coding in your future!

www.flazingo.com

Practices

 More than one dev or more than one user: need to agree on “how”
 CERN has decades of piles of code, lessons learned:
1. be reasonable!

2. but enforcel

3. fix rules early, adapt new ones slowly

10

Best Practices

 Don’t follow today’s best Best Practices blindly
* |t will be ridiculed in ten years anyway

» But defining best practices publicly helps new contributors integrate
quickly

« CERN OSPO (= open-source experts from almost everywhere at CERN)
currently compiles recommendations at https://ospo.docs.cern.ch/

11

https://ospo.docs.cern.ch/

Best Practices Context

Collaborative development, across cultures and generations

Software maintenance and software use over decades

High-throughput, efficient scientific computing code on >1M cores, 24/7
Libraries-as-a-tool (vs computer scientists who know what they are doing)
Legal, security, policy, etc

Resource cost: maintenance + conceptual burden, "how many positions Is
this worth"?

12

Motivation

o Simpler, consistent read
* Improved communication with fellow coders
* |ess ambiguities means more correct code

* | ess bugs; better maintenance

* Best practices win against experimental coding

13

Word Cloud

$

¢
2, &
%

</prelude>

Menu Du Jour

Language

Coding convention

Interface convention

Change management

Multi-platform support

Tests: code-correctness, functionality, static analysis, performance
Due diligence, security

Al

16

Language Choice

Language Features

e Some languages are better for a given job than others
* high performance (C++!)
 smaller problem, from conception to completion (Python!)

* re-use available (library) code instead of coding yourself, e.qg.
networking (plenty), filesystem (bash!)

e resource management, inherent security (Rust!)

18

Generation of Safe Languages

Most key languages designed decades ago

 We've learned a lot since then, but backward compatibility prevents us
from applying lessons learned to these languages

Java => Kotlin

JS =>TS

C++ => 777

Or "based on the shoulders": Rust, Julia,...

19

Avallable Tooling

* High-level versus low-level (web versus ASIC)

* Rule of thumb: the closer to silicon you go the better tools you will want
(debugger, perf, tests)

* Pick the right language given available and needed tooling!

20

You are not alone

“Community” knowledge, now and future: no Haskell, please
Your knowledge: no COBOL, please
Practicality: no assembler, please

Interfacing with relevant existing code: no Go, please

21

Coding Convention

Coding Convention

e \What is this?
func(val);

Coding Convention

* |t’s a counter-example!
func(val);

* func: Member function? Data member / function pointer? Some global
function pulled in from header?

e val: local variable declared 100 lines up in the same function? Or
member? Or enum constant? And where can | find it’s declaration?

24

Coding Convention

fFunc(fgVal);

It’s ROOT - you can tell from the names!
It’s a function call
fFunc iIs a member - so it’'s a function pointer!

fgVal is a static data member; must be in same class (or base)

25

Coding Convention

* Obvious case of improved clarity
 For APIs, user friendly:
e get_track(), getTrack(), GetTrack() - or Track()?

* |IDEs can help - but not when reading code!

 Almost all projects employ it

20

Coding Convention

e Typical current examples for C++:
* Joint Strike Fighter Air Vehicle C++ Coding Standards
e MISRA C++

* Both absurd for reasonable environments

 Both have very reasonable ingredients: pick yours!

27

Coding Convention

* Enforcing needs checkers

 Non-trivial;: checker must understand C++: what is a function, what is a
member etc

 Recommendation: clang-format to the rescue!

28

Interface Conventions

Interface Conventions

PLEASE FOLLOW THE'RULES

memecrunch.com

&
NG

: 1“

memecrunch.com

Interface Conventions

» Consistency - we know that already
o Safe code through good APIs!

e unique_ptr / shared_ptr instead of Type* where ownership is managed,;
never use “new Type()”, “delete var”

 document also parameter pre- and post-condition:
// argl must be != 0; arg2 will contatin..

31

Interface Conventions

 Maintain common idioms throughout API; example C++ std library:
e [terators:; functor; make XY/Z:; allocator etc
 Don’t screw with your users

 |f Interface looks like A, do not change it to do B even if it’s better for
you. Change the interface in a backward-incompatible way instead.

