Noncommutative geometries-based grand unification theories in the low-energy regime Inversigating a transition between the extended Standard Model and effective theories of nuclear structure

Marcin Sokolowski

Quantum Physics & Chemistry - Individual Research Studies

21.05.2024

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-17-0) $1 / 18$

1 [Noncommutative geometries](#page-2-0)

² [Nuclear astrophysics](#page-11-0)

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 2 / 18

1 [Noncommutative geometries](#page-2-0)

2 [Nuclear astrophysics](#page-11-0)

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 3 / 18

Spacetime and noncommutativity

- *•* S. Doplicher, K. Fredenhagen, J.E. Roberts The quantum structure at the Planck scale and quantum fields Comm.Math.Phys. 172 (1995) 187-220
- *•* QM: measuring precise location needs higher energy
- *•* GR: localising big energy in a small space leads to a collapse into a black hole
- *•* Using these arguments one can derive approximate uncertainty relations between the coordinates:

$$
[x^\mu,x^\nu]=q^{\mu\nu}
$$

• Description of the Standard Model as originating from finite spectral triple

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) $4 / 18$

[Noncommutative geometries](#page-2-0) and the commutative geometries and the co

Gelfand Naimark Theorem

Theorem

Every commutative C*-algebra A is *-isomorphic to the algebra $C_0(K)$ of continuous functions vanishing at infinity on a locally compact Hausdorff space

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 5 / 18

C *∗* -algebra

a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

- *•* A is a topologically closed set in the norm topology of operators
- *•* A is closed under the operation of taking adjoints of operators

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 6 / 18 (18 m) 6 / 18

Haussdorf space

A topological space where, for any two distinct points, there exist neighbourhoods of each that are disjoint from each other

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 7 / 18

Spectral triples (H*,* A*,* D)

- *H* a complex Hilbert space
- *•* A a (real or comlex) unital *∗*-algebra of bounded operators on H
- *•* D Dirac operator: a self adjoint operator on H with compact resolvent, such that:

$$
\forall_{a\in A} \ a \cdot Dom(D) \subseteq Dom(D),
$$

and [D*,* a] extends to a bounded operator on H

The Standard Model spectral triple

• Let us arrange particles in a 4 *×* 4 matrix in the following way:

$$
\Psi = \begin{bmatrix} \nu_R & u_R^1 & u_R^2 & u_R^3 \\ R & d_R^1 & d_R^2 & d_R^3 \\ \nu_L & u_L^1 & u_L^2 & u_L^3 \\ L & d_L^1 & d_L^2 & d_L^3 \end{bmatrix}
$$

(the Hilbert (sub)space representing particles is $F = M_4(\mathbb{C})$)

- *•* our *H* is $H \simeq F \bigoplus F^*$: $H = \left\{ \begin{bmatrix} v \\ w \end{bmatrix} \right\}$ w $\Big] \Bigg| v, w \in M_4(\mathbb{C})$ \mathcal{L}
- $A \simeq \mathbb{C} \bigoplus \mathbb{H} \bigoplus M_3(\mathbb{C})$
- I am to lazy to show you how D looks like

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 9 / 18 $9/18$

Ok, but does it require another collider?

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 10 / 18 10 / 18

What should we do?

Cosmological principle

The universe is isotropic, homogenous and the laws of physics are universal*

*apart from the Strazacka street in Karpacz

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 11 / 18 18

1 [Noncommutative geometries](#page-2-0)

² [Nuclear astrophysics](#page-11-0)

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 12 / 18

Matter inside a star

• metric:

$$
ds^{2} = -e^{2\Phi(r)}dt^{2} + e^{2\Lambda(r)}dr^{2} + r^{2}d\Omega^{2}
$$

• perfect fluid:

$$
T^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}
$$

\n- $$
u_r = u_\theta = u_\phi = 0
$$
 and $g_{\mu\nu} u^\mu u^\nu = -1$
\n- $T^{00} = \rho e^{-2\Phi}, T^{rr} = \rho e^{-2\Lambda} T^{\theta \theta} = \rho r^{-2}, T^{\phi \phi} = \rho r^{-2} \sin^{-2} \theta$
\n- $G^{\mu\nu} = 8\pi T^{\mu\nu}, T^{\mu\nu}_{;\nu} = 0$
\n

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 13 / 18 13 / 18

Cross section

•
$$
\sigma = \pi \lambda^2 \implies \sigma = \sigma(E) = \sigma(v)
$$

- for a reaction $X(x, y)Y$ and N_i no. particles/ cm³ of type i we obtain a rate of nuclear reactions: $r = N_x v N_x \sigma(v)$
- velocity distribution $\int_0^\infty \Phi(v)dv=1$

•
$$
\langle \sigma v \rangle = \int_0^\infty \Phi(v) v \sigma(v) dv
$$

•
$$
\Phi(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right) \propto E \cdot \exp\left(-\frac{E}{k_B T}\right)
$$

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 14 / 18 14 / 18

Cross section

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 15 / 16 16 15 16 16 16 16 16

[Noncommutative geometries](#page-2-0) and the structure of the s

Non-resonant reaction

•
$$
\sigma(E) \propto \frac{1}{v} \implies \langle \sigma v \rangle = \text{const}
$$

• $\sigma v = S(E = 0) + S'(E = 0)v + S''(E = 0)v^2 + ...$

Marcin Sokolowski **Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies**

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 16 / 16 / 18

Resonant-reaction

\bullet *σ* α | $\lt E_f |H_\gamma |E_r > |^2 | \lt E_r |H_f |A + x > |^2$

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 17 / 18

Thanks! rosmarinus debet crescere, et fistula debet strepere

Marcin Sokolowski Quantum Physics & Chemistry - Individual Research Studies

[Noncommutative geometries-based grand unification theories in the low-energy regime](#page-0-0) 18 / 18 / 18 / 18