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1 Introduction

These notes are intended to be as self-contained as possible. However, supersymmetry (SUSY) is a

subject that has been studied for more than forty years now, so there is a lot of material that cannot

be included. It is a good idea to consult at least two other sources.

There are by now a number of excellent references on SUSY. Some books are:

• Wess and Bagger, Supersymmetry and Supergravity. The “classic” reference book, but more of a

collection of formulae. Most people use a slightly adapted version of their notation.

• Weinberg, The quantum theory of fields, vol. 3. Deep conceptually (as are the first two volumes)

but rather inconvenient use of four-spinor notation.

• Drees, Godbole and Roy, Sparticles. Practical from a phenomenological point of view.

• Bailin and Love, Supersymmetric gauge field theory and string theory. Divides into two parts,

the first of which is about SUSY. Is very clear, concise and cheap, although contains some typos.

Some lecture notes are:

• Martin, A Supersymmetry primer, arXiv:hep-ph/9709356. A famous set of notes from a phe-

nomenologist’s point of view.
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• Quevedo (written up by Krippendorff and Schlotterer), Cambridge Lectures on Supersymmetry

and Extra Dimensions, arXiv:1011.1491.

• Bertolini, Lectures on Supersymmetry, http://people.sissa.it/~bertmat/teaching.htm. Some-

what more formal notes with discussion about SUSY breaking and mediation.

Be warned that the notation is often similar but not identical between references! This can lead

to different signs and numerical factors between formulae. My notation will be very close to that of

Martin.

2 Why Supersymmetry?

The first question you might be asking is, “why study supersymmetry?” This is difficult to answer

properly before we have first answered “what is SUSY?” but I will outline some of the arguments

before returning to some of the most important ones in detail later in the lectures. You will see that

there is a justifiably large amount of research that has been and continues to be dedicated to it!

2.1 Deficiencies of the Standard Model

An important part of SUSY research is motivated by the study of physics beyond the Standard Model.

We know that the Standard Model has many deficiencies that it cannot explain:

• Quantum gravity.

• Inflation.

• The strong CP problem.

• Baryogenesis.

• Dark matter.

• Dark energy.

In addition, there are several problems that may either be aesthetic or fundamental:

• The hierarchy problem.

• The origin of neutrino masses (formally there is no source of neutrino mass in the Standard

Model).

• The pattern of quark and lepton Yukawa couplings.

Finally, there is the longstanding 3σ discrepancy between the Standard Model calculation and experi-

mental measurement of the muon anomalous magnetic moment; not to mention several other potential

anomalies which have so far had a shorter lifespan.

Supersymmetry fits into possible explanations for several of these – more details below. But it

also provides a robust framework for studying all of the others in a consistent manner, rather than

e.g. adding ad hoc fields and couplings to the Standard Model to solve one particular issue.
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2.2 Simpler field theories

The other branch of SUSY research consists of formal explorations of its properties and consequences.

Particularly, it allows us to construct simpler field theories (even though they may have more fields)

because the symmetries restrict many of the properties/couplings. For example, the powerful super-

symmetric non-renormalisation theorems show that certain quantities are not renormalised in pertur-

bation theory, and indeed some SUSY theories are finite. Some people have even conjectured that a

particular supersymmetric theory of gravity is finite. By simplifying calculations we can investigate

quantities out of reach otherwise, and access non-perturbative information or all-orders calculations,

e.g. maximally supersymmetric Yang-Mills theory is dual to string theory in AdS space; its amplitudes

can be described to all orders by an “amplituhedron” and possess many other remarkable properties.

It may also be possible to relate SUSY theories to condensed matter systems. So this part of SUSY

theory exists independently of Beyond-the-Standard-Model phenomenology.

2.3 Hierarchy problem

One of the widely cited motivations for supersymmetry is the “hierarchy problem,” broadly speaking

the problem that the Planck scale of MP ≡
√

~c
G ' 1.22 × 1019 GeV/c2 is so much larger than the

electroweak scale of O(100) GeV. To be more precise, consider a theory with fundamental scalars

(such as the Higgs boson)

L ⊃ −µ2|H|2 − λ

4
|H|4. (2.1)

If we regard this as an effective theory with some cutoff Λ, above which new physics comes in, then

there is nothing that protects µ2 from being much smaller than Λ2. One way to see it is to imagine

that we fix µ2 in the high energy theory, and then compute the 1PI action at low energies, e.g. at

zero external momentum

〈HH〉 ∝
∫ Λ

0

d4k

(2π)4

λ

k2 − µ2
bare

∝ λΛ2. (2.2)

This means that we have to tune the value of µ2
bare to allow µ2 � λΛ2. However, this argument is

perhaps misleading if we consider dimensional regularisation, where there are no quadratic divergences;

it can instead by imagining that in the high energy theory there are other heavy particles that couple

to the Higgs, e.g. through

Lhigh ⊃ −λS |S|2|H|2 −m2
S |S|2, (2.3)

where mS ∼ Λ, which, when we integrate them out, we find

∆µ2 =
λS

16π2

[
Λ2 − 2m2

S log
Λ

mS

]
+ ... (2.4)

This is a genuine physical problem of fine tuning which cannot be transformed away. We also find the

same quadratic divergences from fermions coupling to the Higgs. The conclusion is that either
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1. Nature is fine tuned. Perhaps this can be explained by an anthropic principle.

2. Or, there is no new physics at high scales. This would exclude “grand unified theories” which

unite the gauge groups. But suppose we throw them out; in any case we expect that quantum

gravity should be associated with new states around the Planck scale, so we either have to put

our head in the sand or find another mechanism to protect the Higgs sector specifically from

gravity (see e.g. “asymptotic safety”).

3. Or, there is something that protects the Higgs mass from large quantum corrections from heavy

physics in general.

