
Best practices: the theoretical and
practical underpinnings of writing

code that's less bad
Axel Naumann, CERN EP-SFT

Openlab Summer Student Lectures, 2024-07-22

How To Write
Bad Code

Axel Naumann, CERN PH-SFT

Openlab Summer Student Lectures, 2024-07-22

Bugs!
Axel Naumann, CERN PH-SFT

Openlab Summer Student Lectures, 2024-07-22

w
w

w.
da

n-
da

re
.o

rg

<prelude>

Why Axel?

5

Why Axel?

• Because I can write expert-level bad code.

6

Why Axel?

• 20 years of ROOT development: the tool for every physicist’s analysis

• Member of the ISO C++ committee (e.g. std::variant)

• Experience from introducing a static analysis tool at CERN

• Chair of the CERN Open Source Program Office

7

Disclaimer

• I am not your best practices superhero

• Focus on C++

• experience, usage, need

8

bl
og

s.e
lc

on
fid

en
ci

al
.c

om

Why you?

• Because you have an impact!

• your code is part of XYZ, or on top of XYZ, or replaces XYZ

• you have colleagues, we listen to people with ideas!

• I see lots of coding in your future!

9 w
w

w.
fla

zi
ng

o.
co

m

Practices

• More than one dev or more than one user: need to agree on “how”

• CERN has decades of piles of code, lessons learned:

1. be reasonable!

2. but enforce!

3. fix rules early, adapt new ones slowly

10

Best Practices

• Don’t follow today’s best Best Practices blindly

• it will be ridiculed in ten years anyway

• But defining best practices publicly helps new contributors integrate
quickly

• CERN OSPO (= open-source experts from almost everywhere at CERN)
currently compiles recommendations at https://ospo.docs.cern.ch/

11

https://ospo.docs.cern.ch/

Best Practices Context
• Collaborative development, across cultures and generations

• Software maintenance and software use over decades

• High-throughput, efficient scientific computing code on >1M cores, 24/7

• Libraries-as-a-tool (vs computer scientists who know what they are doing)

• Legal, security, policy, etc

• Resource cost: maintenance + conceptual burden, "how many positions is
this worth"?

12

Motivation

• Simpler, consistent read

• improved communication with fellow coders

• less ambiguities means more correct code

• Less bugs; better maintenance

• Best practices win against experimental coding

13

Word Cloud

bugs bu
g

bags

</prelude>

Menu Du Jour
• Language

• Coding convention

• Interface convention

• Change management

• Multi-platform support

• Tests: code-correctness, functionality, static analysis, performance

• Due diligence, security

• AI

16

Language Choice

Language Features

• Some languages are better for a given job than others

• high performance (C++!)

• smaller problem, from conception to completion (Python!)

• re-use available (library) code instead of coding yourself, e.g.
networking (plenty), filesystem (bash!)

• resource management, inherent security (Rust!)

18

Generation of Safe Languages
• Most key languages designed decades ago

• We've learned a lot since then, but backward compatibility prevents us
from applying lessons learned to these languages

• Java => Kotlin

• JS => TS

• C++ => ???

• Or "based on the shoulders": Rust, Julia,...

19

Available Tooling

• High-level versus low-level (web versus ASIC)

• Rule of thumb: the closer to silicon you go the better tools you will want
(debugger, perf, tests)

• Pick the right language given available and needed tooling!

20

You are not alone

• “Community” knowledge, now and future: no Haskell, please

• Your knowledge: no COBOL, please

• Practicality: no assembler, please

• Interfacing with relevant existing code: no Go, please

21

Coding Convention

Coding Convention

• What is this?

 func(val);

23

Coding Convention

• It’s a counter-example!

 func(val);

• func: Member function? Data member / function pointer? Some global
function pulled in from header?

• val: local variable declared 100 lines up in the same function? Or
member? Or enum constant? And where can I find it’s declaration?

24

Coding Convention

 fFunc(fgVal);

• It’s ROOT - you can tell from the names!

• It’s a function call

• fFunc is a member - so it’s a function pointer!

• fgVal is a static data member; must be in same class (or base)

25

Coding Convention

• Obvious case of improved clarity

• For APIs, user friendly:

• get_track(), getTrack(), GetTrack() - or Track()?

• IDEs can help - but not when reading code!

• Almost all projects employ it

26

Coding Convention

• Typical current examples for C++:

• Joint Strike Fighter Air Vehicle C++ Coding Standards

• MISRA C++

• Both absurd for reasonable environments

• Both have very reasonable ingredients: pick yours!

27

Coding Convention

• Enforcing needs checkers

• Non-trivial; checker must understand C++: what is a function, what is a
member etc

• Recommendation: clang-format to the rescue!

28

Interface Conventions

Interface Conventions

30 m
em

ec
ru

nc
h.

co
m

Interface Conventions

• Consistency - we know that already

• Safe code through good APIs!

