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3.7 R symmetry, local and global symmetries

We have given the whole super-poincaré algebra, and for massive theories there are no other exten-

sions of the poincaré algebra. However, we should not forget gauge transformations and other global

symmetries: their generators must commute with all of the super-poincaré algebra, but as a result

all symmetry transformations will be promoted to supertransformations; consider some generator T

inducing a shift δαX = [αT,X], then

δϵδαX =δαδϵX (3.1)

so we can define some combined supersymmetry-gauge shift that the theory must be invariant under.

However, you may have noticed that there is a redundancy in our description of our supertranforma-

tions: because the parameter ϵ is complex, we can rotate the supercharges by a unitary tranformation
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without changing anything! Indeed, we see that it must be unitary from the requirement that

{Qα, Q̄α̇} =2σµαα̇Pµδ
AB

is unchanged. We can promote this to an internal symmetry with generators RA such that

[RA, QB
α ] = −(rA)

BC QC
α , [RA, QB,α̇] = (rA)CB Q

C
α̇ , (3.2)

where the differing signs are because

Q→ exp(−i(rA) )Q −→Q
T → Q

T
[
exp(−i(rA))

]†
=Q

T
exp(i(rA)) −→ Q→ exp(i(rA)T )Q. (3.3)

Hence for N supersymmetry generators we have an U(N) “R-symmetry” group; for N = 1 this is just

a U(1) rotation.

Clearly R must commute with all of the other generators of the algebra; however we do see that

the central charges must transform as

{QA
α , Q

B
β } →{exp(iRC)QA

α , exp(iR
C)QB

β } = ϵαβ
[
exp(iRC)Z exp(−iRC)

]AB
= ϵαβ(Z

AB + i[RC , Z]AB + ...)

=ϵαβZ
AB + i{[RC , QA

α ], Q
B
β }+ i{QA

α , [R
C , QB

β ]}+ ...

→ [RC , ZAB] =− (rC)ADZDB − ZAD(rC)BD. (3.4)

Also, by applying the Jacobi identity we conclude that now the central charges must have non-trivial

commutation relations among themselves! However, we will not require them in these lectures, where

we are concerned mostly with N = 1 SUSY, and ZAB = 0 for the cases where N > 1.

Before discussing representations of the SUSY algebra, note that in the simple model we considered

above, we only allowed global SUSY transformations. However, the algebra itself is completely general,

and now that we have found it we could promote the transformations to local ones, i.e. allow ϵ, ϵ̄ to

vary in space. What we know from gauge theories is that this requires adding a gauge boson; for

kinetic terms to be covariant so that under ϕ→ exp(iα(x)T )ϕ we want

∇µϕ→ exp(iα(x)T )∇µϕ→ ∇µ = ∂µ + iAµ,

where under gauge transformations

Aµ →Aµ −∇µ(αT ) = Aµ − ∂µ(αT )− i[Aµ, αT ]. (3.5)

Now suppose we do this for the Poincaré algebra and make our theory invariant under transformations

such as aµ(x)Pµ; what is the gauge boson? It is a graviton! So if we make our supersymmetry

transformations ϵ, ϵ̄ depend on position, then because {Q,Q} = 2σµPµ we need to make our Poincaré

transformations position invariant and we have a theory of supergravity! Indeed, now we should have

a graviton and a gravitino ...
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3.8 Representations of the SUSY algebra

We are now ready to discuss what possible representations the SUSY algebra can have – or in other

words what sets of particles we will find.

3.8.1 First observations

Firstly, we see that P 2 = PµP
µ is a Casimir of the super-poincaré algebra, because it commutes with

all generators. Now consider an irreducible representation of the SUSY algebra. By this, we mean

that starting from any state in the representation, and acting with Qα, Qα̇, Pµ we generate all elements

of the representation. Since P 2 is a casimir, all elements of this irrep – which we shall refer to as a

“multiplet” – have the same mass.

Next, take the irrep to have some Pµ and consider summing tr[(−1)2SPµ] for all states in the

multiplet, where and the operator S is the spin operator (so half-integer for fermions, and integer for

bosons):

2σµαα̇pµtr(−1)2S =2σµαα̇

∑
i

⟨i|(−1)2SPµ|i⟩

=
∑
i

⟨i|(−1)2S(QαQα̇ +Qα̇Qα)|i⟩

=
∑
i

⟨i|(−1)2SQαQα̇|i⟩+
∑
i,j

⟨i|(−1)2SQα̇|j⟩⟨j|Qα|i⟩

=
∑
i

⟨i|(−1)2SQαQα̇|i⟩+
∑
j

⟨j|Qα(−1)2SQα̇|j⟩

=0.

This shows that in a given multiplet there are an equal number of fermionic and bosonic degrees of

freedom, all having the same mass.

A simple corollary of the above is to consider the vacuum; if it is invariant under SUSY then

Qα|0⟩ = Q̄α̇|0⟩ = 0. Now the energy of the vacuum is the Hamiltonian; therefore

⟨0|H|0⟩ = ⟨0|P0|0⟩ =
1

2
(σ0)α̇α⟨0|(QαQα̇ +Qα̇Qα)|0⟩ = 0. (3.6)

On the other hand, for any state

⟨i|P0|i⟩ =
1

2
(σ0)α̇α⟨i|(QαQα̇ +Qα̇Qα)|i⟩

=
1

2

∑
α

⟨i|(Qα(Qα)
† + (Qα)

†Qα)|i⟩

=
1

2

∑
α

∣∣(Qα)
†|i⟩
∣∣2 + ∣∣Qα|i⟩

∣∣2
≥0. (3.7)
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In particular, this also holds for the vacuum in a theory with spontaneously broken supersymmetry:

if Qα|0⟩ ≠ 0 and/or Qα̇|0⟩ ≠ 0 then we conclude that

⟨0|P0|0⟩ > 0. (3.8)

This means that the potential in such a theory is non-zero. In addition, the same argument can be

used to show that it is not possible to spontaneously break N = 2 SUSY to N = 1 SUSY – but in

that case there is an important loophole, see e.g. the work of Antoniadis, Partouche and Taylor [1].

3.8.2 Massless multiplets

Consider a massless particle in a frame where pµ = (E, 0, 0, E). Consider the algebra

{Qα, Q̄β̇} = 2 (σµ)αβ̇ Pµ = 2E
(
σ0 + σ3

)
αβ̇

= 4E

(
1 0

0 0

)
αβ̇

, (3.9)

which implies that Q2 is zero in the representation:

{Q2, Q̄2̇} = 0 =⇒ ⟨pµ, λ| Q̄2̇Q2 |p̃µ, λ̃⟩ = 0 =⇒ Q2 = 0 (3.10)

where λ is the spin of the particle. TheQ1 satisfy {Q1, Q̄1̇} = 4E, so defining creation- and annihilation

operators a and a† via

a† =
Q1

2
√
E
, a =

Q̄1̇

2
√
E
, (3.11)

we have the anticommutation relations

{a, a†} = 1 , {a, a} = {a†, a†} = 0. (3.12)

Also, since

[J3, Q1] =
1

2
Q1, [J3, Q

2̇
] = −1

2
Q

2̇ → [J3, Q1̇] = −1

2
Q1̇

→ [J3, a
†] =

1

2
a†, [J3, a] = −1

2
a (3.13)

we have

J3
(
a |pµ, λ⟩

)
=
(
[J3, a] + aJ3

)
|pµ, λ⟩ =

(
a J3 − a

2

)
|pµ, λ⟩ =

(
λ− 1

2

)
a |pµ, λ⟩ . (3.14)

a|pµ, λ⟩ has spin λ− 1
2 , and by similar reasoning, find that the spin of a†|pµ, λ⟩ is λ+ 1

2 . To build the

representation, start with a vacuum state of minimum spin λ, let’s call it |Ω⟩. Obviously a|Ω⟩ = 0

(otherwise |Ω⟩ would not have lowest spin) and a†a†|Ω⟩ = 0|Ω⟩ = 0, so the whole multiplet consists of

|Ω⟩ = |pµ, λ⟩ , a† |Ω⟩ = |pµ, λ+ 1
2⟩ . (3.15)
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For any given n, n + 1
2 , because we have only massless fields and therefore only a single chirality

of fermion, we must also add the CPT conjugate states; the conjugate fields have quantum numbers

|pµ,−λ− 1

2
⟩, |pµ,−λ⟩ (3.16)

just by complex conjugation. Since we are discussing massless particles, for the spin 1/2 fermions the

spin and helicity must be the same so we can identify chiral or antichiral fermions easily. For the case

of spin zero particles the two states exchanged by CPT are a single complex scalar and its complex

conjugate.