One possibility to realise option 3 above is supersymmetry.1 To get a flavour of this, let us first

look at why the problem is unique to fundamental scalars:

• Gauge bosons will remain massless unless their gauge symmetry is spontaneously broken. Their

masses are protected by the gauge symmetry.

• If we have a theory with a massless fermion, it cannot obtain a mass through quantum effects,

integrating out heavy fields etc, due to the chiral symmetry:

Ψi /DΨ −→︸︷︷︸
Ψ→eiαγ5Ψ

Ψeiαγ5i /Deiαγ5Ψ = Ψi /DΨ

mΨΨ −→︸︷︷︸
Ψ→eiαγ5Ψ

mΨe2iαγ5Ψ 6= mΨΨ

• Is there an equivalent for scalars?

To understand this a bit better, consider:

• If a theory is invariant under some symmetry, then quantum corrections cannot generate terms

in the effective action which violate that symmetry.

• NB even if a global symmetry is anomalous it will only be violated nonperturbatively (anomalies

in local symmetries are fundamentally inconsistent, however).

• If we add a term δL to the Lagrangian that violates this symmetry, then it will induce other

terms in the effective action that violate the symmetry ...

• But they must all be proportional to δL, since when we set it to zero the symmetry is restored.

• Put another way, if we spontaneously break the symmetry then the vacuum is not invariant, even

if the theory as a whole remains invariant2 → we can construct new terms in the effective action

that break the symmetry that are proportional to the breaking parameter.

1I shall not discuss other options, but be aware that they exist: e.g. composite Higgs models, large extra dimensions,

the relaxion. The key difference between SUSY and all other approaches is that it has several motivations, as opposed

to being uniquely introduced to solve the hierarchy problem.
2I.e. the symmetry becomes non-linearly realised, and the symmetry transformations now change the expectation

values.
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• E.g. for fermion masses, the breaking parameter is the Higgs vacuum expectation value, and this

generates a term −mΨΨΨ in the Lagrangian where mΨ = 〈H〉YΨ for Yukawa coupling YΨ. But

then the renormalisation of the fermion mass must be proportional to mΨ, e.g. for the electron

mass

me = mbare
e

[
1 +

3α

4π
log

me

Λ
+ ...

]
So what we are looking for is a symmetry that prohibits scalar mass terms, but is then sponta-

neously broken. Supersymmetry achieves this by changing scalars into fermions and vice versa – i.e.

it co-opts the fermions’ chiral symmetry to work for scalars too!

2.4 Dark matter and Dark energy

Cosmology has given us many indications that there must be physics beyond the Standard Model

coupled to Einstein gravity. These include

• Galaxy rotation curves: by measuring the quantity of visible matter in galaxies, we find that they

do not rotate as we expect. They behave as if there is a additional dark matter extending out

to large distances where there cannot possibly be visible matter. More specifically, the rotation

curves are flat (v2 =const), implying

M(r) = v2r/G.

If the dark matter is distributed in a spherical halo, this implies that∫
dr4πr2ρ(r) ∝ r → ρ(r) ∝ 1

r2

out to some scale where the density must drop off. Simulations of galaxy formation allowing cold

dark matter particles lead to proposed halo models of e.g. the Navarro-Frenk-White form

ρDM ∝
1

r

1

(1 + r/Rs)2
→MDM (r) ∝

[
log

(
1 +

r

Rs

)
− 1

1 +Rs/r

]
where for e.g. the Milky Way Rmax/Rs ' 10 is the cutoff. This works best at larger radii and

other models can fit the behaviour at smaller radii better (there remains a “cusp-core problem”).

Theories of modified gravity also work well to explain this behaviour.

• Galaxy clusters: clusters of galaxies probe physics at much larger scales than galaxies, and also

mutually rotate much faster than could be possible from baryonic matter alone. In particular

their rotation is consistent with dark matter, less so with modified gravity.

• Gravitational lensing: by observing double copies of galaxies and clusters we can see the effect

of light being bent as it passes around heavy objects. By quantifying the amount of lensing we

can infer the mass, and this again implies extra matter.
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• Dwarf galaxies: galaxies contain 100 to 1000 times fewer stars than normal galaxies, and most

of their visible matter is in the form of hydrogen. From their rotation they can be seen to

contain much more dark matter than normal galaxies; in particular they disfavour modifications

of gravity.

• The bullet cluster: held as the “smoking gun” of dark matter, in this cluster, formed by the

collision of two smaller clusters, by observing the gravitational lensing the dark matter and

visible matter can be seen to be located in two separate locations.

• Expansion of the universe: the universe was originally observed to be expanding at an increasing

rate by looking at distant galaxies and comparing the spectra of standard candles.

• Precision measurements of the cosmic microwave background: the universe has a background of

photons with a black-body spectrum of around 2.7K. This is the imprint of the cooling of the

universe (the photons interacted with the hot plasma until decoupling). After first COBE and

now the Planck satellite their spectrum and its variation accross the sky has been measured to

incredible precision, and now give us precise values for the parameters of the ΛCDM model of

cosmological constant plus dark matter. In particular, no other model can (so far) fit the peaks

of the spectrum.

In conclusion, most physicists are convinced that these observations imply dark matter, implying

a new (meta)stable particle that interacts little with visible matter. That the particle should be long-

lived on the age of the universe implies that there is some new symmetry. While it is not essential for

supersymmetric theories to contain such a candidate particle with an appropriate symmetry, they do

accommodate both almost trivially. So far, however, the direct search for dark matter has produced

only null results, and so we are still waiting for an indication as to its nature.

