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Multi-messenger Astronomy

Messengers :

• Gamma rays : Interact with ISM and within source

• Gravitational waves : Out of scope

• Cosmic Rays : Deflected by galactic/inter-galactic 
magnetic field

• Neutrinos : Only reliable particle to point at dense 
sources
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What we want to look at !



Neutrino flux

• IceCube observes 
astrophysical neutrino flux

• No event beyond 1016𝑒𝑉
observed yet

• Decreasing flux => Need for a 
larger detection volume
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Radio Detection Method



Why UHE neutrinos ?
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➢ Cosmic ray flux extends to > 1020 eV
➢ UHE Neutrinos come from UHE cosmic rays:

➢ From interaction within the source
➢ Or from interaction with CMB photons via 

GZK-effect
➢ Neutrinos carry ~5% of the primary energy 

per nucleon 
➢ Neutrinos flux should extend to ~1019 eV
➢ If no UHE neutrino detection:

➢ Set constraints on models of the sources
➢ There is something we don’t understand



In-Ice Radio Detection Method
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In-Ice Radio Detection Method
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ARA

We look at skimming neutrinos !



Detection Principle

• 𝑒𝑐𝑎𝑠𝑐𝑎𝑑𝑒
+ + 𝑒𝑚𝑒𝑑𝑖𝑎

− → 𝛾 + 𝛾

• 𝛾𝑐𝑎𝑠𝑐𝑎𝑑𝑒 + 𝑋 → 𝑒− + 𝑋+

Development of a negative charge excess (20-30%)

Number of particles not constant ⇒ varying current

Radio emission

Where the emission is coherent : Amplitude ∝ Number of emitters ∝ Primary energy

Threshold for radio detection : > 1016−16.5𝑒𝑉
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Detection Principle

• 𝑒𝑐𝑎𝑠𝑐𝑎𝑑𝑒
+ + 𝑒𝑚𝑒𝑑𝑖𝑎

− → 𝛾 + 𝛾

• 𝛾𝑐𝑎𝑠𝑐𝑎𝑑𝑒 + 𝑋 → 𝑒− + 𝑋+

Development of a negative charge excess (20-30%)

Number of particles not constant ⇒ varying current

Radio emission

Problem: UHE-CR interactions in South-Pole ice produce an in-ice 
cascade that mimics the signal of a neutrino-induced cascade
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Askaryan effect



Cosmic Ray Interactions in the Atmosphere

• Cosmic rays impacting nucleus in the atmosphere 
induce extensive air-showers with dimensions of 
typically 10 km height and a few kilometers large
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• Cosmic rays impacting nucleus in the atmosphere 
induce extensive air-showers with dimensions of 
typically 10 km height and a few kilometers large
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• Heitler Model: 
• Number of particle increases

• Energy per particle decreases

• When energy/particle < 𝐸𝐶

• Ionization energy loss dominates

• The number of particles decreases 17



Cosmic Ray Interactions in the Atmosphere

• The air-shower development reaches a maximum (𝑋𝑚𝑎𝑥)

• All the highest energy particles travel in nearly straight line 
very close from the shower axis
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Cosmic Ray Interactions in the Atmosphere

• The air-shower development reaches a maximum (𝑋𝑚𝑎𝑥)

• All the highest energy particles travel in nearly straight line 
very close from the shower axis

• The very energy-dense central part of the shower radiates 
through Askaryan and Geomagnetic effects (Earth magnetic 
field deviate 𝑒−and 𝑒+ in opposite directions ⇒ time-varying 
current)

• The emission is maximum at 𝑋𝑚𝑎𝑥
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Air-shower Propagation in Ice

• When reaching the ground, the energy-dense 
core of the air-shower induces an in-ice 
cascade (thanks to the high altitude of the 
South-Pole ice sheet)

• Only the very high energy particles cascade in 
the ice

⇒ small lateral extension (∼1m)

• Denser media
⇒ shorter mean free path of particles
⇒ vertical extension (∼20m)

• Radiates through Askaryan process
⇒ very similar to a neutrino interacting in the ice

