Pb ion Collimation Performance with and without IR3 upgrade

G Bellodi

With contributions from R. Bruce, F. Burkart, J.M. Jowett, G. Valentino, D. Wollmann

G. Bellodi - LHC Collimation Review 2011 14/06/2011

Heavy Ion collimation is very different from proton collimation

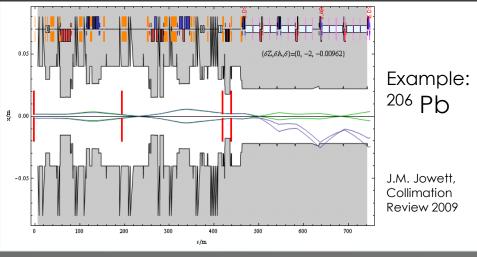
Physics process	Proton	²⁰⁸ Pb
$\frac{dE}{Edx}$ due to ionisation	-0.12 %/m -0.0088 %/m	-9.57 %/m -0.73%/m
Mult. Scattering	73.5µrad/m ^½	73.5µrad/m [%]
(projected r.m.s. angle)	4.72µrad/m ^½	4.72µrad/m ^½
Nucl. Interaction length	38.1cm	2.5cm
≈fragment. length for ions	38.1cm	2.5cm
Electromagnetic	-	33cm
dissociation length		19cm

lons undergo nuclear interactions in primary collimators (TCPs) before acquiring necessary kick to reach secondary collimators

 \rightarrow One stage cleaning only!

Hadronic fragmentation → Large variety of daughter nuclei, Monte Carlo calculated specific cross-sections

Electro-magnetic dissociation \rightarrow Mainly loss of 1 neutron (59%) or 2 (11%) \rightarrow ²⁰⁷Pb, ²⁰⁶Pb


Typical transverse momentum transferred in nuclear/dissociation events < 1MeV/c/n (compared to ~10 MeV/c/n due to beam emittance).

One stage cleaning

After first impact/grazing with TCPs:

- high probability of <u>nuclear interactions</u> with TCP material
- production of <u>isotopes with different Z/A</u> <u>ratio</u> and momentum and direction almost unchanged
- fragments follow locally generated dispersion and are lost downstream in SC magnets because of different $B\rho$

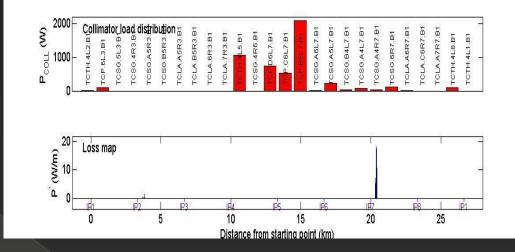
²⁰⁴ Pb -1.92%	²⁰⁵ Pb -1.44%	²⁰⁶ Pb -0.96%	²⁰⁷ Pb - 0.48%	²⁰⁸ Pb 0.0%
²⁰³ TI	²⁰⁴ TI	²⁰⁵ TI	²⁰⁶ TI	²⁰⁷ TI
-1.2%	-0.71%	-0.23%	0.26%	0.75%
²⁰² Hg	²⁰³ Hg	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg
-0.46%	0.04%	0.53%	1.02%	1.51%

Change in rigidity:

$$\frac{\Delta P}{P} = \frac{Z_2}{A_1} \frac{A_2}{Z_2} \left(1 + \delta_{\rm kin}\right) - 1$$

LHC energy acceptance:

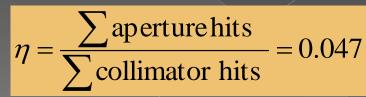
- arcs: ~ ±1%

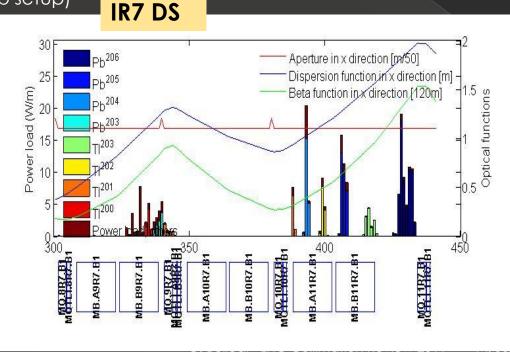

- IR3: ~ ±0.2%

G. Bellodi - LHC Collimation Review 2011 14/06/2011

IR7 β -tron cleaning at 7 Z TeV

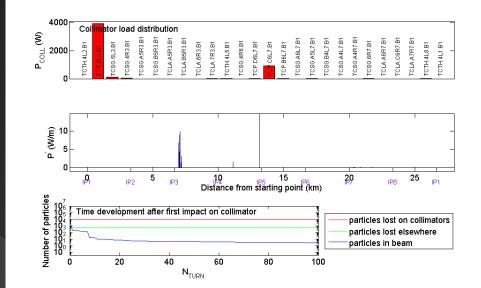
Simulations (ICOSIM program by H. Braun):