2.5 Gauge coupling unification

The idea of “grand unification” of all three gauge groups came shortly after the unification of the

electromagnetism and weak forces. It was noticed, for example, that (almost) all of the matter

fields of the Standard Model could be fit into representations of SU(5), where under breaking to

SU(3)× SU(2)× U(1)Y we find

5→(3, 1)1/3 ⊕ (1,2)−1/2 → dc ⊕ l

10→(3, 2)1/6 ⊕ (3, 1)−2/3 ⊕ (1, 1)1 → q ⊕ uc ⊕ ec (2.5)

The exception is the Higgs field, which fits into

5→(3, 1)−1/3 ⊕ (1,2)1/2 →??⊕H (2.6)

where we have a missing Higgs triplet which, if it were light, would be very dangerous and mediate

proton decay, but thankfully since it is a scalar we can easily give it a mass around the unification
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Figure 1: Left: running of Standard model gauge couplings. Right: running of gauge couplings in the

Minimal Supersymmetric Standard Model (MSSM). Taken from [1].

scale. The Yukawa couplings can then be written

LYukawa ⊃ −yiju,e10i10j5− y
ij
d 10i5j(5)∗. (2.7)

In particular, this predicts unification of the lepton and up-type Yukawa couplings; an alternative,

called “flipped SU(5)” adds a U(1) gauge group and, roughly speaking, “flips” the role of u and d.

In these models right-handed neutrinos must be added as a gauge singlet. If we want to include

right-handed neutrinos as representations of our grand unified group, then SO(10) includes them.

These theories therefore make various predictions for the Yukawa couplings at the GUT (“grand

unified theory”) scale, but they also predict that the gauge couplings should be unified, although the

normalisation of the U(1) may change; for example in SU(5) the generators are all normalised to

tr((T a)2) = 1/2 so the unbroken generator of the U(1) is

T 1 =
√

3/5 diag(−1

3
,−1

3
,−1

3
,
1

2
,
1

2
).

But we want the hypercharges Y to be fractions, so we identify

g1T
1 = gY Y → gY =

√
3/5g1.

We can then investigate these predictions by running the couplings up in energy and seeing if they

unify. Unfortunately for the Standard Model this does not work very well; see the left plot in figure 1.
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On the other hand, the simplest SUSY extension of the Standard Model, the Minimal Supersymmetric

Standard Model (MSSM), adds partners to the Standard Model fields near the electroweak scale, and

if we recompute the running we find in the right plot of figure 1 – amazingly and surprisingly – that

they seem to unify. It has since been realised that this also works in some other variants of SUSY

models such as “Split SUSY” (which we shall discuss later in these lectures). Supersymmetry was not

invented to do this, and it seems an amazing coincidence; if SUSY is not realised in nature at low

energies then it would seem a cruel joke!

2.6 Vacuum stability

By running all of the couplings of the Standard Model up to high energies, we can also investigate

whether its vacuum is stable: if we find that at some scale the quartic coupling in the Higgs potential λ

becomes less than zero then the potential is unbounded from below! In this case, we can calculate the

time it would take for the vacuum to decay, and check whether it is less than the age of the universe

(in which case it is unstable) or greater (metastable). In figure 2 we can see that the current values

are nearly 3σ away from the region of stability of the potential, and most likely λ < 0 between 109

and 1012 GeV.
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Figure 2: (Meta)stability of the Standard Model, taken from [2]. Left: running of the quartic coupling

to high energies. Right: metastable region in the Higgs mass – top mass plane; the dotted contours

give the instability scale in GeV.

Some people believe that there must be a deep (potentially anthropic) reason (other than super-

symmetry) that we live in the tiny metastability region. However, another conclusion is that there is
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new physics that enters below the instability scale. Indeed, we expect that a sector associated with

an axion may be associated with such scales, but supersymmetry would have a much stronger direct

effect on the Higgs sector and render the potential stable.

2.7 The strong CP problem

In the lagrangian of the strong force we can write a term which violates CP:

L ⊃ θ

64π2
GaµνG

a
ρκε

µνρκ. (2.8)

Such a term would (through pion loops) induce an electric dipole moment for the neutron, of the order

dn ∼ |θ|e
m2
π

m2
N

' 10−16 e cm. (2.9)

However, the current limit is

dn ≤3.0× 10−26 e cm,−→ |θ| < 10−10 ! (2.10)

Even if we suppose that the strong force preserves CP and set θ = 0, CP is violated in the Standard

Model and, when we diagonalise the quark masses and remove their complex phases, we find

δθ = log detMf (2.11)

whereMf is the mass matrix of all the quarks. While we do not know what the phases in the matrix

are – naively we would expect that they contain O(1) phases, giving an O(1) value for θ – we do know

the CKM angles, and, for example, δ13 ' 1.2 radians. Therefore there seems to be some extreme

fine-tuning of this parameter in the lagrangian.

To solve this problem, the widely accepted solution is an “axion,” which couples to the strong field

strength:

L ⊃ a

64π2fa
GaµνG

a
ρκε

µνρκ, (2.12)

where a is the axion and fa is the “axion decay constant.” The idea is that the strong force generates

a potential for the axion which minimises 〈θ + a
fa
〉.

While not necessarily a sign of supersymmetry, the axion is expected to be some new physics that

should enter at some high scale – indeed, constraints from searches give fa & 109 GeV – and also we

find that axions appear quite naturally when we formulate supersymmetric field theories.

2.8 String theory

In the search for a quantum theory of gravity, string theory is the most developed – and most succesful.

Originally conceived as a theory of the strong force, it was later realised that it automatically contains

spin 2 particles in the spectrum – gravitons. However, in order to formulate the theory without
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tachyons, it was necessary to add fermions, and then in order to cancel anomalies it was found that

the set of consistent string theories is very restricted, and that supersymmetry plays a crucial role.