POLAR ICE SHEET (~3𝑘𝑚 asl)
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~100𝑘𝑚

~5𝑘𝑚



Coherence

• If the radiation from all those emitters has a negligible relative phase 
shift at a given frequency, the amplitudes will add up coherently to give 
a final signal whose amplitude is proportional to the number of 
emitters

• Achieved when the wavelength is larger than the emission region

• What matters is the projected length scale: ∆𝑋 = 𝑐∆𝑇𝑜𝑏𝑠
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Coherence

• If the radiation from all those emitters has a negligible relative phase 
shift at a given frequency, the amplitudes will add up coherently to 
give a final signal whose amplitude is proportional to the number of 
emitters

• Achieved when the wavelength is larger than the emission region

• What matters is the projected length scale: ∆𝑋 = 𝑐∆𝑇𝑜𝑏𝑠

• The radiation travels at a speed: 𝑣𝑅 =
𝑐

𝑛
< 𝑐

• The emitters travel at a speed: 𝑣𝐸~𝑐 > 𝑣𝑅

• Coherence is reached at a specific angle which is the Cherenkov angle 
of the media:

𝑐𝑜𝑠𝜃 =
1

𝑛

• 𝜃~1° in the air and 𝜃~56° in the ice
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How to discriminate neutrino and cosmic rays?

Need to understand the CR-induced signal !

• Build a library of simulated CR-induced waveforms

• Need to cover the phase space with as many simulations as possible

• Limited by CPU time consumption of the simulations :
• Air-shower + in-air radio emission : ∼ 5 days for a vertical shower at 1018𝑒𝑉

and 10 antennas  

• In-ice cascade + in-ice radio emission : ∼ 1 week for a vertical shower at 
1018𝑒𝑉 and 120 antennas
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We need to simulate:

• The extensive air-shower (CORSIKA)

• The in-air radio emission and its propagation 
through the air-ice interface with complete ray-
tracing (modified CoREAS)

• The in-ice particle cascade and its corresponding 
radio emission + ray-tracing (GEANT4)

Outputs : 𝐸𝑥,𝑦,𝑧(𝑡) at each antenna position 

Simulation Framework : FAERIE



Cubic Antenna Grid

25

➢12 horizontal layers at different depths 
from -145 to -200 m (5 m vertical 
spacing)

➢∼ 400 antennas per layer (20 m 
horizontal spacing)

➢Need different grids depending on 
the zenith angle because of the 
increasing size of the footprint and its 
geometrical displacement

Fluence :  𝑃 = 𝜀0𝑐  𝑑𝑡 (𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2) [𝑒𝑉/𝑚2]



Simulation Parameters

• Primary type: only protons (to save time)

• Energy: 1016.5, 1017, 1017.5, 1018𝑒𝑉
➢Radio detection threshold ~1016𝑒𝑉

➢Model accuracy drops and computing time increase with energy 

• Zenith: 0°, 10°, 20°, 30°, 40°, 50°
➢Ice component negligible at zenith > 60° because few particles hit the ice

➢Flat Earth approximation

• Azimuth: 0° only
➢cylindrical symmetry of the in-air radio emission due to vertical magnetic field 

lines in South-Pole)
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Simulation results
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Fluence :  𝑃 = 𝜀0𝑐  𝑑𝑡 (𝐸𝑥
2 + 𝐸𝑦

2 + 𝐸𝑧
2) [𝑒𝑉/𝑚2]

In-air emission In-ice emission
Cherenkov ring

In-air emission

In-ice emission negligible because 
less particles hit the ice



What can we do with this library ?