So we can build up the set of allowed multiplets by starting with λ = 0. We have:

Name λ Lowest state λ+ 1
2 state

Chiral multiplet 0 Complex scalar Chiral fermion

Vector multiplet 1
2 Gaugino Gauge boson

Gravity multiplet 3
2 Gravitino Graviton

In field theory, we can only quantise states with spin up to 1, and so the gravity multiplet is aptly

named. In these lectures we shall therefore be concerned only with chiral and vector multiplets. In

addition, even in gravitational theories we cannot have spins greater than 2 while retaining non-trivial

interactions and a finite number of fields. Finally, it does not seem that the multiplet with n = 1 is

of interest phenomenologically.

Note also that we can define R-charges (under R-symmetry) for our states, and since [R,Q1] =

−Q1, [R,Q]1̇ = −Q1̇ we can add an R-charge to the set of quantum numbers; for any multiplet we

then have R|pµ, λ⟩ = r|pµ, λ⟩ and

Ra†|pµ, λ⟩ = (r − 1)a†|pµ, λ⟩ (3.17)

so we can label our multiplets plus CPT conjugates as

|pµ, λ, r⟩, |pµ, λ+
1

2
, r − 1⟩, |pµ,−λ− 1

2
, 1− r, ⟩, |pµ,−λ,−r⟩. (3.18)

For a chiral multiplet, the R-symmetry is actually a chiral symmetry that rotates all of the fermions,

although we have the freedom to choose their charges; and note that the bosons will have charges

increased by one. However, for a vector multiplet, we require that the spin 1 state must have R-charge

0, because it must be a real field! Hence the gaugino in a vector multiplet must have R-charge 1.

3.8.3 Massive multiplets

In case of m ̸= 0, there are Pµ - eigenvalues pµ = (m, 0, 0, 0). Again, the anticommutation - relation

for Q and Q̄ is the key to get the states:{
Qα , Q̄β̇

}
= 2 (σµ)αβ̇ Pµ = 2m (σ0)αβ̇ = 2m

(
1 0

0 1

)
αβ̇
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Since bothQ’s have nonzero anticommutators with their Q̄ - partner, define two sets of ladder operators

a†1,2 =
Q1,2√
2m

, a1,2 =
Q̄1̇,2̇√
2m

, (3.19)

with anticommutation relations

{ap, a†q} = δpq , {ap, aq} = {a†p, a†q} = 0. (3.20)

Assume that we have some state with spin j3; then we can obtain the rest of the multiplet using

a1 |j3⟩ = |j3 − 1
2⟩ , a†1 |j3⟩ = |j3 + 1

2⟩

a2 |j3⟩ = |j3 + 1
2⟩ , a†2 |j3⟩ = |j3 − 1

2⟩ .

We still define a1, a2 to annihilate the vacuum, but now a†1 raises the spin and a†2 lowers it, so any

given multiplet will contain more than one fermion; but of course because we are considering massive

multiplets spin 1/2 fermions must now have both spins. For the simplest case we can start with a

state with j3 = 0 annihilated by a1,2, and add states with j3 = −1/2, 0, 1/2. We can then impose that

the whole multiplet is invariant under CPT, in which case we have a massive complex scalar and a

massive Majorana fermion, which is therefore non-chiral.

More generally, let us call some given pair of fermion states in a massive multiplet ψ, χ. Since these

fermions must be in the same representation of any gauge group, we can identify the antifield of χ with

an opposite chirality fermion in the conjugate representation, which we can denote χc. We can then

form a non-chiral pair ψ, χc. Of course, this is necessary to give the fermions a Dirac mass; however,

it also has the consequence that the representation is not chiral – so cannot be used to construct the

Standard Model, which is a chiral theory.

3.8.4 N ≥ 2

Following the logic of the previous two subsections, suppose we have more SUSY generators, and again

just consider the massless representations. Now we have two or more raising operators on our vacuum

state: a†I for I = 2 for N = 2 SUSY or 4 for N = 4. The entire logic follows as before, so now we have

for N = 2

Name λ Lowest state λ+ 1
2 state λ+ 1 state

Hypermultiplet −1
2 Chiral fermion 2 Complex scalars Chiral fermion

N = 2 Vector multiplet 0 Complex scalar 2 gauginos Gauge boson

Gravity multiplet 1 Graviphoton 2 Gravitinos Graviton

In particular, the logic is similar for massive multiplets of N = 1: the fermions must always come

in non-chiral pairs. For example, for the hypermultiplet we start with an antichiral state and find a

chiral fermion in the same representation of the gauge group; when we add in the CPT conjugates

of these states we can choose instead to write the multiplet as two N = 1 multiplets in opposite
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representations of the gauge group, which is necessarily non-chiral. Likewise the vector multiplet can

be written as the sum of an N = 1 vector and N = 1 chiral multiplet.

For N = 4, in field theory there is no longer a separation between vector and matter multiplets:

there is only an N = 4 multiplet which contains 1 vector, four fermions of spin 1/2 and three complex

scalars. These can be written as an N = 1 vector multiplet and three chiral multiplets. Since it

contains a vector, they must transform under the adjoint representation of the gauge group.

3.9 ∗Constructing SUSY theories from the supersymmetry algebra

In the previous section we defined the SUSY algebra and showed that only massless representations

of N = 1 supersymmetry are chiral and therefore interesting for phenomenology (with the exception

of N = 2 vector multiplets). From now on we shall restrict ourselves to this case. Here we will learn

how to construct supersymmetric field theories, and in particular we shall stick to the global SUSY

case for now.

3.9.1 Massive Wess-Zumino Model

Let us recall our simple example example model, and let us try to add a mass term. We showed

already that the fermion and boson must have the same mass to sit in the same representation, so let

us add the mass terms

Lnaive mass
?
=− |M |2ϕ∗ϕ− 1

2

[
Mψψ + h.c.

]
. (3.21)

Now look at the SUSY transformation:

δLnaive mass =−
√
2|M |2

[
ϕ∗ϵψ + ϕϵ̄ψ̄

]
+

√
2

[
iMψσµϵ̄∂µϕ− ϵψMF − iM∗ϵσµψ̄∂µϕ

∗ − ϵ̄ψ̄M∗F ∗
]
.

But we have a problem: the SUSY transformations of both ψ and F involve derivatives of the scalars,

so we cannot cancel the first term off! However, a clue as to what we should do is found if we go

on-shell and remove the auxiliary fields again; there we would find (after integrating by parts and

dropping a surface term)

δLnaive mass
F→0→

√
2Mϕϵ̄α̇

[
i(σµ∂µψ)

α̇ −Mψ
α̇
]
+ h.c. (3.22)

which again vanishes on-shell! So maybe we are on the right track but the auxiliary field plays some

role. Now when we go off-shell, let us drop the naive scalar mass, and look at what other renormalisable

terms we could put. We have only ϕF, ϕ2F, their complex conjugates and |F |2. Now we already have

|F |2, but modifying it would give the same problem as for |ϕ|2: the transformation will lead to a term

with F and derivatives of ψ that cannot be cancelled by anything else. Also ϕ2F is dimensionless so

is independent of M . So let us look at

Laux mass =MϕF + h.c. (3.23)
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Then

δLaux mass =
√
2ϵψMF −

√
2iMϕϵ̄σ̄µ∂µψ + h.c.