 τ =12 min lifetime 50,000 ions statistics E= 7 Z TeV = 2.76 A Tev Nominal beam parameters: 7e7 x 592= 4.14×10¹⁰ ions intensity (3.8MJ) Collision optics (ideal) Standard collimator settings (as per LHC p setup)

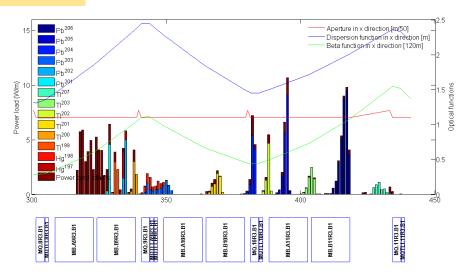


Quench limit (theory) ~ 8.5W/m

Max TCP load ~ 2700W Peak loss in DS3 ~ 18W/m η (local) = 0.007



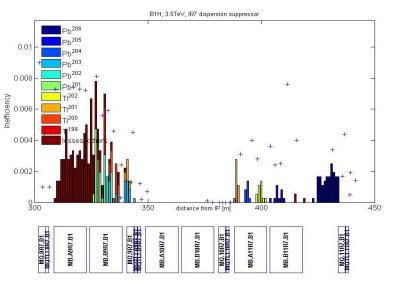
IR3 momentum cleaning at 7 Z TeV

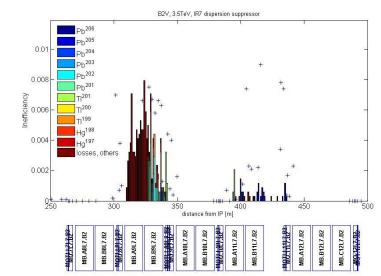

Simulations:

100k particles, 100 machine turns τ =12 min lifetime 7e7 x 592= 4.14×10¹⁰ ions intensity (3.8MJ)

Max TCP load ~ 3900W Peak loss in DS3 ~ 12W/m η (local) = 0.003

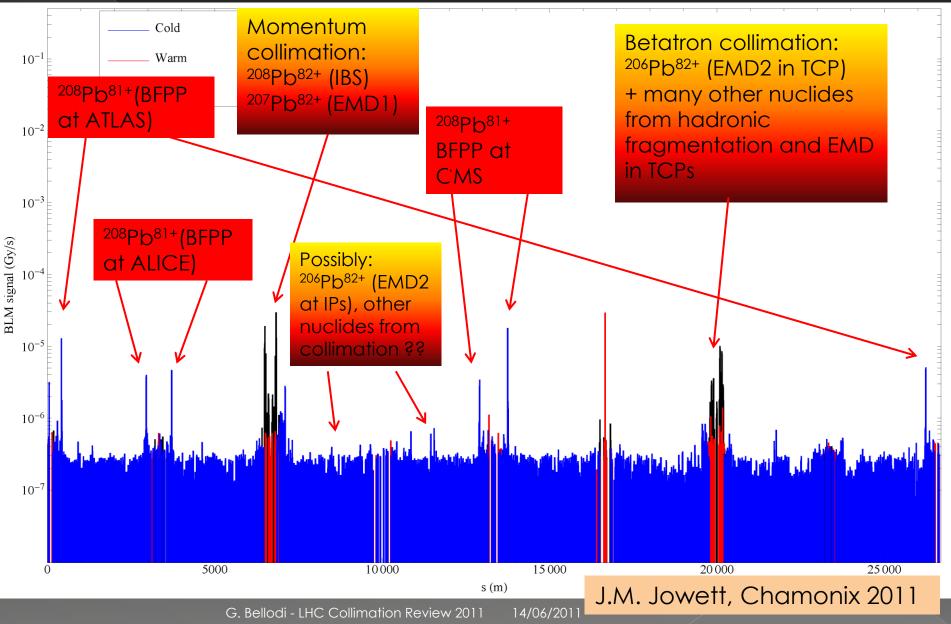
IR3 DS




Standard momentum collimation

$$\eta = \frac{\sum \text{aperture hits}}{\sum \text{collimator hits}} = 0.05$$

06/2011


Ion commissioning loss maps vs simulation – Nov 2010 B1H B2V

	DS	COLD	ТСТ	
B1h	0.02	0.006	1.0 ×10-4	
B1v	0.027	0.005	0.001	
B2h	0.03	0.011	8×10 ⁻⁵	3.5TeV eq.
B2v	0.025	0.006	1.4×10 ⁻⁴	Physics conditions
B1+B2 pos. off momentum	0.045	8e-4	0.06	
momentum				D Wollmann,
B1+B2 neg. off momentum	0.007	2e-4	0.005	Evian Dec 2010
	G. Bellodi - LHC Collim	ation Review 2011	14/06/2011	