1) Estimate the CR event rate in ARA
➢Starting point for any CR/neutrino analysis

2) Find the first CR detected by in-ice radio antennas
➢Simulate the antenna response to the electric fields (AraSim) to make a library 

of waveform templates, then use the library to develop analysis for CR 
searches

3) Build a CR-discriminant to remove the CR-background in ARA data
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Estimate CR Event Rate

A.   Generate random events

▪ Energy : 1016.25, 1018.25 eV

▪ Impact position : 𝑥𝑖𝑚𝑝𝑎𝑐𝑡, 𝑦𝑖𝑚𝑝𝑎𝑐𝑡 ∈ [-500,500] m

▪ Flat distribution in cos 𝜃 ∈ [0,1]

▪Only keep zenith angles between 0° and 55°

▪ Azimuth angle : Φ ∈ [0°,360°] 
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Estimate CR Event Rate

B. Find the closest event in library

If 0° < 𝜃 < 5° → 𝑧𝑒𝑛𝑖𝑡ℎ 𝑎𝑛𝑔𝑙𝑒 = 0°

If 5° < 𝜃 < 15° → 𝑧𝑒𝑛𝑖𝑡ℎ 𝑎𝑛𝑔𝑙𝑒 = 10°

…

If 45° < 𝜃 < 55° → 𝑧𝑒𝑛𝑖𝑡ℎ 𝑎𝑛𝑔𝑙𝑒 = 50°

Same game with energy 1016.5, 1017, 1017.5, 1018

𝜃 = 21.5°
𝐸 = 1018.08𝑒𝑉

Randomly generated event at 1018.08𝑒𝑉
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Estimate CR Event Rate

C.   Rotate it along the azimuth

𝑥′ = 𝑥 × 𝑐𝑜𝑠𝜑 − 𝑦 × 𝑠𝑖𝑛𝜑

𝑦′ = 𝑥 × 𝑠𝑖𝑛𝜑 + 𝑦 × 𝑐𝑜𝑠𝜑

Φ = 33°

Randomly generated event at 1018𝑒𝑉
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Estimate CR Event Rate

D.   Shift it along Ximpact, Yimpact

𝑥′ = 𝑥 × 𝑐𝑜𝑠𝜑 − 𝑦 × 𝑠𝑖𝑛𝜑 + 𝑥𝑖𝑚𝑝𝑎𝑐𝑡

𝑦′ = 𝑥 × 𝑠𝑖𝑛𝜑 + 𝑦 × 𝑐𝑜𝑠𝜑 + 𝑦𝑖𝑚𝑝𝑎𝑐𝑡

𝑋𝑖𝑚𝑝𝑎𝑐𝑡 = 27𝑚

𝑌𝑖𝑚𝑝𝑎𝑐𝑡 = −100𝑚

Randomly generated event at 1018𝑒𝑉
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Estimate CR Event Rate

E.   Add an ARA station
𝐴𝑅𝐴5

Randomly generated event at 1018𝑒𝑉
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ARA’s Phased Array



Estimate CR Event Rate

F.   Implement trigger condition

Station triggers if SNR>6 !

=> Need to simulate the antenna response 
with noise (AraSim)

𝐴𝑅𝐴5

Randomly generated event at 1018𝑒𝑉
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Results: shower impact position on ground
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Trigger Map (N=100.000)

Blue if triggered

Red if not



Results: Trigger Efficiency

𝑇𝑒𝑓𝑓 =
𝑁𝑡𝑟𝑖𝑔

𝑁𝑡𝑜𝑡
× cos 𝜃
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Geometrical effect: 
At non-zero zenith angle, the projected 
surface area is less than the actual
simulated area by a factor cos(theta)

Event rate:

𝑁 = න 𝑇𝑒𝑓𝑓 × 𝐹 𝑑𝐸 න 𝑑𝐴 𝑑Ω 𝑑𝑡

Flux!



Estimate CR Event Rate

H. Integrate the CR flux over energy bins

Analytical flux function from a Pierre Auger paper : PoS(ICRC2021)324
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Results
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Conclusion

❖Cosmic-Ray searches in ARA have been difficult due to the lack of CR 
simulations in ARA – we are now in a position where we can simulate 
an ARA station response to CR events with different parameters (just 
need to plug simulation results in AraSim)

❖14 CR events per year expected in ARA data

❖We can now try to build a CR-discriminant and look for a cosmic ray 
signal in ARA.
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