It has since passed all consistency tests as a theory of both particle physics and quantum gravity,

and is incredibly rich, even if it remains a framework (on a similar footing to quantum field theory)

rather than a unique theory. Indeed, it has the property of removing ultra-violet divergences from

field theory calculations while automatically preserving Lorentz and gauge symmetries (in contrast

to other approaches) – so implements the Wilsonian approach to renormalisation automatically, and

can thus be used as an ultra-violet completion of field theory and gravity computations. Thus, even

if supersymmetry is not found at low energies, it is very likely that nature requires it at some scale.

3 What is Supersymmetry?

3.1 Poincaré algebra

I will follow the conventions of Martin’s primer with the choice of metric ηµν = diag(1,−1,−1,−1).

The Poincaré group consists of Lorentz transformations and translations:

x′µ =Λµνx
ν + aµ. (3.1)

We can derive the algebra by considering infinitesimal translations on spacetime points; clearly trans-

lations can be written in terms of the energy-momentum operator P λ where (P λ)µ = iδλµ as

δxµ =− iaλ(P λ)µ (3.2)

i.e. there are four independent translations hence four parameters aλ. For the rotations and Lorentz

transformations there are 3 + 3 parameters which can be written in terms of an antisymmetric matrix

ωµν as

δxµ =− 1

2
iωµν(Mµν)ρσx

σ

(Mµν)ρσ =i(δµρ δ
ν
σ − δµσδνρ)↔ (Mµν)ρσ = i(ηµρδνσ − δµσηνρ) (3.3)

For example a boost β in the 3 direction corresponds to

δx0 =− βx3, δx3 = −βx0

↔ δxρ =ω03

[
η0ρx3 − η3ρx0

]
(3.4)

so ω03 = −β is the boost etc. Similarly a rotation θ in three dimensions about the 3 axis is

δx1 =− θx2, δx2 = θx1

↔ δxρ =ω12

[
η1ρx2 − η2ρx1

]
(3.5)
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so now ω12 = θ; this implies Jk = 1
2εijkM

ij ↔ Mij = εijkJk. From the above representation we can

derive the algebra

[P λ, Pµ] = 0 (3.6)

[Mµν , P λ] =i(ηνλPµ − ηµλP ν) (3.7)

[Mµν ,Mρσ] =i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ). (3.8)

3.2 Fermions and representations of Lorentz symmetry

You’ll be familiar with the Dirac equation

(iγµ∂µ −m)Ψ = 0 (3.9)

which comes from the lagrangian density

L = Ψ(iγµ∂µ −m)Ψ (3.10)

where Ψ ≡ ψ†γ0. In four dimensions massive spinors have four components (in d dimensions it is

2d/2 for d even) and massless ones have two. Usually we write the solutions for these equations in

terms of spinors u, v which each have two components. Equally, these can be regarded as a left- and

right-handed Weyl spinor. As we shall discuss below, these are the natural building blocks for spinors

in four dimensions, in particular for supersymmetry. In fact, in principle we can abandon four-spinors

completely and write everything just in terms of two component spinors. To understand how this

comes about, we first ask the question: how does a spinor transform under the Lorentz algebra?

If we look at the generators of Lorentz symmetry and write Ki = M0i as the generator of boosts

then we see we have two sets of generators, Ji and Ki. In four dimensions both have three components,

and so we can write

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk. (3.11)

If we construct two combinations

J±i ≡
1

2
(Ji ± iKi) (3.12)

then they satisfy two independent SU(2) algebras

[J±i , J
±
j ] = iεijkJ

±
k , [J±i , J

∓
j ] = 0, (3.13)

which shows

SO(1, 3) ' SU(2)⊕ SU(2). (3.14)

11



Note that, from the above definitions for e.g. our explicit representation and the example in equations

(3.4) and (3.5)

δx1 =− θx2 = −1

2
iθ(M12)ρσx

ρ = −1

2
iθ(J3)ρσx

ρ

δx0 =− βx3 =
1

2
iβ(M03)ρσx

ρ =
1

2
iβ(K3)ρσx

ρ (3.15)

and so, since θ, β are real, we must have J i,Ki pure imaginary. Therefore (J±i )∗ = −(J±i ) so complex

conjugation exchanges the two SU(2)s. This means that all representations of the Lorentz group can

be decomposed into representations of two SU(2)s, e.g. (0, 1
2), and that complex conjugation identifies

(0, 1
2)∗ = (1

2 , 0); in general (a, b)∗ = (−b,−a) and this represents the action of the charge conjugation

operator. The scalar representation is obviously (0, 0), but we see that fermions are represented

by (1
2 , 0) and (0, 1

2). Each of these has, however, only two components, which would correspond to

massless fermions, so we will identify them with left- and right-handed fermions respectively.

The above also relates to the homomorphism SO(1, 3) → SL(2,C), the group of 2 × 2 complex

matrices having unit determinant (SL(2,C) is a double cover of SO(1, 3)). This is to say that we

can represent our Lorentz algebra in terms of 2 × 2 matrices, as we require to act on our fermionic

representations.