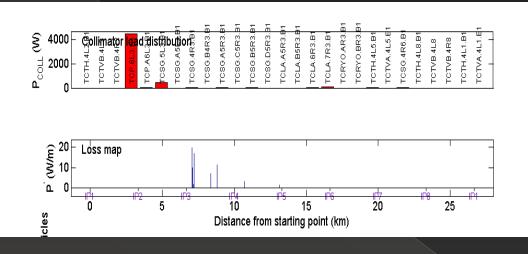
Global view of losses, Pb-Pb stable beams Record luminosity, the last fill of 2010

Commissioning lessons

□ Positions of loss peaks in the dispersion suppressor are well reproduced in simulations.

□ Leakage is higher in measurements than in simulations.

□ Higher losses in IR3 than expected (combination of BFPP-luminosity effects and off-momentum feed-down from IR7?)

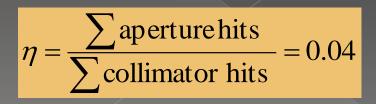

- □ Simulations performed with perfect machine conditions
- □ Cross sections uncertainties: good news from 2011 Quark-Matter conference (talk by C. Oppedisano)

 Cross sections for EMD processes have been measured in Pb-Pb collisions at 2.76 A TeV detecting the emitted neutrons with the ZDCs and using the absolute cross section values measured in the Van der Meer scan

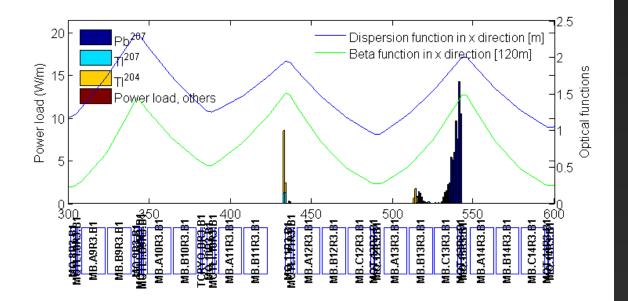
	DATA (PRELIMINARY)	RELDIS MODEL	results
σ^{sEMD} + σ^{had}	$(195.6 \pm 0.1 \text{ stat.}^{+24.2}_{-11.7} \text{ syst.}) \text{ b}$	(192.9 \pm 9.2 syst.) b	
σ^{sEMD} - σ^{mEMD}	$(176.9 \pm 0.1 \text{ stat.}^{+21.6}_{-10.6} \text{ syst.}) \text{ b}$	(179.7 \pm 9.2 syst.) b	
σ^{mEMD}	(5.7 \pm 0.2 stat. $^{+0.7}_{-0.3}$ syst.) b	(5.5 ± 0.6) b	
σ^{sEMD}	(185.7 \pm 0.2 stat. $^{+22.6}_{-11.1}$ syst.) b	(185.2 \pm 9.2) b	

Experimental results are in very good agreement with predictions from RELDIS

IR3 combined cleaning without TCRYOs



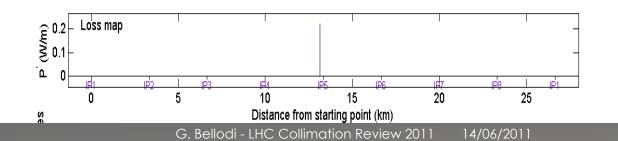
30 25 20 20 15 Pb ²⁰⁷ 10 10 5	Dispersion function in x direction [m] Beta function in x direction [120m]
MB. A9R3. B1 MB. A9R3. B1 MB. A9R3. B1 MB. A10R3. B10R3. B1 MB. B10R3. B1 MB. B11R3. B1 MB. A11R3. B1 MB. A12R3. B	MB.B12K3.B1 MB.C12R3.B1 MB.C12R3.B1 MB.A13R3.B1 MB.B13R3.B1 MB.A13R3.B1 MB.C14R3.B1 MB.C14


Sector	Family	Half gap
LSS7	TCP IR7	Open
	TCSG IR7	Open
	TCLA IR7	open
LSS3	TCP IR3	6
	TCSG IR3	7
	TCLA IR3	10
LSS1/2/5/8	TCTH	8.3
	TCTV	8.3

 τ =12 min lifetime 7×10⁷×592= 4.14×10¹⁰ ions E=7 Z TeV eq.

