Collimation Remote Handling

Highlights from work for collimation remote handling and remote survey. Plans

Keith Kershaw EN-HE
14 June 2011
Contents

• Introduction

• Four areas of work as proposed and agreed in 2010
First mock up tests – remote handling of collimator

Dummy collimator installed on base using modified truck loader crane fitted with hoist and spreader rotation. Operation with only camera viewing and remote controls.
Reserved space for collimator handling

LHCHMUMC_0001

Implications for infrastructure

Implications for collimator dimensions

It was necessary to modify water pipes
Installation using specially designed trailer cranes
Plug – ins:

Close observation + careful guidance during LHC installation (not ideal for the future)
Plug-in behaviour tests 2010

Practical investigations in LHC tunnel mock-up by EN-STI, EN-MME and EN-HE.
Water plug - ins
Infrastructure P7 (need to pass via TZ76)
Passage at point 7

Improvement of entry to UJ 76. Need to move grille

Shorter push-pull bar and push attachment point on Palfinger
1000kg trailer - crane

- Custom design for collimator handling
- Increased capacity
- Better control with radio control
- Asymmetric stabilizers to reduce width

Safety checks at the factory

Stability tests at 125%

Spreader beam load test
EN-HE radioactive collimator handling equipment development work 2010 onwards

1. Optimisation of collimator transfer etc
2. Remote collimator exchange crane vehicle
3. Vacuum disconnection mobile robot
4. Remote alignment survey (CERN Survey team project)
1) Optimisation of collimator transfer

- Improve remote controls on the two existing 500 kg trailer cranes.
- Compact shielded tractor units to tow the trailer cranes
- Partially shielded trailers for transporting collimators (weight restricted by LHC point 7 1 tonne lift)
- Additional 1000kg capacity trailer crane
- Minor infrastructure modifications to improve passage.
Collimator remote exchange crane vehicle

- 1000kg load capacity
- Remote control of all movements
- Powered rotation of spreader
- Powered extension of stabilisers
- Powered traction
- Powered steering
- Powered from monorail in tunnel (MAFI-type trolley)
- Possible to tow out in event of breakdown

Market survey sent out last week
Delivery end 2012
3) Vacuum disconnection mobile robot

• Studies and tests in 2011-1012
• Then major purchases of equipment in 2013-2014
Collimator connections

Turn nuts to release

“unstructured” environment
Vacuum disconnection mobile robot

Basic idea for cost estimation: Industrial robot controlled using force-reflecting master arm mounted on remote control vehicle

Pictures show CEA LIST master arm used with Staubli robot

Remote control vehicle (Kuka shown)
Collimator remote disconnection development issues

• Determine level of remote handling sophistication and viewing necessary for task (mock up trials)
• Determine geometrical requirements (CATIA etc)
• Navigation and communication issues (EU Marie Curie Fellow)
• Review – options, radiation dose implications, risks etc (case for EU Marie Curie fellows – jointly with RP)
4) Collimator Remote Alignment Survey
(joint project with CERN Survey team)

- Train running on overhead monorail (TIM)

- Measurement based on a combination of:
 - Digital close range photogrammetry
 - Fast and non contact measurement of the activated collimators
 - Wire offset measurements to detect train position and link the different acquisition volumes.
 - Reliable straight reference over long distances
Tests

• Benchmark test with real size mock-up
 – System repeatability is well below 0.1mm
 – Comparison of measured and theoretical coordinates (coming from Laser Tracker measurements)
 – Precision better than 0.2mm and already within specs but still some optimisation margin

• Finalising system for first measurements in IR7 during the winter stop 2011/2012

• Preparation for IR 3
 ▶ Continuous optimisation and development process will follow
Tunnel infrastructure preparation

- Tunnel infrastructure for IR7 complete
 - 10 pillars
 - 5 overlapping wires
 - Sag modelling
 - 350 Optical targets in place and measured
 - Train tested in IR7
 - IR 3 installation in preparation
Conclusions

• Long-term projects with much preparation work already done to allow use of remote techniques
• Programme of work continues to further optimise handling and measurement in order to reduce radiation doses
Any Questions?

Acknowledgements:
• P Bestmann
• J-M Chevalley
• C Charrondiere
• A Coin
• F Delsaux
• T Feniet
• J-L Grenard
• C Hazelaar - Bal
Extra slide
<table>
<thead>
<tr>
<th>Actions</th>
<th>Time per person (min)</th>
<th>Individual Dose / Person</th>
<th># of Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1h</td>
<td>8h</td>
</tr>
<tr>
<td>Transport material</td>
<td>2</td>
<td>0.014</td>
<td>0.009</td>
</tr>
<tr>
<td>Close manual water valve</td>
<td>1</td>
<td>0.035</td>
<td>0.023</td>
</tr>
<tr>
<td>Connect water circuit to pressurized air</td>
<td>1</td>
<td>0.035</td>
<td>0.023</td>
</tr>
<tr>
<td>Purge water circuit with air</td>
<td>5</td>
<td>0.130</td>
<td>0.076</td>
</tr>
<tr>
<td>Position transport material</td>
<td>2</td>
<td>0.066</td>
<td>0.041</td>
</tr>
<tr>
<td>Fix lifting equipment to collimator tank</td>
<td>3</td>
<td>0.210</td>
<td>0.170</td>
</tr>
<tr>
<td>Lift the collimator</td>
<td>2</td>
<td>0.070</td>
<td>0.046</td>
</tr>
<tr>
<td>place the collimator on the transport unit</td>
<td>2</td>
<td>0.066</td>
<td>0.041</td>
</tr>
<tr>
<td>Move the faulty collimator</td>
<td>1</td>
<td>0.026</td>
<td>0.015</td>
</tr>
<tr>
<td>Position replacement collimator</td>
<td>1</td>
<td>0.033</td>
<td>0.020</td>
</tr>
<tr>
<td>Fix lifting equipment to collimator tank</td>
<td>3</td>
<td>0.098</td>
<td>0.061</td>
</tr>
<tr>
<td>Lift the collimator</td>
<td>2</td>
<td>0.076</td>
<td>0.054</td>
</tr>
<tr>
<td>Install the collimator with quick plug in</td>
<td>5</td>
<td>0.351</td>
<td>0.284</td>
</tr>
<tr>
<td>Check electrical connections</td>
<td>2</td>
<td>0.140</td>
<td>0.114</td>
</tr>
<tr>
<td>Open manual water valve</td>
<td>1</td>
<td>0.035</td>
<td>0.023</td>
</tr>
<tr>
<td>Check water connections, flow</td>
<td>2</td>
<td>0.070</td>
<td>0.046</td>
</tr>
<tr>
<td>2nd Person assistance</td>
<td>22</td>
<td>0.722</td>
<td>0.448</td>
</tr>
<tr>
<td>Transport out of material</td>
<td>2</td>
<td>0.014</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Phase 2 installation of worst case TCS1 (assumption: installation = 2x reduced exchange)

<table>
<thead>
<tr>
<th>Individual Dose:</th>
<th>1st Person</th>
<th>2nd Person</th>
<th>Collective Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6</td>
<td>1.5</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.9</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>