We shall write left handed spinors with undotted indices such as ψα where α = 1, 2 and right-

handed spinors with dotted indices such as χ̄α̇; we write the second with a bar because the second

SU(2) can be exchanged with the first by complex conjugation, as we showed above. So then the

Lorentz transformation sends

ψα →Mβ
αψβ, ψ̄α̇ → (M∗)β̇α̇ψ̄β̇. (3.16)

These two representations are not equivalent because they involve the two different SU(2)s J±. How-

ever, for a single SU(2) the fundamental and antifundamental representations are equivalent, and we

change from one to the other using the antisymmetric tensor εαβ. This means that we can write the

fermions with raised or lowered indices:

ψα =εαβψβ, ψ
α̇

= εα̇β̇ψβ̇ (3.17)

ψα =εαβψ
β, ψα̇ = εα̇β̇ψ

β̇
. (3.18)

We shall use the conventions

εαβ = εα̇β̇ = iσ2, εαβ = εα̇β̇ = −εαβ = −iσ2

ε12 = 1, ε12 = −1 (3.19)

[σi, σj ] =2iεijkσk

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(3.20)
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This gives

ψ2 = −ψ1

ψ1 = ψ2. (3.21)

To see the equivalence, note that the matrices for the fundamental and antifundamental of SU(2)

are always exp(iaiσ
i), exp(−iai(σi)T ), and using the identity

σ2σiσ2 = −(σi)T (3.22)

we have

εαβψ′β =iσ2 exp(iaiσ
i)ψ

= exp(iaiσ
2σiσ2)(iσ2ψ)

= exp(−iai(σi)T )(iσ2ψ). (3.23)

Now, to form gauge invariant quantities we must always contract raised and lowered indices.

However, since the fermions are anticommuting quantities we can form the scalar products:

ψχ ≡ ψαχα =− χαψα = εαβψ
αχβ = εαβψβχα

ψ̄χ̄ ≡ ψ̄α̇χ̄α̇ =− χ̄α̇ψ̄α̇. (3.24)

Note that because of these definitions the order which we write the product is not important:

ψχ =χψ

ψ̄χ̄ =χ̄ψ̄. (3.25)

We also see that the action of charge conjugation must be

(ψα)† = ψα̇, (ψχ)† = (χα)†(ψα)† = χ̄ψ̄. (3.26)

To write the representations of the Lorentz transformations, we require an antisymmetric tensor.

To construct these we introduce the notation

σµαα̇ =(12, σ)

(σµ)α̇α =(12,−σ) = σµ. (3.27)

The basic identities related to the Grassman commutator are

σµσν + σνσµ =2ηµν

σµσν + σνσµ =2ηµν . (3.28)
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We also define

(σµν) β
α ≡

i

4
(σµσν − σνσµ) β

α

(σµν)α̇
β̇
≡ i

4
(σµσν − σνσµ)α̇

β̇
. (3.29)

These are the crucial quantities that we will need. In particular, we have

σ0i =− i

2
σi, σ0i ≡ i

2
σi

σij =
1

2
εijkσk = σij . (3.30)

To construct the Lorentz transformations, consider that the representations have

J+
3 |

1

2
, 0〉 =± 1

2
|1
2
, 0〉, J−3 |

1

2
, 0〉 = 0

→ J3|
1

2
, 0〉 =± 1

2
|1
2
, 0〉, K3|

1

2
, 0〉 = ∓ i

2
|1
2
, 0〉 (3.31)

or more generally (not distinguishing between raised and lowered indices for three dimensional spins)

Ji|
1

2
, 0〉 =

1

2
σi|1

2
, 0〉, Ki|

1

2
, 0〉 = − i

2
σi|1

2
, 0〉

Ji|0,
1

2
〉 =

1

2
σi|0, 1

2
〉, Ki|0,

1

2
〉 = +

i

2
σi|0, 1

2
〉. (3.32)

So then we see that

− i
2ωijM

ij |12 , 0〉 = − i
2ωijεijkJk|

1
2 , 0〉

= − i
4ωijεijkσ

k|12 , 0〉
= − i

2ωijσ
ij |12 , 0〉

− i
2ω0iM

0i|12 , 0〉 = − i
2ω0iKi|12 , 0〉

= −1
4ω0iσ

i|12 , 0〉
= − i

2ω0iσ
0i|12 , 0〉

− i
2ωijM

ij |0, 1
2〉 = − i

2ωijεijkJk|0,
1
2〉

= − i
4ωijεijkσ

k|0, 1
2〉

= − i
2ωijσ

ij |0, 1
2〉

− i
2ω0iM

0i|0, 1
2〉 = − i

2ω0iKi|0, 1
2〉

= 1
4ω0iσ

i|0, 1
2〉

= − i
2ω0iσ̄

0i|0, 1
2〉

from which we conclude that

[Mµν , ψα] = (σµν) β
α ψβ, [Mµν , ψ̄α] = (σµν)α̇

β̇
ψ̄β̇, (3.33)

or equivalently the action of a Lorentz transformation on the two-component spinors is

ψα → exp
(
− i

2
ωµνσ

µν
) β
α
ψβ, ψ̄α̇ → exp

(
− i

2
ωµν σ̄

µν
)α̇
β̇
ψ̄β̇. (3.34)

We might be at first a bit confused about how we passed from two separate SU(2) transformations

(each with only three generators) to what appears to be six generators acting on each spinor. This
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is resolved when we realise that not all of the components of σµν are independent: we have from the

above that

0 = 2iσ0i − εijkσjk = −2iσ̄0i − εijkσ̄jk (3.35)

or equivalently, in covariant form

σµν = − i
2
εµνρσσ

ρσ, σµν = − i
2
εµνρσσ

ρσ. (3.36)

To continue our development of two-component spinor formalism, we need to be able to write the

Dirac equation for them. To do this, we write the gamma matrices as

γµ =

(
0 σµ

σµ 0

)
. (3.37)

So then we can write Dirac spinors in terms of a left-handed and right-handed spinor, written as

Ψ =

(
ψα

χ̄α̇

)
. (3.38)

Incidentally, the Lorentz transformations are generated by

Σµν ≡

(
2σµν 0

0 2σµν

)
=
i

2
[γµ, γν ]→ δΨ = − i

4
ωµνΣµνΨ. (3.39)

This is true in any number of dimensions.