=
√
2ϵψMF − i

√
2Mψσµϵ̄∂µϕ+ h.c. (3.24)

This exactly cancels the transformation of the fermion term! But what about the scalar mass?

Shouldn’t they be degenerate? To see how this comes about, we now write the lagragnian

Lmassive WZ =∂µϕ∗∂µϕ+ iψσµ∂µψ + F ∗F

+

[
MϕF − 1

2
Mψψ + h.c.

]
. (3.25)

Now look at the equation of motion of the auxiliary:

F ∗ +Mϕ = 0. (3.26)

So if we now integrate out the auxiliary field we find

Lmassive WZ →∂µϕ∗∂µϕ+ iψσµ∂µψ −
(
1

2
Mψψ + h.c.

)
− |M |2|ϕ|2, (3.27)

which contains exactly the mass term we were looking for!

3.9.2 ∗General renormalisable field theory

We can continue this procedure to find all the allowed renormalisable interactions for a theory with

fermions and scalars. To generalise a little, let us consider n chiral multiplets Φi = (ϕi, ψi, Fi). We

can then write the flavour indices for the complex conjugates as raised so Φ∗
i = Φi = (ϕ̄i, ψ̄i, F̄ i). The

SUSY transformations are

δϕi =
√
2ϵψi, δϕ̄i =

√
2ϵ̄ψ̄i,

δψi α = −
√
2i(σµϵ̄)α∂µϕi +

√
2ϵαFi, δψ̄i

α̇ = −
√
2i(ϵσµ)α̇∂µϕ̄

i +
√
2ϵ̄α̇F̄

i,

δFi = −
√
2iϵ̄σ̄µ∂µψi, δF̄ i =

√
2i∂µψ̄

iσ̄µϵ.

(3.28)

Note that the SUSY transformations do not mix the ϕi with the ψ̄i or Fi. This is a consequence of

the need for {Q,Q} to vanish, but it has far-reaching consequences: we will not be able to cancel the

transformations if we try to write down “mixed” terms such as ϕ∗F or ϕ̄ψψ in the lagrangian, so the

interactions are “holomorphic” – we will come back to this later.

For now, having ruled out adding purely scalar terms and non-holomorphic terms to the lagrangian,

let us start by adding fermion masses and Yukawa terms:

Lmass, Yukawa = −1

2
M ijψiψj −

1

2
W ijkϕiψjψk + h.c. (3.29)

We saw previously that the transformations of ψψ were cancelled by a ϕF term; let us now write

Laux =LiFi + cijϕiFj +
1

2
cijkFiϕjϕk + h.c. (3.30)
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The term LiFi has a variation that is just a surface term, so we can retain it. To simplify the check

of the transformations, let us also define

W ij ≡M ij +W ijkϕk, L̃i ≡ Li + cijϕj +
1

2
cijkϕjϕk (3.31)

Now looking at the transformations and using the symmetry of W ij we have

1√
2
(δLmass, Yukawa + δLaux)

=W ij

[
iψiσ

µϵ̄∂µϕj − ϵψiFj

]
− 1

2
W ijk(ϵψi)ψjψk − iLiϵ̄σ̄µ∂µψi + Fi(ϵψj)

∂L̃i

∂ϕj
+ h.c.

=W ij

[
iψiσ

µϵ̄∂µϕj − ϵψjFi

]
+
∂L̃i

∂ϕj

[
− iψiσ

µϵ̄∂µϕj + Fi(ϵψj)

]
− 1

2
W ijk(ϵψi)ψjψk + h.c. (3.32)

from which we conclude that SUSY is preserved if

W ij =
∂L̃i

∂ϕj
(3.33)

and that W ijk is symmetric on exhange of i↔ j ↔ k; clearly for terms with only one fermion flavour

(ϵψi)ψiψi = 0, but if we have the extra symmetry then we can use the identities (??) to show that

W ijk(ϵψi)ψjψk vanishes. This means that we can define

W ≡W 0 +W iϕi +
1

2
W ijϕiϕj +

1

6
W ijkϕiϕjϕk (3.34)

which we shall call the “superpotential,” (the constant termW 0 plays no role in global supersymmetry

so we can set it to zero) and then write

Laux + Lmass, Yukawa =
∂W

∂ϕi
Fi −

1

2

∂2W

∂ϕi∂ϕj
ψiψj . (3.35)

If we then examine what we find for the scalar potential after integrating out the auxiliary fields, we

find

Vscalar =
∑
i

∣∣∣∣∂W∂ϕi
∣∣∣∣2 . (3.36)

3.10 Gauge interactions

The interactions of a vector superfield cannot be described by a superpotential: they are real fields

consisting of a vector Aa
µ and a Weyl spinor λa. The λ is known as the gaugino and its interactions

must be determined by the gauge symmetry! We shall see how to derive them next time, but for now

we can write down the lagrangian:

SV =

∫
d4x

[
1

2g2
DaDa +

i

g2
λ̄σµDµλ− 1

4g2
F a,µνF a

µν +
θ

64π2
ϵµνρκF a

µνF
a
ρκ

]
. (3.37)
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Again we need an auxiliary. Note that the gaugino is in the adjoint representation so

Dµλ =∂µλ+ i[Aµ, λ], λ ≡ λata. (3.38)

The SUSY transformations become

δAµ = −
(
ϵ̄σµλ

a + λ̄σµϵ
)

δλα = − i
2(σ

µσνϵ)α Fµν + ϵα D

δD = i
(
−ϵ̄σµ∇µλ

a +∇µλ̄σ
µϵ
)
.

(3.39)

We can also add supersymmetric interactions between gauge fields and chiral superfields. Super-

symmetry gives us new Yukawa couplings!

=(Dµϕ)
†(Dµϕ) + iψσµD†

µψ̄ + F †F

−
√
2g(ϕ†taλaψ + ψ̄taλ̄aϕ) + gϕ†taDaϕ. (3.40)

4 Superspace

4.1 Superspace basics

At the end of part 1 we showed how to construct supersymmetric field theories using only the SUSY

transformations, that we derived from considering a free theory. In this section we will show how this

can be embedded in the concept of “superspace,” which hugely simplifies constructing and working

with N = 1 SUSY theories (for N ≥ 2 SUSY we can still use N = 1 superspace; but a true N = 2

superspace becomes vastly more complicated).

The first part of this – the derivation of superspace, the construction of superfields in superspace,

and the beginnings of writing down lagrangians in superspace – was covered by Karim in lecture 2. I

give my notes here to have a unified presentation, but the material for lecture 3 will pick up where he

left off.

We start by supposing that we take some function and want to act with a group element of the

SUSY algebra on it. If we just consider the subgroup of translations, then we have the action on a

field as

ϕ(xµ + yµ) =ϕ(xµ) + yν∂νϕ(x
µ) + ...

=exp(yµ∂µ)ϕ(x) ≡ exp(iyµPµ)ϕ(x)

→ Pµ ≡− i∂µ. (4.1)

This is the action of the operator on a state in the Hilbert space. If we extend it to the group operation,

then a transformation on operators acts as

exp(iyµPµ)ϕ(x
µ) exp(−iyµPµ) = ϕ(xµ) + iyµ[Pµ, ϕ(x

µ)] + ... (4.2)
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This rule is universal: the operator ϕ(xµ) acts at xµ, so to find the action at xµ+aµ we translate first

to xµ, act with ϕ, and then translate back to xµ + aµ. Equating the two procedures gives us

Pµϕ(x
µ) =[Pµ, ϕ(x

µ)] = −i∂µϕ(xµ) (4.3)

which gives us our classic representation of Pµ as −i∂µ.
Now to extend this to a supersymmetric transformation, recall that we defined

δϵX ≡ −i[ϵQ+ ϵ̄Q̄,X]. (4.4)

This means that the group element should be

g(y, θ, θ̄, ωµν) = exp i
[
yµPµ − θQ− θ̄Q̄+ ωµνMµν

]
. (4.5)

Now imagine that we apply a supersymmetry transformation to ϕ(xµ). We can use this to define