32

Interface Conventions

template <typename T>
requires std::integral<T> || std::floating_point<T>

constexpr double Average(std::vector<T> const &vec) {

 C++ Concepts, since C++20

* Define interface expectations in code, compiler checkable!
 CERN is starting to collect experience with this

 New libraries should consider the use of concepts to clarify
expectations with user code and generate better error messages

33

Concurrency Support

Distinguish

* code starts threads to compute faster (multithreaded)
from

e code supports being called concurrently (thread-safe)
from

e code operates on multiple values (vectorization support / SIMD)

At CERN, in scientific high-throughput code, we care about all of these

34

Thread Safety

* Different types

e function can be used on same object in multiple, concurrent threads
without side-effects [thread safe]

e function can be used on different objects in multiple, concurrent threads
without side-effects (no unsync’ed statics) [conditionally safe]

 must be locked when accessed through multiple threads [not thread
safe]

35

int current = 0: class Sum {

int addi() {++current;} mutable int current = 0;
int getSum() {return current;} int add1() const;

tnt getSum() const;

}s

Sum {
current
add1();

getSum(); int current =
std::mutex mtx_current;
int addi() {
const std::lock_guard<std::mutex> lock(mtx_current);
++current;
Sum { }
current = 0; int getSum() {

add1(); const std::lock_guard<std::mutex> lock(mtx_current);
getSum() const; return current;

}

Threading Support

* All kinds need to be clearly documented, thread-safe part of APl needs to
be visible

« Common contract nowadays:

 const APl means it’s conditionally safe: no unlocked mutables! no
caches! no hidden state changes!

e no static variables (without locks)! State is passed as arguments

37

Threading Support

* Thus threading support is to some extent interface convention - plus good
design enabling it

 C++ and concurrency continues to evolve

e constexpr / consteval functions / std::executor / coroutines might play a
bigger role soon

e exposing to 256 threads changes requirements (Amdahl’s law!) + style:
writing to memory: data layout conventions! (cache lines + false sharing)

33

Interface Convention + Threading Support

 Automated checking (beyond coding convention) almost impossible
e requires design work / understanding of the interfaces
e concepts can help

 Employ change management instead!

39

Change Management

Change Management

Monitor changes by a second pair of eyes: two brains are better than one,
especially if one brain is biased

Prevents some bugs from creeping in
Also exposes code, new features to additional / backup developers

Exposes changes to larger horizon: we all think of changes in different
contexts

Can be pre- or post-publication

41

Change Management: Pre-publication

 Package owner merges changes
 Formalized patch review

* Pair programming

42

Change Management

* Post-publication
 commit review by package owner

* Post-review risks stability of HEAD of "main" / dev-branch
 still reasonable for small changes

* here, too: be pragmatic, not dogmatic

43

Lessons at CERN

e |f it works, it will break

 new OS version, new compiler version, new language version
* Only way out: embrace change

e put procedures Iin place to survive change

* benefit from change instead of trying to mitigate it: more expressive
code, improved tooling, tasty for new developers, influence future
instead of crawling behind

44

Multi-Platform Support

Multi-Platform Support

e Problems:

* memory: memory layout, alignment, cost of data transfers / locality
(cache, code size etc)

 OS AP]
 compilers with limited language support

 Experienced developers will get a feel of which language constructs are
causing problems

46

Multi-Platform Support

 Advantages
* Increases general robustness
» easier to follow architecture changes: Apple ARM!
* will x86_64 be the instruction set of 20307

* more compilers = more opinions on code, more warnings:
that's a good thing!

47

Multi-Platform Support

e Checking by building on many platforms, regularly

e Code correctness tests!

48

DONTYOU THINKJHALIF | WERE WRONG!

A

‘.‘{ y J\‘ «
-

- i

»

\ g #
e D KNOW IT?”

quickmeme.com

Code Correctness Tests

e |Large matrix of builds
* build on all supported platforms, with all supported configurations

* |deally after every change to pinpoint culprits

e Current common grounds: main (formerly known as master) passes tests
e possibly with dev branch, Cl merges into main after validation

* welcoming to contributors, enables user feedback on latest changes

51

Code Correctness Tests

* Run build (incremental or full)
* check for errors versus platform
e also check for warnings!

 Run tests

* Build snapshot binaries

e continuous delivery, for instance for bug fix verification

52

Code Correctness Tests

* Needs automation

e Typical tools: dJerkins:Bambeeo; Github Actions / GitLab CI/CD and others
 |nitiate build on all required machines
» collect output; filter errors, warnings

e report (web, email) versus code revision and author

53

Functionality lTests

e “Does my software actually work?”
* unit tests; regression tests; integration tests
* rules when to write a test
* coverage analysis
» testing libraries: cppunit / GoogleTest / ...

e Needs automation!