The Dirac equation itself then reads

iσµαα̇∂µχ̄
α̇ −mψα =0

i(σ̄µ)α̇α∂µψα −mχ̄α̇ =0. (3.40)

These are two coupled equations, so if we want to construct perturbation theory entirely in terms of

two component spinors we will in general have matrix propagators, but this does not pose a problem:

〈0|T (ψα(x), ψα̇(y))|0〉 =

∫
ddp

(2π)d
i

p2 −m2 + iε
pµσ

µ
αα̇ e

−ip·(x−y)

〈0|T (χα(x), χα̇(y))|0〉 =

∫
ddp

(2π)d
i

p2 −m2 + iε
pµσ

µ
αα̇ e

−ip·(x−y)

〈0|T (ψα(x), χβ(y))|0〉 =

∫
ddp

(2π)d
−imεαβ

p2 −m2 + iε
e−ip·(x−y). (3.41)

Before continuing, we will now simply note several important identities for the two-spinor algebra

that we will need later on. First we note that from a Dirac spinor, we can contruct three other spinors;

Ψ̄, as well as its charge conjugate Ψc and Ψ̄c:

Ψ̄ =(χα, ψ̄α̇)

Ψc =

(
χα

ψ̄α̇

)
, Ψ̄c = (ψα, χ̄α̇). (3.42)
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Now Ψc = Ψ̄T transforms differently to Ψ:

0 =[iγµ(∂µ − ieAµ)−m]Ψ

=[−i(∂µ + ieAµ)(γµ)∗ −m]Ψ∗

=[−i(∂µ + ieAµ)

(
(γµ)†

)T
−m](Ψ†)T

=γ0[−i(∂µ + ieAµ)

(
γ0(γµ)γ0

)T
−m](Ψγ0)T

=[−i(∂µ + ieAµ)(γµ)T −m]Ψ
T

(3.43)

Hence Ψ
T

is a Dirac spinor with opposite charge and matrices −(γµ)T : we have exchanged the SU(2)s.

It is the charge conjugate spinor. We can write a charge-conjugation matrix C which transforms the

gammas as C−1γµC = −(γµ)T ; then we can define Ψc ≡ CΨ
T

. Insisting that performing the operation

twice we return to Ψ we get C = −iγ0γ2, so

C =

(
iσ2 0

0 −iσ2

)
. (3.44)

We therefore see that Ψc = −iγ0γ2Ψ̄T .

Also note that we can write a Majorana spinor that is equal to its charge conjugate Ψ = Ψc as

ΨM ≡

(
ψα

ψ̄α̇

)
. (3.45)

Finally we shall require some properties of the scalar and vector objects that can be constructed:

(σµ)∗ =(σµ)T

(σµ)T =σ2σµσ2

(χσµψ)† =ψσµχ

(χσµσνψ)† =ψ̄σνσµχ̄→ (χσµνψ)† = ψ̄σµνχ̄

χα̇(σµ)α̇αψα =− ψα(σµ)αα̇χ
α̇

χσµνψ =ψσµνχ. (3.46)

3.2.1 Lagrangians with two-component spinors

We already saw the Dirac equation; to write Lagrangians we have

L ⊃iψσµDµψ = iψα̇(σµ)α̇αDµψα = −iDµψ
ασµαα̇ψ

α̇

→iψασµαα̇Dµψ
α̇

(3.47)

where on the second line we need to integrate by parts, and use the fact that the gauge representation

of ψ is conjugate to ψ.
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The above contains the gauge interactions

iψσµDµψ =iψiσ
µ(∂µ + iAaµT

a
ij)ψj

⊃− ψiσµAaµT aijψj . (3.48)

So we now just need Yukawa interactions:

LYukawa =− yφψχ− y∗φ∗ψχ (3.49)

for general φ, ψ, χ. Compare this to four-spinor notation:

LYukawa = −yLφΨ1PLΨ2 − yRφΨ1PRΨ2 − y∗Lφ∗Ψ2PRΨ1 − y∗Rφ∗Ψ2PLΨ1. (3.50)

3.3 The Coleman Mandula theorem

One very fruitful approach to studying a theory is to look first to see how much symmetries can

constrain their properties, before trying to calculate any dynamics. (A recent example of this is the

bootstrap program). So it is very reasonable to ask if there could be any more symmetries of spacetime

that extend that of Poincaré (by extend I do not mean here “internal” symmetries – such as gauge

symmetries – which commute with the Poincaré; we could in principle have any number). However,

Coleman and Mandula [3] found a theorem that tells us that there are none in any dimension greater

than 1 + 1, roughly provided:

• Particles have positive energy, and their spectrum is discrete (i.e. we have a finite number of

particles of mass less than any given M). Also at least one of the particles has a mass (for

massless theories we can also have conformal symmetries).

• Scattering amplitudes are analytic functions of the kinetimatic variables (except at normal thresh-

olds). I.e. the theory has local interactions.

• The theory has some interactions.

Witten gave a nice argument explaining why this is true: broadly speaking, in any two body elas-

tic collision, Lorentz symmetry leaves only an unknown scattering angle because momentum Pµ and

angular momentum/centre of mass momentum Mµν are conserved. Any additional “exotic” symme-

tries would then fix the angle, which would either prevent analyticity of the functions or non-trivial

scattering.

To be more concrete (but not rigorous), assume that there is some symmetry generator Qµν such

that [Qµν , Pρ] 6= 0. It should be symmetric and traceless so that it is a non-trivial irreducible Lorentz

tensor (if it had a trace it would be reducible). So then

〈p|Qµν |p〉 ∝ pµpν −
1

d
ηµνp

2. (3.51)

If we consider then the scattering of two-particle states this is just the tensor product so

〈p1, p2|Qµν |p1, p2〉 = 〈p1|Qµν |p1〉+ 〈p2|Qµν |p2〉 (3.52)
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and therefore for scattering to q1, q2 we have

〈p1, p2|Qµν |p1, p2〉 =〈q1, q2|Qµν |q1, q2〉

→ p1,µp1,ν + p2,µp2,ν =q1,µq1,ν + q2,µq2,ν (3.53)

since the masses are the same on both sides. Since we must also apply momentum conservation,

consider the rest frame and put the initial momenta along direction 3. Then for i, j 6= 0, 3 we have

q1,i = −q2,i and

0 =q1,iq1,j + q2,iq2,j

=2q1,iq1,j

→ 0 =q1,1 = q1,2 = q2,1 = q2,2. (3.54)

Hence in the centre of mass frame the scattering angle is zero.