ϕ as a function of spinor coordinates:

ϕ(xµ, θ, θ̄) ≡g(0, θ, θ̄, 0)ϕ(xµ)g(0,−θ,−θ̄, 0). (4.6)

So now imagine combining two transformations; we expect to recover another member of the group:

g(0, ϵ, ϵ̄, 0)g(0, θ, θ̄, 0) = exp−i
[
ϵQ+ ϵ̄Q̄

]
exp−i

[
θQ+ θ̄Q̄

]
=exp

[
− i(ϵ+ θ)Q− i(ϵ̄+ θ̄)Q− 1

2

(
[ϵQ, θQ] + [ϵ̄Q, θQ]

)]
=exp

[
− i(ϵ+ θ)Q− i(ϵ̄+ θ̄)Q−

(
ϵσµθ̄ − θσµϵ̄

)
Pµ

]
=exp i

[
− (ϵ+ θ)Q− (ϵ̄+ θ̄)Q+ Pµi

(
ϵσµθ̄ − θσµϵ̄

)]
(4.7)

For this we used the Baker-Campbell-Hausdorff formula

expA expB =exp

[
A+B +

∞∑
n=2

1

n!
Cn

]
C2 =[A,B], C3 =

1

2
[A, [A,B]] +

1

2
[B, [B,A]] + ... (4.8)

and the fact that in our case [A,B] commutes with A and B. Then we see that

g(0, ϵ, ϵ̄, 0)g(0, θ, θ̄, 0) = g(i
(
ϵσµθ̄ − θσµϵ̄

)
, θ + ϵ, θ̄ + ϵ̄, 0). (4.9)

If we now consider the action on ϕ then

−i[ϵQ+ ϵ̄Q̄, ϕ(0, θ, θ̄)] =ϕ(i
(
ϵσµθ̄ − θσµϵ̄

)
, θ + ϵ, θ̄ + ϵ̄)− ϕ(0, θ, θ̄)

=

[
i
(
ϵσµθ̄ + ϵ̄σµθ)∂µ + ϵα

∂

∂θα
+ ϵ̄α̇

∂

∂θ̄α̇

]
ϕ(0, θ, θ̄) ≡ −i(ϵQ+ ϵ̄Q̄)ϕ (4.10)
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and therefore when we promote ϕ to a superfield we can write teh generators as

Qα =i
∂

∂θα
− (σµθ̄)α∂µ (4.11)

Q̄α̇ =i
∂

∂θ̄α̇
− (σµθ)α̇∂µ → Q̄α̇ = −i ∂

∂θ̄α̇
+ (θσµ)α̇∂µ. (4.12)

Now we can define Minkowski space as the coset of the Poincaré group divided by the Lorentz group:

the translations then become all of spacetime by the map

xµ → exp(−ixµPµ). (4.13)

Similarly we can imagine taking the coset of all of the supertransformations divided by the Lorentz

group to get a “superspace”. This would have space and spinor coordinates as we have considered

above. We can then define differentiation and integration over these Grassmann coordinates as we

shall describe below.

4.1.1 Grassmann coordinates

Imagine that we now treat the θα like anticommuting coordinates of spacetime. They obey

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄α̇} = 0 (4.14)

and so, since each has two components, any product of three or more vanishes:

θαθβθγ = 0. (4.15)

This means that any function can be expanded exactly :

S(x, θ, θ̄) = a+ θξ + θ̄χ̄+ θθb+ θ̄θ̄c+ θσµθ̄vµ + θ̄θ̄θη + θθθ̄ζ̄ + θθθ̄θ̄d, (4.16)

where all of the coefficients are functions of xµ. Other consequences are that we can write (recalling

ϵ12 = 1 = −ϵ12):

θθ = θαθα

= ϵαβθ
αθβ

= 2ϵ12θ
1θ2

= −2θ1θ2

= −2θ1θ2

θ̄θ̄ = θ̄α̇θ̄
α̇

= ϵα̇β̇θ
β̇
θ
α̇

= 2ϵ2̇1̇θ
1
θ
2

= 2θ
1̇
θ
2̇

= 2θ1̇θ2̇

(4.17)

and

θαθβ = ϵαβθ1θ2

= −1
2ϵ

αβ(θθ)

θαθβ = −ϵαβθ1θ2
= 1

2ϵαβ(θθ)

θ
α̇
θ
β̇
= ϵα̇β̇θ

1̇
θ
2̇

= 1
2ϵ

α̇β̇(θθ)

θα̇θβ̇ = −ϵα̇β̇ θ̄1θ̄2
= −1

2ϵα̇β̇(θ̄θ̄).

12



We can define differentiation easily enough:

∂

∂θβ
(θα) = δαβ ,

∂

∂θ̄β̇

(
θ̄α̇
)
= δα̇

β̇

∂

∂θβ
(θα) = δβα,

∂

∂θ̄β̇

(
θ̄α̇
)
= δβ̇α̇ (4.18)

which leads to, using ϵαβϵ
βγ = δγα:

δαβ =
∂

∂θβ
(ϵαγθγ) → ϵδβ =

∂

∂θβ
(θδ) → δαδ = −ϵαβ ∂

∂θβ
(θδ)

→ ∂

∂θα
=− ϵαβ

∂

∂θβ
. (4.19)

and we require

{ ∂

∂θα
,
∂

∂θβ
} =0

∂

∂θα
(AB) =

∂A

∂θα
B + (−1)FAA

∂B

∂θα
(4.20)

where FA is 1 if A is fermionic and 0 if A is a bosonic operator. Then for example

∂

∂θ̄β̇
(θ̄α̇θ̄

α̇) =2θ̄β̇

∂

∂θ̄β̇
(θ̄α̇θ̄

α̇) =− ∂

∂θ̄β̇
(θ̄α̇θ̄α̇) = −2θ̄β̇ = −2ϵβ̇α̇θ̄

α̇

→ ∂

∂θ̄β̇
=− ϵβ̇α̇

∂

∂θ̄α̇
. (4.21)

Similarly

∂

∂θ̄α̇
∂

∂θ̄α̇
(θ̄θ̄) =4 → ∂

∂θ̄α̇
∂

∂θ̄α̇
≡ 4

∂

∂θ̄2

∂

∂θα

∂

∂θα
(θθ) =4 → ∂

∂θα

∂

∂θα
≡ 4

∂

∂θ2
. (4.22)

Now we can define integration on superspace. The rule that we want to preserve is that surface

elements should integrate to zero; then consider just the integral over one variable∫
dθ
∂f

∂θ
= 0. (4.23)

But then a function of this variable is f(θ) = f0 + f1θ and ∂f
∂θ = f1, so we must have∫

dθ = 0. (4.24)

So then we should define the integral of θ; we do not want the integral to be trivial, and since dθθ is

bosonic it must be a number, so we take ∫
dθ θ = 1. (4.25)
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Now we can define the “volume element” for two variables by insisting

1 =

∫
d2θ θθ =

1

2

∫
dθ1dθ2 (2θ2θ1)

→ d2θ =
1

2
dθ1dθ2 = −1

4
dθαdθβϵαβ

1 =

∫
d2θ̄ θ̄θ̄ = −1

2

∫
dθ̄1̇dθ̄2̇(2θ̄2̇θ̄1̇)

→ d2θ̄ =− 1

4
dθ̄α̇dθ̄β̇ϵ

α̇β̇. (4.26)

4.1.2 Superderivatives

We already gave the definitions of the SUSY generators in terms of Grassmann coordinates. We can

use them to derive the transformations of a general superfield by identifying

−i[ϵQ+ ϵ̄Q̄, S(xµ, θ, θ̄)] =δS. (4.27)

It is an instructive if mechanical exercise to do this.