• unique_ptr / shared_ptr instead of Type* where ownership is managed;
never use “new Type()”, “delete var”

• document also parameter pre- and post-condition: 
// arg1 must be != 0; arg2 will contain…

31

Interface Conventions

• Maintain common idioms throughout API; example C++ std library:

• iterators; functor; make_XYZ; allocator etc

• Don’t screw with your users

• if interface looks like A, do not change it to do B even if it’s better for
you. Change the interface in a backward-incompatible way instead.

32

Interface Conventions

• C++ Concepts, since C++20

• Define interface expectations in code, compiler checkable!

• CERN is starting to collect experience with this

• New libraries should consider the use of concepts to clarify
expectations with user code and generate better error messages

33

Concurrency Support
Distinguish

• code starts threads to compute faster (multithreaded)

from

• code supports being called concurrently (thread-safe)

from

• code operates on multiple values (vectorization support / SIMD)

At CERN, in scientific high-throughput code, we care about all of these

34

Thread Safety

• Different types

• function can be used on same object in multiple, concurrent threads
without side-effects [thread safe]

• function can be used on different objects in multiple, concurrent threads
without side-effects (no unsync’ed statics) [conditionally safe]

• must be locked when accessed through multiple threads [not thread
safe]

35

int current = 0;
int add1() {++current;}
int getSum() {return current;}

class Sum {
 int current = 0;
 int add1();
 int getSum();
};

class Sum {
 int current = 0;
 int add1();
 int getSum() const;
};

class Sum {
 mutable int current = 0;
 int add1() const;
 int getSum() const;
};

int current = 0;
std::mutex mtx_current;
int add1() {
 const std::lock_guard<std::mutex> lock(mtx_current);
 ++current;
}
int getSum() {
 const std::lock_guard<std::mutex> lock(mtx_current);
 return current;
}

1

3

4

2

5

Threading Support

• All kinds need to be clearly documented, thread-safe part of API needs to
be visible

• Common contract nowadays:

• const API means it’s conditionally safe: no unlocked mutables! no
caches! no hidden state changes!

• no static variables (without locks)! State is passed as arguments

37

Threading Support

• Thus threading support is to some extent interface convention - plus good
design enabling it

• C++ and concurrency continues to evolve

• constexpr / consteval functions / std::executor / coroutines might play a
bigger role soon

• exposing to 256 threads changes requirements (Amdahl’s law!) + style: 
writing to memory: data layout conventions! (cache lines + false sharing)

38

Interface Convention + Threading Support

• Automated checking (beyond coding convention) almost impossible

• requires design work / understanding of the interfaces

• concepts can help

• Employ change management instead!

39

Change Management

m
on

ey
ge

ek
.c

om
.a

u

Change Management
• Monitor changes by a second pair of eyes: two brains are better than one,

especially if one brain is biased

• Prevents some bugs from creeping in

• Also exposes code, new features to additional / backup developers

• Exposes changes to larger horizon: we all think of changes in different
contexts

• Can be pre- or post-publication

41

Change Management: Pre-publication

• Package owner merges changes

• Formalized patch review

• Pair programming

42

Change Management

• Post-publication

• commit review by package owner

• Post-review risks stability of HEAD of "main" / dev-branch

• still reasonable for small changes

• here, too: be pragmatic, not dogmatic

43

Lessons at CERN
• If it works, it will break

• new OS version, new compiler version, new language version

• Only way out: embrace change

• put procedures in place to survive change

• benefit from change instead of trying to mitigate it: more expressive
code, improved tooling, tasty for new developers, influence future
instead of crawling behind

44

Multi-Platform Support

Multi-Platform Support
• Problems:

• memory: memory layout, alignment, cost of data transfers / locality
(cache, code size etc)

• OS API

• compilers with limited language support

• Experienced developers will get a feel of which language constructs are
causing problems

46

Multi-Platform Support

• Advantages

• increases general robustness

• easier to follow architecture changes: Apple ARM!

• will x86_64 be the instruction set of 2030?

• more compilers = more opinions on code, more warnings: 
that’s a good thing!

47

Multi-Platform Support

• Checking by building on many platforms, regularly

• Code correctness tests!

48

Tests

qu
ic

km
em

e.
co

m

Code Correctness Tests
• Large matrix of builds

• build on all supported platforms, with all supported configurations

• Ideally after every change to pinpoint culprits

• Current common grounds: main (formerly known as master) passes tests

• possibly with dev branch, CI merges into main after validation

• welcoming to contributors, enables user feedback on latest changes

51

Code Correctness Tests
• Run build (incremental or full)

• check for errors versus platform

• also check for warnings!

• Run tests

• Build snapshot binaries

• continuous delivery, for instance for bug fix verification

52

Code Correctness Tests

• Needs automation

• Typical tools: Jenkins; Bamboo; Github Actions / GitLab CI/CD and others

• initiate build on all required machines

• collect output; filter errors, warnings

• report (web, email) versus code revision and author

53

Functionality Tests
• “Does my software actually work?”

• unit tests; regression tests; integration tests

• rules when to write a test

• coverage analysis

• testing libraries: cppunit / GoogleTest / …

• Needs automation!