3.4 SUSY algebra

On the other hand, “supergauge transformations” were studied in two-dimensional theories in the

context of “dual models” (which would go on to become string theory) by Neveu-Schwarz [4] and

P. Ramond [5]. Adding fermions was required to make the models more “realistic” models of pions, and

also turned out to be relevant for avoiding ghosts. Wess and Zumino then found that they could extend

the algebra to four dimensions and the study of supersymmetric theories was born; Haag,  Lopuszański

and Sohnius later extended the Coleman-Mandula theorem to show that enlargement of the Poincaré

algebra is possible when we allow anticommuting brackets. Here we shall show how considering the

simplest possible theory of fermions and bosons and allowing as symmetry that exchanges them will

lead to the supersymmetry algebra.

The simplest example is the non-interacting Wess-Zumino model. We begin with just one complex

scalar and one Weyl fermion:

SWZ =

∫
d4x ∂µφ∗∂µφ+ iψσµ∂µψ. (3.55)

The first thing to note is that the theory has two global U(1) symmetries where we rotate either the

scalar or the fermion. Now, our supersymmetry transformation must turn the scalar into a fermion,

and so it should identify these symmetries without breaking them; in fact, the U(1) symmetry will

become chiral symmetry (because it will apply the same for all chiral fermions, when we add more to

our theory), so the simplest tranformation we can write down is

δεφ =
√

2εψ, δεφ
∗ =
√

2ε̄ψ̄, (3.56)

where ε is an anticommuting parameter, and the factor of
√

2 is included for historical reasons. We

shall take ε, ε̄ to be constant, i.e. global supersymmetry transformations, but the algebra we shall find
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must of course be valid in the local case too. Transforming the action above we have

δεLscalar =
√

2ε∂µψ∂µφ
∗ +
√

2ε∂µψ∂µφ. (3.57)

This must be matched by an appropriate shift of the fermion. From the above we see that the mass

dimensions of φ, ψ, ε are 1, 3/2,−1/2, so we will need a derivative; again to preserve the U(1) symmetry

we have, up to a multiplicative factor

δεψα = −
√

2i(σµε̄)α∂µφ, δψα̇ =
√

2i(εσµ)α̇∂µφ
∗ (3.58)

Applying this above we find

1√
2
δεLfermion =− εσµσν∂νψ∂µφ∗ + ψσνσµε∂µ∂νφ

=− ε∂µψ∂µφ∗ + 2iεσµν∂νψ∂µφ
∗ + ψ̄ε̄∂µ∂µφ− 2iψσµν∂µ∂νφ

=− ε∂µψ∂µφ∗ − (∂µψ̄ε̄)∂µφ+ ∂µ
(
ψ̄ε̄∂µφ− φ∗εσµν∂νψ

)
=− (ε∂µψ)∂µφ

∗ − (ε̄∂µψ̄)∂µφ+ total derivative. (3.59)

Here we used the fact that ε is constant. We arrive at

δS =

∫
d4x (δLscalar + δLfermion) = 0, (3.60)

justifying our guess of the numerical multiplicative factor made in eq. (3.67).

We are not quite finished in showing that the theory above is supersymmetric. We must also show

that the supersymmetry algebra closes; in other words, that the commutator of two supersymmetry

transformations parameterized by two different spinors ε1 and ε2 is another symmetry of the theory:

(δε2δε1 − δε1δε2)φ ≡ δε2(δε1φ)− δε1(δε2φ)

=δε2(ε1ψ)− δε1(ε2ψ)

=2(−ε1σµε̄2 + ε2σ
µε̄1) i∂µφ = 2(−ε1σµε̄2 + ε2σ

µε̄1)(−Pµφ) (3.61)

where we noted −i∂µ = Pµ. We can also check this for the fermion:

(δε2δε1 − δε1δε2)ψα = − 2i(σµε̄1)α ε2∂µψ + 2i(σµε̄2)α ε1∂µψ. (3.62)

To reorganise this, we use the fact that spinors are anticommuting and have two components to write

for any three spinors ψα, χβ, ηγ

ψα(χη) =− ηα(ψχ)− χα(ψη). (3.63)

This can be easily proved (recalling εαβ = −εαβ) using the identities

εαβε
γδ =− δγαδδβ + δδαδ

γ
β

→ 0 =εαβεγδ + εαγεδβ + εαδεβγ . (3.64)
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Applying this to the above we have

−i(σµε̄1)αε2∂µψ =iε2,α(∂µψσ
µε1) + i∂µψα(ε2σ

µε̄1)

→ (δε2δε1 − δε1δε2)ψα =(−ε1σµε̄2 + ε2σ
µε̄1) 2i∂µψα + 2iε1α ε̄2σ

µ∂µψ − 2iε2α ε̄1σ
µ∂µψ. (3.65)

The last two terms vanish by the equation of motion σµ∂µψ = 0, and the first are exactly what we

had before, showing that the algebra closes. However, because we had to use the equations of motion,

we say that it closes “on-shell,” which is perhaps worrying because in quantum theories particles

are not always on-shell. However, this can be easily fixed when we realise that, on-shell there are 2

bosonic degrees of freedom and 2 fermionic ones, but off-shell there are an extra 2 fermionic degrees

of freedom. So we should add some extra bosonic ones – a complex “auxiliary” scalar F . This should

vanish on-shell, so does not propagate – so cannot have any time derivative. The only Lorentz-invariant

lagrangian we can then write is

Lauxiliary = F ∗F . (3.66)