Max TCP load ~ 4500W Peak loss in DS3 ~ 20W/m η (local) = 0.0044



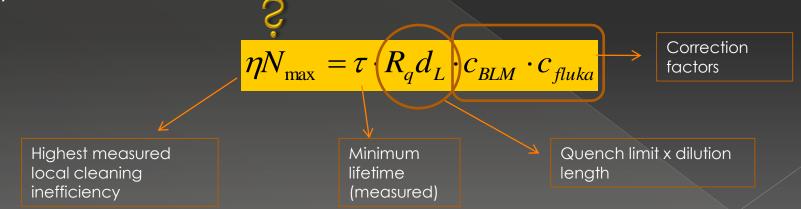

and with TCRYOs in

50 sigma half gap

DS already significantly cleaner

20 sigma half gap, No losses visible!

Performance reach without TCRYOs: extrapolation from proton MD


DATA

1) Minimum lifetime for steady-state losses derived from data (end Nov ion runs)

 $\underline{\tau} = \sim 1-1.5 \text{ hrs}$ (vs 12 min used in simulations) at 3.5 TeV eq. (DW, FB)

2) Protons quench test (16 bunches at 3.5 TeV in 1s): <u>336W deposited on DS Q8 w/o quench</u> – lower limit

3) Same BLM response as for protons (<u>factor of 2</u> between primary and DS)

<u>At 3.5 Z TeV:</u>

336 W on Q8 \rightarrow ~60W on MB or 2.6E6 ions/s (with BLM factor 2) Assume η =0.045, τ =3600s and x2 dilution length safety factor

N_max (ions) = 1×10^{11} Pb = 2.4 × Pb nominal intensity

R. Bruce et al. Phys. Rev. ST AB, **12**, 071002 (2009) At 7 Z TeV: optics V6.500 60 optics V6.503 Maximum heat load [mW/m] optics V6.503 ob 50 $60 \text{ W} \rightarrow \sim 24 \text{W}$ 40 (Heat flow simulations for BFPP Nominal MB magnet give quench limit scaling current 30 Nominal heat load - optics V6 with magnet current) Nominal heat load - optics V6.503 20 -= 0.52E6 ions/s 10 Nominal heat load - optics V6.503 ob 2 10 4 6 8 12 14

Assume η =0.045, τ =3600s and x2 dilution length (for Pb) safety factor

N_max (ions) ~ 2×10^{10} Pb = 0.5 × nominal Pb intensity

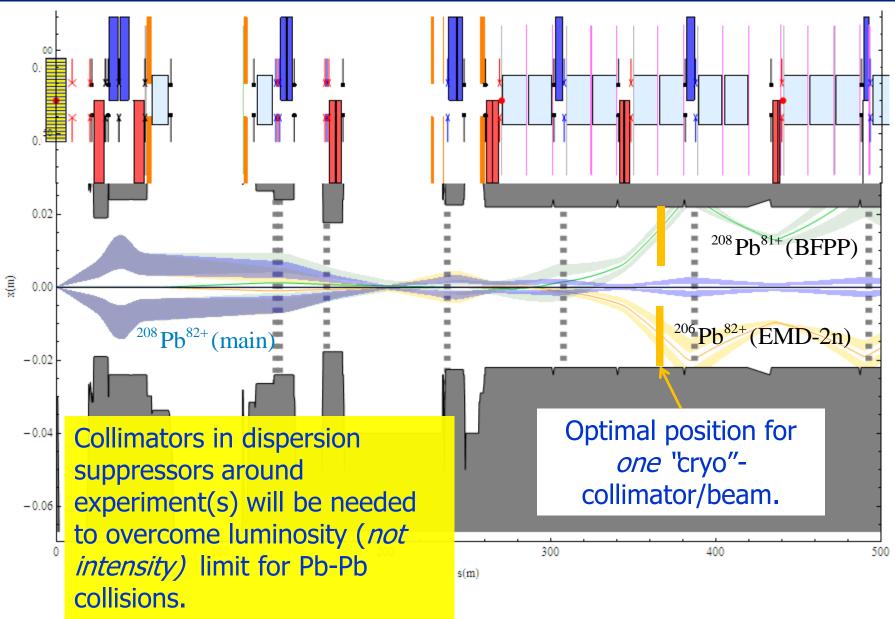
I_{magnet} [kA]

G. Bellodi - LHC Collimation Review 2011 14/06/2011

Assumptions/caveats/disclaimers

- Same minimum beam lifetime at 3.5 TeV and 7 TeV.
- Minimum beam lifetime independent from intensity.
- Safety factor x2 in dilution lengths to account for different ion loss patterns (more concentrated and localised, less diffractive scattering effects..)