But since we have expanded spacetime to superspace, and the algebra mixes SUSY generators

with the momentum operators, we might expect that SUSY derivatives are not covariant:

g(xµ, ξ, ξ̄, 0)
∂

∂θα
g(xµ,−ξ,−ξ̄, 0) ̸= ∂

∂(θα + ξα)
=

∂

∂θα
. (4.28)

Among other consequences, this means that ∂αS is not a superfield, i.e. we cannot expand it as in

equation (4.16). What we need is a covariant derivative

{Dα, Qβ} = {Dα̇, Qβ} = 0. (4.29)

We can check that these are given by

Dα =
∂

∂θα
− iσµαα̇θ

α̇
∂µ, Dα = − ∂

∂θα
+ iθ̄α̇σµα̇α∂µ,

Dα̇ = − ∂

∂θ
α̇
+ iθασµαα̇∂µ, D

α̇
=

∂

∂θα̇
− iσµα̇αθ

α∂µ. (4.30)

This gives

{Dα, Dβ} =0

{Dα, D̄α̇} =2iσµαα̇∂µ. (4.31)

We can then use these to construct new superfields DαS,Dα̇S ... and acting with more derivatives.

We shall do this below, but first we note some important identities:

DαDβDγ =0, Dα̇Dβ̇Dγ̇ = 0 (4.32)
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follow from the anticommutation and that they have two indices. Then∫
d2θDα(S) = −iσµαα̇θ

α̇
∫
d2θ∂µ(S) (4.33)

for any superfield S, and similarly for
∫
d2θ̄Dα̇(S). Then we have a total derivative which vanishes

once we integrate over d4x. Consider also∫
d4xd2θD

2
(S) =

∫
d4xd2θϵα̇β̇

∂

∂θ̄α̇
∂

∂θ̄β̇
(S)

=

∫
d4xd2θ2

∂

∂θ̄1
∂

∂θ̄2
(S)

=− 4

∫
d4xd2θ

∂

∂θ̄2
(S)

=− 4

∫
d4xd2θd2θ̄S. (4.34)

4.1.3 Chiral superfields

In the previous subsections we gave the expression for a general superfield. However, if we count the

components there are too many for it to represent either a chiral or vector multiplet:

S(x, θ, θ̄) = a+ θξ + θ̄χ̄+ θθb+ θ̄θ̄c+ θσµθ̄vµ + θ̄θ̄θη + θθθ̄ζ̄ + θθθ̄θ̄d,

It is therefore a reducible representation of SUSY. So in order to construct a field that represents

theories that we are interested in we should impose some constraints upon it. To find matter fields,

we want a chiral multiplet: i.e. we want to remove three of the four fermions and vµ. The simplest

thing that we can try is

Dα̇S =0

=��χα̇ +���2θ̄α̇c+ (θσµ)α̇vµ +����
2θ̄α̇(θη) + ζ̄α̇θ

2 + 2θ2θ̄α̇d

+ i(θσµ)α̇∂µ

[
a+ θξ +��̄θχ̄+ θσν θ̄vν +��θ̄θ̄c+�

��θ̄θ̄θη

]
︸ ︷︷ ︸

=i(θσµ)α̇∂µa− i
2
θθ(ξσµ)α̇+

i
2
θ2ϵα̇γ̇(σ

µσν)γ̇
β̇
θ̄β̇∂µvν

. (4.35)

Simply by looking at unmatched terms we immediately set

χα̇ = 0, c = 0, η = 0. (4.36)

We can then also write the set of equations

0 =vµ + i∂µa

=ζ̄α̇ − i

2
(∂µξσ

µ)α̇

=2θ̄α̇d+
i

2
ϵα̇γ̇(σ

µσν)γ̇
β̇
θ̄β̇∂µvν . (4.37)
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Which therefore leads to

0 =2θ̄α̇d+
1

2
ϵα̇γ̇(σ

µσν)γ̇
β̇
θ̄β̇∂µ∂

µa

=2d+
1

2
∂µ∂

µa. (4.38)

We can then write Φ for the new superfield, and renaming a→ ϕ, ξ →
√
2ψ, b→ F we have:

Φ =ϕ+
√
2(θψ) + θθF − iθσµθ̄∂µϕ− i√

2
θθ(θ̄σµ∂µψ)−

1

4
θθθ̄θ̄∂µ∂

µϕ. (4.39)

This has exactly the correct number of components for a chiral superfield including the auxiliary F !

Then to find an antichiral superfield we need only DαΦ = 0, and find

Φ =ϕ+
√
2(θ̄ψ̄) + θ̄θ̄F + iθσµθ̄∂µϕ− i√

2
θ̄θ̄(θσµ∂µψ)−

1

4
θθθ̄θ̄∂µ∂

µϕ. (4.40)

In fact, there is a simple way of finding the above expansion if we start from the constraintDα̇Φ = 0

and observe that

yµ ≡xµ − iθσµθ̄

Dα̇y
µ =0. (4.41)

This implies that if we write a function in terms of yµ, θ, θ̄ then(
∂

∂θα
f(yµ, θ, θ̄)

)
xµ,θ̄

=
∂

∂θα
f(xµ − iθσµθ̄, θ, θ̄)

=

(
∂

∂θα
f(yµ, θ, θ̄)

)
yµ,θ̄

− i(σµθ̄)α

(
∂

∂yµ
f(yµ, θ, θ̄)

)
θ,θ̄

. (4.42)

Similarly, (
∂

∂θ̄α̇
f(yµ, θ, θ̄)

)
xµ,θ

=
∂

∂θ̄α̇
f(xµ − iθσµθ̄, θ, θ̄)

=

(
∂

∂θ̄α̇
f(yµ, θ, θ̄)

)
yµ,θ̄

+ i(θσµ)α̇

(
∂

∂yµ
f(yµ, θ, θ̄)

)
θ,θ̄

. (4.43)

This means that we can write

Dα̇ =− ∂

∂θ̄α̇
+ i(θσµ)α̇

∂

∂xµ
=

(
− ∂

∂θ̄α̇

)
yµ,θ

Dα =
∂

∂θα̇
− i(σµθ̄)α

∂

∂xµ
=

∂

∂θα
− 2i(σµθ̄)α

∂

∂yµ
. (4.44)

Hence the constraint DαΦ = 0 implies that Φ(y, θ, θ̄) has no θ̄ components, so

Φ(y, θ, θ̄) =ϕ(y) +
√
2θψ(y) + θθF (y). (4.45)

Expanding out in y gives exactly the expression we found above. For the antichiral superfield we can

use yµ = xµ + iθσµθ̄ and swap the roles of Dα̇, Dα.
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4.1.4 Real superfields

Having constructed the superfield for an off-shell chiral multiplet, we can now look at doing the same

for the vector superfield. We start again from the general superfield

S(x, θ, θ̄) = a+ θξ + θ̄χ̄+ θθb+ θ̄θ̄c+ θσµθ̄vµ + θ̄θ̄θη + θθθ̄ζ̄ + θθθ̄θ̄d,

and notice that now we want to keep the vector; but in the above it is a complex vector. We also

want to remove three of the four scalars and fermions (we need to keep one of the scalars which shall

become another auxiliary). To get a real vector, we can impose that the whole superfield be real; we

define it to be a “vector superfield” with V = V ∗:

a = a∗, χ = ξ, c = b∗, vµ = v∗µ, ζ = η, d = d∗. (4.46)

It is also convenient and traditional to define:

ηα = λα − i

2
(σµ∂µξ̄)α, vµ = Aµ, d =

1

2
D − 1

4
∂µ∂

µa. (4.47)

The component expansion of the vector superfield is then

V (x, θ, θ†) = a+ θξ + θ̄ξ̄ + θθb+ θ̄θ̄b∗ + θσµθ̄Aµ + θ̄θ̄θ(λ− i

2
σµ∂µξ̄)

+θθθ̄(λ̄− i

2
σµ∂µξ) + θθθ̄θ̄(

1

2
D − 1

4
∂µ∂

µa). (4.48)

If we want Aµ to have canonical mass dimension 1, then since θ has dimension −1/2 we need V to be

dimensionless. So then the dimensions of a, b, ξ, λ,D are 0, 1, 1/2, 3/2, 2. This means that only λ can

be the fermion of our vector multiplet, and D is an auxiliary field that can have a lagrangian