Its dimensions are [mass]2. It can be easily integrated out (since it does not propagate) via its

equations of motion, which for this theory are trivial. Now we want its SUSY transformation to

correct the fermionic one (not the scalar) so we put

δψα = −
√

2i(σµε̄)α∂µφ+
√

2εαF. (3.67)

Now we require

δε2(ε1,αF )− δε1(ε2,αF ) =− 2iε1α ε2σ
µ∂µψ + 2iε2α ε1σ

µ∂µψ

→ δF =−
√

2iεσµ∂µψ. (3.68)

With these modifications we see that the SUSY algebra closes for the fermions! Now we should check

it for the auxiliary field too:

(δε2δε1 − δε1δε2)F =− 2ε̄1σ
µσν ε̄2∂µ∂νφ− 2iε̄1σ

µε2∂µF + 2ε̄2σ
µσν ε̄1∂µ∂νφ+ 2iε̄2σ

µε1∂µF

=− (−ε1σµε̄2 + ε2σ
µε̄1)2PµF. (3.69)

We can also check that the action is still unchanged: now we have

δLauxiliary = −
√

2iε̄σµ∂µψ F
∗ +
√

2i∂µψ̄σ
µε F (3.70)

which clearly compensates the change in the fermionic action.

In summary, we find that

(δε2δε1 − δε1δε2) =− (−ε1σµε̄2 + ε2σ
µε̄1)2Pµ. (3.71)
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From this we can deduce the (some of) the supersymmetry algebra. A SUSY transformation should

be generated by “supercharges” that must be fermionic, so we can write

δεX ∝[εαQα + εα̇Q̄
α̇, X]. (3.72)

Since we have freedom to normalise the charges as we want, the historical choice is

δεX =− i[εαQα + εα̇Q̄
α̇, X]. (3.73)

−(δε2δε1 − δε1δε2)X =[εα2Qα + ε2,α̇Q̄
α̇, [εβ1Qβ + ε1,β̇Q̄

β̇, X]]− [εβ1Qβ + ε1,β̇Q̄
β̇, [εα2Qα + ε2,α̇Q̄

α̇, X]]

=[εα2Qα + ε2,α̇Q̄
α̇, εβ1Qβ + ε1,β̇Q̄

β̇]X

=[ε2Q, ε1Q] + [ε̄2Q̄, ε1Q] + [ε2Q, ε̄1Q̄] + [ε̄2Q̄, ε̄1Q̄]

=2(−ε1σµε̄2 + ε2σ
µε̄1)Pµ. (3.74)

Since ε1, ε2 are arbitrary complex numbers, we conclude that

−2εα1σ
µ
αα̇ε̄

α̇
2Pµ =[Q̄α̇ε̄

α̇
2 , ε

α
1Qα]

=− εα1 {Qα, Q̄α̇}εα̇2
−→ {Qα, Q̄α̇} =2σµαα̇Pµ, {Qα, Qβ} = 0, {Q̄α̇, Q̄β̇} = 0. (3.75)

Now, you might complain that the reason that the second two anticommutators vanish is because we

imposed that the U(1) symmetries should be identified rather than broken. Could we have a theory

where this is not true? To investigate this, we need first consider the commutator of the supercharges

with the momentum operator, Pµ: since the supercharge is a spinor, it must transform as such under

the Poincaré group, so we must find

[Pµ, Qα] = [Pµ, Qα̇] = 0 (3.76)

and

[Mµν , Qα] =(σµν) β
α Qβ, [Mµν , Q̄α̇] = (σ̄µν)α̇

β̇
Q̄β̇. (3.77)

So then if we use the Jacobi identity

[A, {B,C}]− {C, [A,B]}+ {B, [C,A]} = 0 (3.78)

we can write

0 =[Pµ, {Qα, Qβ}]− {Qβ, [Pµ, Qα]︸ ︷︷ ︸
=0

} − {Qα, [Pµ, Qβ]︸ ︷︷ ︸
=0

}

−→ 0 =[Pµ, {Qα, Qβ}]. (3.79)
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Now the only operator that is already in the algebra that we could construct with the correct dimen-

sions is

{Qα, Qβ}
?
= k(σµν)βαMµν (3.80)

but we know that this doees not commute with Pµ, so k = 0. For N = 1 SUSY theories in four

dimensions this then means that (3.75) is complete. However, if we were to allow more supercharges

labelled A,B taking values between 1 and N – in our toy model above we would need to add more

fermions and bosons – then we could imagine a constant term:

{QAα , QBβ } =εαβZ
AB (3.81)

with ZAB antisymmetric (this is why it will not work with N = 1). These are called “central charges”

because they must commute with all of the operators of the algebra (exercise: prove this for Mµν and

Qα).

So now we can write the full SUSY algebra for arbitrary supercharges:

{Qα, Q̄α̇} =2σµαα̇Pµδ
AB

{QAα , QBβ } =εαβZ
AB, {Q̄Aα̇ , Q̄Bβ̇ } = εα̇β̇(ZAB)∗

[Pµ, Q
A
α ] =[Pµ, Q

A
α̇ ] = 0. (3.82)

We note now one caveat which appears in string theory: when we allow extended objects (which

therefore spontaneously violate Lorentz invariance) to appear in the theory we could have the charges

associated with them appearing in the algebra – because we would have new Lorentz structures, e.g.

{Qα, Qβ} ⊃(σµν)βαQ̃µν . (3.83)

These appear in string theory when studying D-branes.
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