54

Topical Tests

• Memory error checkers - use after free / before initialization

• e.g. valgrind

• Thread error checkers

• e.g. hellgrind, Vtunes

55

Static Analysis

• Analyzes source code without running it; creating branch graph to follow
possible `if` etc combinations

• Finds use after delete; impossible `if` conditions; memory errors etc

56

Static Analysis

• Several tools out there, for instance

• basic checker: compiler warnings!

• clang static analysis: clang-tidy

• as part of CI: GitHub CodeQL Houston, we have a problem.

• Differ in set of bugs checked; tracing capabilities (through function calls
etc); user interface; false positive rate

57

CERN Lessons

• Static analysis cannot be replaced by test suite: it tests the things that
“never happen”

• Improves code stability

• Developers feel “watched”: improves overall code quality

58

Performance Test
• Changes can deteriorate performance:

• takes more CPU cycles to get an answer

• takes more RAM

• takes more I/O operations

• takes more disk space

• Criteria vary depending on product

59

Performance Test

• Usually part of release baking

• Better yet: automate

• Problem: which changes are intentional?

• Tools vary with criteria; e.g. cgroups; massif; CDash

• CI/CD integration currently still lacking!

60

Due Diligence, Security

Due Diligence

• Code written at CERN (and published) should not contain swear words,
passwords, sensitive data, etc.

• Code published from CERN should satisfy minimal quality requirements:
best practices!

• And then the legal aspect of "did these people really write this code all by
themselves"?!

• No entity at CERN does that for you: you are responsible!

62

Security

• Code written at CERN (and published) should not contain security issues.

• Code published from CERN should satisfy minimal quality requirements:
best practices!

• No entity at CERN does that for you: you are responsible!

63

Due Diligence + Security

• Just like scientists know they cannot copy chapters of someone else's
publication, and cannot "tweak measurements": we expect that people
writing code behave professionally

• Professionalism includes knowing basic security and due diligence traps
and how to avoid them

64

Learning Due Diligence + Security

• Due diligence: https://ospo.docs.cern.ch/
recommendations/due-diligence/ is a start

• Security: excellent trainings by our CERN
Computer Security friends

• and the openlab summer student lecture
by Stefan Lüders!

65

Photo by Austris Augusts on Unsplash

https://ospo.docs.cern.ch/recommendations/due-diligence/
https://ospo.docs.cern.ch/recommendations/due-diligence/
https://ospo.docs.cern.ch/recommendations/due-diligence/
https://home.cern/news/news/computing/computer-security-whitehat-zebra-trainings-are-back
https://unsplash.com/@austris_a?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/lego-mini-figure-on-red-chair-vhnljj9RkV8?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

AI

ML
• Yes, we call it "Machine Learning" because we don't need to sell stuff.

And here I'm really just referring to LLMs for programming.

• We have little expertise on the consequences for code. Just like the rest of
the world. But we'll get there.

• E.g. copyright (of generated code, of models, of weighs) still not clear.

• Interesting study: https://symflower.com/en/company/blog/2024/dev-
quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-
gpt-4o-for-cost-effectiveness-in-code-generation/

67

https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/
https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/
https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/
https://symflower.com/en/company/blog/2024/dev-quality-eval-v0.5.0-deepseek-v2-coder-and-claude-3.5-sonnet-beat-gpt-4o-for-cost-effectiveness-in-code-generation/

Atlassian Report on AI

• State of developer experience
report 2024

• All of management thinks
developers are more productive
thanks to AI!

68

LLMs instead of us?

• From that study:

• Only 10% of models have just 80% of generated code compilable!
Overall only 58% of generated code compiles. Some models reach
0%... a programmer that cannot write code that compiles 🥳

• Newer languages (go) are a real challenge: less training data

• So for now you're safe. But the more code you write, the more training
material exists!

69

pr
og

ar
ch

iv
es

.c
om

100%

Current Challenges
• Massive multi-threading

• Data-oriented programming

• Evolution of C++ standards

• Move every tool into the FOSS world - thanks, clang!

• ML! (Yes yes, "AI".)

• Complexity, layering, indirections, "modularity" (looking at you, docker!)

72

Complexity Challenge

• A simple next.js web app: 
 
 
 
 
 

• Best-practice that!

73

Conclusion (1/4)

• Good software development is an art by itself

• complex; many aspects; need to juggle many tools and often conflicting
goals

• Not a reason to avoid it, but needs brain energy

• Need to find compromise between coding productivity and control

74

Conclusion (2/4)

• Using the right tools pays off:

• 1 hour more work for one dev can mean 10 minutes saved for 10k users
each 
 
 $ python3 -c 'print(10.*1E4/60/24/5, "weeks!")'
 13.88888888888889 weeks!

• users will trust your software more

75

Conclusion (3/4)
• Help your team define missing procedures

• Review procedures, review tools, review effectiveness

• cover all aspects: runtime + performance tests, static analysis - none of
that is optional

• automate, reduce developers’ pain: increases acceptance

• Please invent new things: GitHub action for AI code reviews learning from
bug reports and past commits?!

76

Conclusion (4/4)

• Go out and write good code!

77

axel@cern.ch