54

Topical lests

 Memory error checkers - use after free / before initialization
e e.g. valgrind
 Thread error checkers

* e.g. hellgrind, Vtunes

55

Static Analysis

* Analyzes source code without running it; creating branch graph to follow
possible 'if etc combinations

* Finds use after delete; impossible 'if conditions; memory errors etc

56

Static Analysis

e Several tools out there, for instance
* pasic checker: compiler warnings!
» clang static analysis: clang-tidy

o aspartofClk-GitHub-GoedeQkL Houston, we have a problem.

e Differ in set of bugs checked; tracing capabilities (through function calls
etc); user interface; false positive rate

o57

CERN Lessons

o Static analysis cannot be replaced by test suite: it tests the things that
“never happen”

 Improves code stability

* Developers feel “watched”: improves overall code quality

58

Performance lest

 Changes can deteriorate performance:
» takes more CPU cycles to get an answer
* takes more RAM
e takes more |/O operations
 takes more disk space

» (Criteria vary depending on product

59

Performance lest

Usually part of release baking

Better yet: automate

Problem: which changes are intentional?

Tools vary with criteria; e.g. cgroups; massif; CDash

Cl/CD integration currently still lacking!

60

Due Diligence, Security

Due Diligence

Code written at CERN (and published) should not contain swear words,
passwords, sensitive data, etc.

Code published from CERN should satisfy minimal quality requirements:
best practices!

And then the legal aspect of "did these people really write this code all by
themselves"?!

No entity at CERN does that for you: you are responsible!

62

Security

 Code written at CERN (and published) should not contain security issues.

 Code published from CERN should satisfy minimal quality requirements:
best practices!

* No entity at CERN does that for you: you are responsible!

03

Due Diligence + Security

e Just like scientists know they cannot copy chapters of someone else's
publication, and cannot "tweak measurements”: we expect that people
writing code behave professionally

* Professionalism includes knowing basic security and due diligence traps
and how to avoid them

o4

Learning Due Diligence + Security

* Due diligence: https://ospo.docs.cern.ch/
recommendations/due-diligence/ is a start

o Security: excellent trainings by our CERN
Computer Security friends

 and the openlab summer student lecture
by Stefan Luders!

65

https://ospo.docs.cern.ch/recommendations/due-diligence/
https://ospo.docs.cern.ch/recommendations/due-diligence/
https://ospo.docs.cern.ch/recommendations/due-diligence/
https://home.cern/news/news/computing/computer-security-whitehat-zebra-trainings-are-back
https://unsplash.com/@austris_a?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/lego-mini-figure-on-red-chair-vhnljj9RkV8?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Al

ML

* Yes, we call it "Machine Learning" because we don't need to sell stufft.
And here I'm really just referring to LLMs for programming.

 \We have little expertise on the consequences for code. Just like the rest of
the world. But we'll get there.

 E.g. copyright (of generated code, of models, of weighs) still not clear.

* |nteresting study: https://symflower.com/en/company/blog/2024/dev-
quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-
apt-4o-for-cost-effectiveness-in-code-generation/

67

https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/
https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/
https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/
https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/

Atlassian Report on Al

How much Al tools are improving developer productivity today

Not at all (30%)

Slightly (32%)

o State of developer experience Moderately 2259
report 2024 very (1%

Extremely (5%)

5 10 15 20 25 30 35%

o

* All of management thinks

develo pers are more p roductive How much Al tools willimprove developer productivity
thanks to Al within the next two years

Not at all (12%)
Slightly (27%)
Moderately (35%)

Very (20%)

Extremely (6%)

10 15 20 25 30 35%

o
o

LLMs instead of us?

* From that study:
 Only 10% of models have just 80% of generated code compilable!

Overall only 58% of generated code compiles. Some models reach
0%... a programmer that cannot write code that compiles &

 Newer languages (go) are a real challenge: less training data

* So for now you're safe. But the more code you write, the more training
material exists!

69

wod saAIydIe3oid

100%

Current Challenges

Massive multi-threading

Data-oriented programming

Evolution of C++ standards

Move every tool into the FOSS world - thanks, clang!
ML! (Yes yes, "Al".)

Complexity, layering, indirections, "modularity” (looking at you, docker!)

(2

Complexity Challenge

* A simple next.js web app:

up to date, audited 609 packages 1in 1s

150 packages are looking for funding

 Best-practice that!

73

Conclusion (1/4)

 Good software development is an art by itself

e complex; many aspects; need to juggle many tools and often conflicting
goals

 Not a reason to avoid it, but needs brain energy

* Need to find compromise between coding productivity and control

4

Conclusion (2/4)

* Using the right tools pays off:

e 1 hour more work for one dev can mean 10 minutes saved for 10k users
each

$ python3 -c 'print(10.*1E4/60/24/5, "weeks!")'
13.88888888888889 weeks'!

» users will trust your software more

lgs

Conclusion (3/4)

 Help your team define missing procedures
 Review procedures, review tools, review effectiveness

e cover all aspects: runtime + performance tests, static analysis - none of
that is optional

e automate, reduce developers’ pain: increases acceptance

* Please invent new things: GitHub action for Al code reviews learning from
bug reports and past commits?!

/0

Conclusion (4/4)

 (Go out and write good code!

axel@cern.ch