L ⊃ 1

2
D2.

Suppose we have a U(1) gauge field; then we can write the free lagrangian

Lgauge =− 1

4
FµνF

µν + iλσµ∂µλ+
1

2
D2 (4.49)

So what to do with the remaining terms? If we had a massive vector field, then we would need

one real scalar and an extra fermion; we could potentially write a mass term∫
d4θm2V 2 ⊃ m2

[
1

2
AµA

µ − (λξ)− (λ̄ξ̄) + 2|b|2
]
, (4.50)

where we used the identity

(θσµθ̄)(θσν θ̄) =
1

2
ηµνθθθ̄θ̄. (4.51)

While a could clearly play the role of the real scalar, and ξ can then give a mass to the gaugino

λ, we expect that b should be “supergauged” away; and indeed a and ξ should be removed for a
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massless gauge field. On the other hand, suppose that we broke the gauge symmetry without breaking

supersymmetry, by giving an expectation value to some scalar. We should equivalently be able to write

mass terms

L ⊃ 1

2
(mAµ − ∂µω)

2 −m(λψ)−m(λ̄ψ̄) (4.52)

for some scalar ω and fermion ψ. These “matter” fields should sit inside a chiral multiplet, and since

only the real scalar appears, we conclude that we can make the “supergauge transformation”:

V → V +
i

2
(Ω∗ − Ω), (4.53)

where Ω is a chiral superfield gauge transformation parameter, Ω = ϕ +
√
2θψ + θθF + . . .. In

components, this transformation is

a → a+
i

2
(ϕ∗ − ϕ), (4.54)

ξα → ξα − i√
2
ψα, (4.55)

b → b− i

2
F, (4.56)

Aµ → Aµ − ∂µ
1

2
(ϕ+ ϕ∗), (4.57)

λα → λα, (4.58)

D → D. (4.59)

In particular, supergauge transformations can eliminate the auxiliary fields a, ξα, and b completely.

A superspace Lagrangian for a vector superfield must be invariant under the supergauge transformation

eq. (4.53) in the Abelian case, or a suitable generalization given below for the non-Abelian case. After

making a supergauge transformation to eliminate a, ξ, and b, the vector superfield is said to be in

Wess-Zumino gauge, and is simply given by

VWZ gauge = θσµθ̄Aµ + θ̄θ̄θλ+ θθθ̄λ̄+
1

2
θθθ̄θ̄D. (4.60)

The restriction of the vector superfield to Wess-Zumino gauge is not consistent with the linear super-

space version of supersymmetry transformations. However, a supergauge transformation can always

restore δϵ(VWZ gauge) to Wess-Zumino gauge. Adopting Wess-Zumino gauge is equivalent to partially

fixing the supergauge, while still maintaining the full freedom to do ordinary gauge transformations.

Because of its simplicity, the Wess-Zumino gauge is extremely useful. In particular, we note that

V 2 =
1

2
θθθ̄θ̄AµAµ, V n>2 = 0. (4.61)

These will be very helpful when we consider non-abelian theories, but also gauge interactions even in

the abelian case.
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4.1.5 Other types of superfields

Before passing on to the construction of Lagrangians, we remark that we have not exhausted the

possible sets of superfields – just those that are the most important ones for phenomenology, because

they describe chiral and vector multiplets. However, there are other types of superfield that are of

interest.

• Linear superfields L; we impose D2L = 0 and L = L (or equivalently D2L = D
2
L = 0). We can

write the expansion as

L = L+
√
2θl +

√
2θ̄l̄ − iθσµθ̄jµ − i√

2
θθ(θ̄σµ∂µl)−

i√
2
θ̄θ̄(θσµ∂µ l̄)−

1

4
θθθ̄θ̄∂µ∂

µL.

It therefore contains a real component L, a current satisfying ∂µjµ = 0 and a fermion l. The

reality condition means that it cannot carry a complex representation of a gauge group, but the

presence of a current means we can use it as a gauge current; it is also useful in Supergravity

where we write jµ = ∂µa for an axion field a.

• We can also give multiplets Lorentz indices and have e.g. fermionic multiplets. The best example

is the Ferrara-Zumino multiplet Jαα̇ which is a real multiplet satisfying in addition D
α̇Jαα̇ =

DαX for X a chiral multiplet. This multiplet contains both the stress-energy tensor Tµν and the

supercurrent Sµα.

4.2 Lagrangians for chiral superfields from superspace

We already derived the general lagrangian for chiral superfields, which we found was given by the

kinetic terms and a superpotential. The interaction terms were all holomorphic, in that they consisted

only of scalars ϕi, fermions ψi and auxiliaries Fi not mixing with their hermitian conjugates. Moreover,

since we are interested in renormalisable terms, the interactions of the chiral superfields did not have

any derivatives (we will treat gauge interactions in the next subsection).

We ought to recover this structure when we enlarge spacetime to superspace. Naively we expect

that the lagrangian should be given as the integration of some function, say K, over all of superspace:

SK =

∫
d4x

∫
d2θd2θ̄ K (4.62)

Here K must be a real function of the chiral superfields. The first question we should ask is, is this

really invariant under SUSY? We can show that it is, by considering K as a general real superfield

and writing

K =...+ θθ
[
K
]
θθ

+ θ̄θ̄
[
K
]
θ̄θ̄

+ ...+ θθθ̄θ̄
[
K
]
θθθ̄θ̄

→ SK =

∫
d4x
[
K
]
θθθ̄θ̄

. (4.63)

Now, because
[
K
]
θθθ̄θ̄

is the top component, when we act with the SUSY generators upon K we find:

δ
[
K
]
θθθ̄θ̄

=− (ξσµθ̄)∂µ
[
K
]
θθθ̄

− (ξ̄σµθ)∂µ
[
K
]
θ̄θ̄θ

(4.64)
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which is a total derivative.

Next, we realise that since θ, θ̄ must have mass dimension of −1/2 and dθ has dimension 1/2, this

means that [K] has dimension 2, and so if we want to stick to only renormalisable interactions this

means we can only have one or two chiral superfields.

However, notice that if Φi,Φj are both chiral superfields, then

Dα̇(ΦiΦj) = 0 → ΦiΦj is a chiral superfield. (4.65)

In particular, any product of chiral superfields must have the form

∏
i

Φi =
∏
i

ϕi +
√
2θ
[
f j2 (ϕi)ψj

]
+ θθf3(ϕi, Fi) + ...− 1

4
θθθ̄θ̄∂µ∂

µ

(∏
i

ϕi

)
. (4.66)

This means that if we were to construct K out of only chiral superfields, we would get∫
d4x

∫
d4θ

∏
Φi = −1

4

∫
d4x∂µ∂

µ

(∏
i

ϕi

)
= 0. (4.67)

Hence the function K should be built from both chiral and antichiral superfields – so this cannot give

us our superpotential. This means that for a renormalisable lagrangian the only term we can write is

Φ∗iΦj =...+ θθθ̄θ̄
[
F ∗iFj +

1

2
∂µϕ∗i∂µϕj −

1

4
ϕ∗i∂µ∂µϕj −

1

4
ϕj∂

µ∂µϕ
∗i +

i

2
ψ̄iσµ∂µψj +

i

2
ψjσ

µ∂µψ̄
i
]
.