<u>R. Bruce et al, Phys. Rev. ST Accel. Beams 12, 071002 (2009)</u>


- Same spatial distribution of losses in SC magnets at 3.5 TeV and 7 TeV
- No change in cleaning inefficiency between 3.5 TeV and 7 TeV
- BLM response as for protons

п

.

 Losses are mainly collimation/intensity driven ... possible luminosity effects are not considered

Main and secondary Pb beams from ALICE IP

J.M. Jowett, LHC Performance Workshop, Chamonix 27/1/2011

IR2 DS collimators

BFPP is direct limit on Pb-Pb luminosity in each IP

- Continuous, localised loss during luminosity
- Expect very effective mitigation from DS collimators around IPs
- Installation is different from IR3/IR7
- No resources for detailed layout study so far
- ALICE has requested IR2 be equipped
 - Next step after IR3, 2017 shutdown
 - If IR3 installation is delayed, can both IR3 & IR2 be done in 2018? Otherwise risk that IR2 installation will be so late as to compromise integrated Pb-Pb luminosity up to ~2020 (see next slide ...)
- Similar installations for IR1, IR5
 - May be needed for p-p luminosity debris in future HL-LHC beyond 2021 ??
 - Would also help their Pb-Pb luminosity

LHC medium-term heavy-ion programme

Year	HI beams	TCRYO in 2013-14	Delayed TCRYO
2011	Pb-Pb, 3.5 Z TeV	I _{tot} limited	I _{tot} limited
2012	p-Pb/Pb-Pb	I _{tot} limited	I _{tot} limited
2013-14	LS1	TCRYOs in IR3	No TCRYOs
2015-16	Pb-Pb, 7 Z TeV	L limited	I _{tot} limited
2017	p-Pb/Pb-Pb	L not limited/limited	I _{tot} limited
2018	LS2	TCRYOs in IR2	TCRYOs in IR3
2019	Pb-Pb, 7 Z TeV	L not limited	L limited
2020	p-Pb (D-Pb??)	L not limited	??
2021	Ar-Ar	??	??
2022	LS3	TCRYOs in IR1, IR5 ?	TCRYOs in IR2 ?

Highly simplified scheme:

" I_{tot} limited" means close to limit, as determined in previous slides "L limited" means probably factor ~2-4 below design of 10^{27} cm⁻²s⁻¹ see R. Bruce et al. Phys. Rev. ST AB, **12**, 071002 (2009)

Conclusions

- I. 2010 measurements successfully validated predictions on DS loss locations and patterns and EMD/had Pb ion cross sections
- II. Observed leakage to IR7 (IR3) DS is more important than predicted: especially high losses seen with stable beams in IR3 (combined effect?)
- III. Solution for combined betatron and momentum cleaning in IR3 (one extra vertical TCP) is expected to have similar collimation efficiency to IR3 momentum only/IR7 betatron only schemes.

Hardly sufficient to meet the needs for Pb ion operation performance at 7 Z TeV and nominal intensity.

Without IR3 upgrade

Performance reach estimate on the basis of recent MD results:

At 3.5 Z TeV: **N**_{max} ~ **1**×10¹¹ **Pb** =(2.4×nominal Pb intensity)

At 7 Z TeV: **N**_{max} ~ **2**×10¹⁰ **Pb** =(0.5×nominal Pb intensity)

Important assumptions (are they all justified??) → large error bars / far reaching extrapolation....

No margin for higher beam intensities / operation with different ion species (Ar40 more demanding!)

IR2 probably delayed

G. Bellodi - LHC Collimation Review 2011

With IR3 upgrade

IR3 DS upgrade with cryogenic collimators is an effective solution to the ion collimation problem.

all leakage in the DS is absorbed even $at > 20 \sigma$ jaw opening.

Scheme has been shown (in simulations) to work for:

- higher beam intensities
- light ions operation
 (⁴⁰Ar study in 04/2009 review)

Single bunch intensity 70% > nominal already demonstrated (Early scheme only, so far)

Opens the way for timely IR2 upgrade to remove BFPP limit on luminosity for main part of Pb-Pb programme.