(4.68)

This is exactly what we need for our free lagrangian! We can therefore write

K =Kj
iΦ

∗iΦj . (4.69)

If we work in a diagonal basis then we write K = Φ∗iΦi and identify terms up to integration by parts

we find

SK =

∫
d4x

∫
d4θΦ∗iΦi = F ∗iFi + ∂µϕ∗i∂µϕi + iψ̄iσµ∂µψi. (4.70)

We still need to find our interaction terms. Recall that we found that our interactions involved

only holomorphic terms and antiholomorphic terms, that is there were no terms mixing terms from

the chiral superfields with those from the complex conjugates. Note that our superpotential was a

function of mass dimension 3. So let us now consider integrating over half of superspace, and including

the hermitian conjugate:

SW ≡
∫
d4x

[ ∫
d2θ W (Φi)

]
θ̄=0

+ h.c. =

∫
d4x
[
W
]
θθ

+ h.c. (4.71)

Note that since we need the result to be independent of the Grassman parameters we need to set θ̄ = 0

in the first part. Often in references or textbooks this is not emphasised – and indeed in the following

we shall be sloppy and often drop it; other references use a variant of
[
W
]
θθ
, such as

[
W
]
F
.
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Now if W is a function of only chiral superfields, we can apply the same reasoning as before to

show that it is invariant under SUSY, because δ[W ]θθ must be a total derivative:

δ[W ]θθ =− iξα̇[W ]θθθ̄α̇ + total derivative (4.72)

but for a chiral superfield [W ]θθθ̄α̇ = i
2σα̇α∂µ[W ]θα which is also a total derivative.

Furthermore, if we write our superpotential as a function of superfields now then

W (Φi) ≡W 0 +W iΦi +
1

2
W ijΦiΦj +

1

6
W ijkΦiΦjΦk (4.73)

then, using

Φi =ϕi +
√
2θψi + θθFi

θψiθψj =− θαθβψi,αψj,β =
1

2
ϵαβθθψi,αψj,β = −1

2
θθ(ψiψj), (4.74)

we find [
W
]
θθ

=
∂W

∂ϕi
Fi −

1

2

∂2W

∂ϕi∂ϕj
ψiψj , (4.75)

which was exactly the set of interaction terms we wanted!

In summary, a renormalisable theory of chiral superfields is specified entirely by

S = SK + SW =

∫
d4x

∫
d4θKj

iΦ
i
Φj +

[ ∫
d2θW (Φi) + h.c.

]
. (4.76)

4.3 Supergauge interactions

Suppose that we now want to gauge some global symmetry of the Φi,Φ
∗i fields, which can now be

either abelian or non-abelian. For the scalars and fermions, we must have transformations ϕ →
eiω

aTa(R)ϕ, ψ → eiω
aTa(R)ψ where T a(R) are the generator matrices of the representation R. This

must translate to a superfield transformation of Φ → eiΩ
aTa(R)Φ; let us define Ω ≡ ΩaT a so then e.g.

Φ → Φe−iΩ where we now require Ω ≡ Ω† in gauge space. But when we consider that our gauge

field transforms (for a U(1)) as V → V + i
2(Ω − Ω) we see that our supergauge rotation has become

complex and thus our kinetic term ΦΦ is no longer supergauge invariant. We also must find a way to

obtain the covariant derivative for matter fields of

[∇µ(ϕ)]i =∂µϕi + iAa
µ(T

a) j
i ϕj . (4.77)

However, for a U(1) transformation we see that, defining Ṽ ≡ 2V Q, we find that

SK,G =

∫
d4x

∫
d4θΦeṼ Φ (4.78)
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is supergauge invariant. Notice that we can write this because V is dimensionless. So when we write

a non-abelian gauge transformation we define Ṽ ≡ 2V aT a(R) and we require that the supergauge

transformation should become

eṼ →eiΩeṼ e−iΩ (4.79)

(because e−iΩeiΩ = 1 etc). Recalling that V n>2 = 0 in Wess-Zumino gauge, we can then solve for an

infinitesimal transformation to be first order in Ω, so that using the Baker-Campell-Hausdorff formula

we find

eiΩeṼ e−iΩ =exp(iΩ) exp

(
Ṽ − iΩ+

1

2
[Ṽ ,−iΩ] + 1

2
[Ṽ , [Ṽ ,−iΩ]]

)
+O(Ω2)

= exp

(
Ṽ + i(Ω− Ω)− 1

2
[Ṽ , iΩ] +

1

12
[Ṽ , [Ṽ ,−iΩ]] + 1

2
[iΩ, Ṽ ] +

1

12
[Ṽ , [Ṽ , iΩ]]

)
+O(Ω2)

δṼ =i(Ω− Ω)− i

2
[Ṽ ,Ω+ Ω]− i

12
[Ṽ , [Ṽ ,Ω− Ω]]. (4.80)

Most pertinently this gives exactly

δAµ =− ∂µ
1

2
(ω + ω)− i

2
[Aµ, (ω + ω)], δλ = − i

2
[λ, ω + ω]

δ(D − 1

2
∂µ∂

µa) =− i

2
[D,ω + ω]− i

6
ηµν [Aµ, [Aν , ω − ω]] (4.81)

which is what we need when we define Aµ ≡ Aa
µT

a etc. Of particular interest is the final term for the

D-term transformation, which shows that a transformation with an imaginary component of ω takes

us away from the Wess-Zumino gauge.

Finally we can write down the gauge interactions by expanding out the terms and integrating over

superspace:

SK,G =F
i
Fi +∇µϕ

i∇µϕi + iψ
i
σµ∇µψi −

√
2(ϕT aψ)λa −

√
2λ(ψT aϕ)

+ (ϕT aϕ)Da. (4.82)

The final term is very important phenomenologically. When we combine it with the auxiliary field

action that we need to make the gauge kinetic terms supersymmetrically invariant off-shell (that we

shall also find in the following section):

Laux ⊃ 1

2g2
(Da)2 (4.83)

and integrate out the auxiliary fields we find the “D-term potential”

VD =
g2

2

(∑
i

ϕ
i
T aϕi

)2

. (4.84)

Hence the scalar potential of a supersymmetric theory consists of the combination of the F-term and

D-term potentials.
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4.4 Lagrangians for vector superfields

4.4.1 U(1)

Since the vector superfield is dimensionless, we cannot follow the same argument as for chiral super-

fields. Moreover, the kinetic term for a gauge field is given by

Lgauge =− 1

4g2
FµνF

µν . (4.85)

However, the curvature is not present in the vector superfield – we need to add two derivatives. But we

cannot write the kinetic term involving just the vector superfield and spacetime derivatives, because

then we would never find the gaugino kinetic term. So instead we need to consider superderivatives.

If we write the kinetic term as an integral over all of superspace, then it should involve two vector

superfields and four superspace derivatives; a reasonable guess is then∫
d4θ

(
Dα̇D

αV
) (
D

α̇
DαV

)
. (4.86)

However, we showed that
∫
d4θS = −1

4

∫
d2θD

2
S and, because D

3
= 0 this is equivalent to∫

d2θ
(
D

2
DαV

)(
D

2
DαV

)
. (4.87)

This is the square of a (fermionic) chiral superfield! It is conventional to include a factor of −1
4 , so we

define:

Wα ≡ −1

4
DDDαV, W α̇ ≡ −1

4
DDDα̇V. (4.88)

Note that they have mass dimension 3/2. Interestingly they are supergauge invariant, which we can

see by

Wα → −1

4
DDDα

[
V +

i

2
(Ω∗ − Ω)

]
= Wα +

i

8
DDDαΩ

= Wα − i

8
D

β̇{
Dβ̇, Dα

}
Ω

= Wα +
1

4
σµ
αβ̇
∂µD

β̇
Ω

= Wα. (4.89)

This means that we can work out its component expression in the Wess-Zumino gauge without loss of

generality. It is also consistent with containing the field strength Fµν = ∂µAν − ∂νAµ, which is gauge

invariant for a U(1) field.

To see how it looks in components, we write V in Wess-Zumino gauge as a function of yµ, θ, θ̄ so

that

V (yµ, θ, θ̄) = θσµθ̄Aµ(y) + θ̄θ̄θλ(y) + θθθ̄λ̄(y) +
1

2
θθθ̄θ̄ [D(y) + i∂µA

µ(y)] . (4.90)
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Then we have

Wα =
1

4

∂

∂θ̄α̇
∂

∂θ̄α̇

(
∂

∂θα
− 2i(σµθ̄)α

∂

∂yµ

)
V

=
∂

∂θ̄2

[
∂

∂θα

(
θ̄θ̄θλ(y) +

1

2
θθθ̄θ̄ [D(y) + i∂µA

µ(y)]

)
− 2i(σν θ̄)α

∂

∂yν

(
θσµθ̄Aµ(y) + θθθ̄λ̄(y)

)]
=λα + θα [D(y) + i∂µA

µ(y)] + iθθ(σν∂ν λ̄)α + iθβσµ
ββ̇
σναα̇ϵ

α̇β̇∂νAµ

=λα + θαD(y) + i
[
ηµνδβα − 1

2
(σνσµ) β

α

]
θβ∂νAµ

=λα + θαD − i

2
(σµσνθ)αFµν + iθθ(σµ∂µλ̄)α = λα + θαD − (σµνθ)αFµν + iθθ(σµ∂µλ̄)α, (4.91)

where we used and similarly

W α̇ =λ̄α̇ + θ̄α̇D +
i

2
(σµσν θ̄)α̇Fµν + iθ̄θ̄(σµ∂µλ)

α̇, (4.92)

where these are functions of yµ and y∗µ respectively; if we are looking at the lagrangian term integrated

over half of superspace then we can then simply replace yµ → xµ, y∗µ → xµ because the differences

with yµ, y∗µ contain respectively θ̄ and θ which vanish.

Now we can easily write down the kinetic terms from the lagrangian, although we need:

ϵαγ(σµν) β
γ θβ(σ

ρκ) δ
α θδ =

1

2
θθ tr

(
σ2σµνσ2(σρκ)T

)
=− 1

2
θθ tr

(
σµνσρκ

)
=
1

4
θθ

(
− (ηµρηνκ − ηµκηνρ) + iϵµνρκ

)
(4.93)

where we define

ϵ0123 = 1, ϵ0123 = −1, (4.94)

and we find

[WαWα]θθ = D2 + 2iλσµ∂µλ̄− 1

2
FµνFµν +

i

4
ϵµνρσFµνFρσ, (4.95)

where now all fields on the right side are functions of xµ. In order to obtain the correct normalisation

of the gauge kinetic term we then write

SV ≡
∫
d4x

1

4
[WαWα]θθ + c.c. =

∫
d4x

[
1

2
D2 + iλ̄σµ∂µλ− 1

4
FµνFµν

]
. (4.96)

On the other hand, it is often useful to write the gauge coupling as a prefactor for the kinetic term,

replacing the 1
4 → 1

4g2
. In a supersymmetric theory there is no reason that this parameter should not

be a complex number; in fact we can define

τ ≡ 1

g2
− i

θ

8π2
(4.97)
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and write

SV →
∫
d4x

1

4
[τWαWα]θθ + c.c. =

∫
d4x

[
1

2g2
D2 +

i

g2
λ̄σµ∂µλ− 1

4g2
FµνFµν +

θ

64π2
ϵµνρκFµνFρκ

]
.

(4.98)

Thus the θ angle is automatically packaged with the gauge coupling!

Finally, before we move on, we note that there is an additional “Fayet-Iliopoulos” term that we

can write in the action for a U(1) gauge field only: we can put

LFI ≡
∫
d4θ2ξV = ξD. (4.99)

This is supergauge invariant because the integral of a chiral or antichiral superfield over all of super-

space vanishes; for a non-abelian gauge field (as we shall see) this is no longer true. However, it has

important phenomenology for the U(1) case, and modifies the D-term potential to

VD =
1

2
g2
(
ϕ
i
Qϕi + ξ

)2
(4.100)

where Q is now the charge operator for the U(1).

4.4.2 Non-abelian case

For a non-abelian gauge group we will need the additional terms in the field strength and under gauge

transformations ω, using Aa
µ = Aa

µT
a, ω = ωaT a(R):

Fµν =∂µAν − ∂νAµ + i[Aµ, Aν ]

δAµ =− ∂µω − i[Aµ, ω]. (4.101)

We shall treat Aµ, ω as gauge objects; to write the above out in components we can take generators

of the gauge group in representation R to be T a(R) and then

[Aµ, ω]
a =ifabcAb

µω
c, [∇µ(X)]a =

[
∂µX + i[A,X]

]a
= ∂µX

a − fabcAbXc. (4.102)

We shall also work in the basis where the kinetic term of the gauge field is given by

Lgauge =− 1

4g2
F a
µνF

aµν = − 1

2g2
tr(FµνF

µν) (4.103)

where on the right we assume the generators to be normalised to 1/2. To change to the canonical basis

without the g2 factor in the denominator we simply replace V → gV everywhere. Now the gaugino

should be in the adjoint representation of the gauge group, so it must have kinetic term

Lgaugino =
i

g2
λ̄σµ∇µλ, ∇µλ = ∂µλ+ i[Aµ, λ]. (4.104)
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To obtain these from superspace, we need to find a quantity that is invariant under the supergauge

transformation eṼ → eiΩeṼ e−iΩ that reduces to −1
4D

2
DαV for the abelian case. To do this, we can

take advantage of Dα̇Ω = 0 and

e−Ṽ → eiΩe−Ṽ e−iΩ (4.105)

so D
2
e−Ṽ → eiΩD

2
e−Ṽ e−iΩ; therefore

Wα ≡ −1

8
D

2
(
e−ṼDαe

Ṽ

)
, W α̇ ≡ 1

8
D2

(
eṼDα̇e

−Ṽ

)
(4.106)

and

Wα →− 1

8
eiΩD

2
(
e−ṼDα(e

Ṽ e−iΩ)

)
=− 1

4
eiΩD

2
(
e−ṼDαe

Ṽ

)
e−iΩ − 1

4
eiΩD

2
Dαe

−iΩ

=eiΩWαe
−iΩ. (4.107)

Then we find

Wα = −1

8
D

2
(
DαṼ − [Ṽ , DαṼ ] + ...

)
(4.108)

which truncates to these terms in the Wess-Zumino gauge. Writing again in terms of the variable y

and θ, we see that the [A,A] term comes from

Wα ⊃− 1

2

∂

∂θ̄2

(
[θσµθ̄2Aµ, (σ

ν θ̄)α2Aν ]

)
=− (σνσµθ)α[Aµ, Aν ] (4.109)

which, when we write Wα = 2W a
αT

a we have

W a
α ⊃ i

2
(σµσνθ)αf

abcAb
µA

c
ν , (4.110)

and thus we have

W a
α =λaα + θαD

a − (σµνθ)αFµν + iθθ(σµ∇µλ
a
)α, (4.111)

SV =

∫
d4x

1

4
[τWa,αWa,α] + c.c.

=

∫
d4x

[
1

2g2
DaDa +

i

g2
λ̄σµ∂µλ− 1

4g2
F a,µνF a

µν +
θ

64π2
ϵµνρκF a

µνF
a
ρκ

]
. (4.112)
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4.5 R-symmetry revisited

R-symmetry has a particularly simple interpretation in superspace. Recall that

[R,Q] = −Q, [R,Q] = Q −→ Qα
R→ e−iαQα, Qα̇

R→ eiαQα̇.

We can then apply this rotation to the supercoordinates θα, θ̄α̇; since this is an internal rotation

of the supercharges the spacetime coordinates must be unaffected and, using the definition of the

supercharges in superspace we see

θα
R→ eiαθα, θ̄α̇

R→ e−iαθ̄α̇. (4.113)

Similarly we need that the differentials or derivatives transform oppositely and so

∂

∂θα

R→e−iα ∂

∂θα

d2θ
R→e−2iαd2θ, d2θ̄

R→ e2iαd2θ̄. (4.114)

The second line is particularly important, because it means that if R-symmetry is preserved, then the

kinetic terms
∫
d4θKj

iΦ
i
Φj are invariant, but the superpotentialW must transform with R-charge 2 ! In

particular, this means thatWα has R-charge 1 and so does its lowest component, the gaugino λα. Note

also that different fields in the supermultiplet have different R-charges; e.g. Φ = ϕ+
√
2θψ+ θθF + ...

implies that the R-charges of (ϕ, ψ, F ) are (r, r − 1, r − 2).
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