

Radiation Protection aspects

C. Adorisio, <u>S. Roesler</u> (on behalf of DGS-RP)

LHC Collimation Review 2011 June 14-15, 2011

Outline

- 1) Operational scenarios until 2016 (source: M.Lamont)
- 2) Evolution of dose rates and activation from 2013 until 2016
 - a) Purely based on run parameters
 - b) Obtained with generic simulations using actual irradiation profile

3) Radiological situation in Points 3&7 during Long Shutdowns 2013 and 2017

- a) LSS3/7 (transport of material and equipment, installation of cables, etc.)
- b) DS3/7 (modification and installation work)
- 4) Uncertainties and further verification
- 5) Summary and conclusions

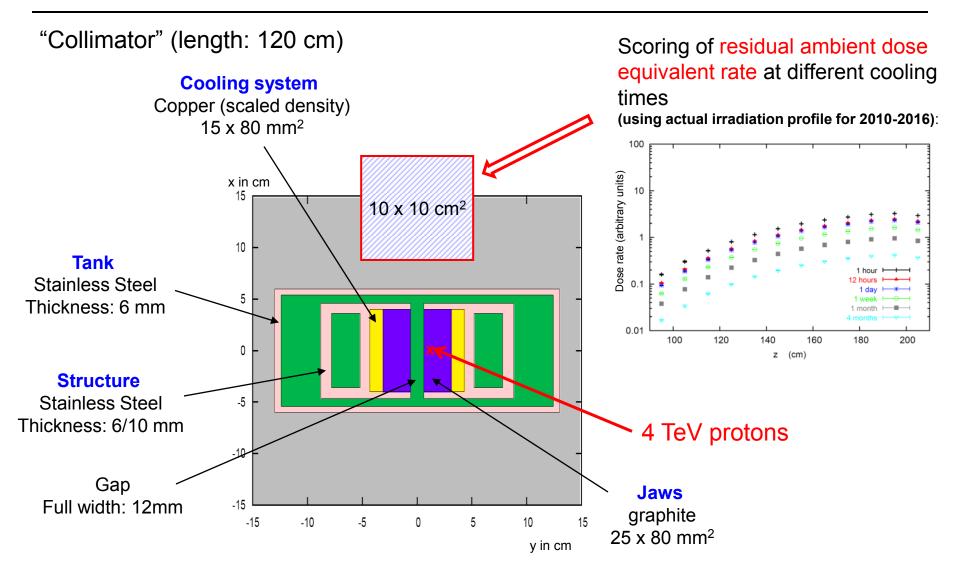
Operational scenarios for proton runs

Source: M.Lamont 8/6/2011

Year of operation	2010	2011	2012	2014	2015	2016
Number of days physics	39	129	193	120	200	200
Energy (TeV)	3.5	3.5	4.0	6.5	7.0	7.0
Fraction of nominal beam intensity	13%	32%	53%	53%	100%	100%
Peak luminosity (cm ⁻² s ⁻¹)	1.0×10 ³²	1.0×10 ³³	2.7×10 ³³	5.0×10 ³³	1.0×10 ³⁴	1.0×10 ³⁴
Integrated luminosity (fb-1)	0.05	4	10.9	9	40.4	40.4

→ rough scaling of activation based on above parameters:

- scaling with energy (7TeV / 4TeV): factor of 1.5 (obtained with generic FLUKA simulations)


- heavy ion run not considered, assuming linear scaling of losses with beam intensity / luminosity, etc.

	Activation ratios for shutdowns	2013/2010	2017/2013
beam intensity	Short cooling time (scaling w/ beam intensity & energy)	4.1	2.8
dependent activation	Long cooling time (scaling w/ total number of circulating protons & energy)	29.0	5.7
luminosity	Short cooling time (scaling w/ luminosity & energy)	27	5.6
dependent activation	Long cooling time (scaling w/ integrated luminosity & energy)	300	10.0

more accurate scaling factors for activity -> generic study

Generic study

Dose rate scaling parameters

Evolution of residual dose equivalent rates until 2017

(for areas where activation is related to the beam intensity, e.g., IR3/7)

Dose rate ratios for shutdowns	2013/2010	2017/2013	
Short cooling time	4.1	2.8	scaling w/ beam intensity
One week cooling	6.9	3.1	
One month cooling	9.2	3.2	– generic study
Four months cooling	14.9	3.6	
Long cooling time	29	5.7	scaling w/ total number of circulating protons

Dependence on cooling time

Dose rate relative to one month cooling							
One week cooling	1.7						
One month cooling	1.0						
Four months cooling	0.4						

Dose rate predictions – LSS3

Dose equivalent rates $(\mu Sv/h)$ (about two months cooling)

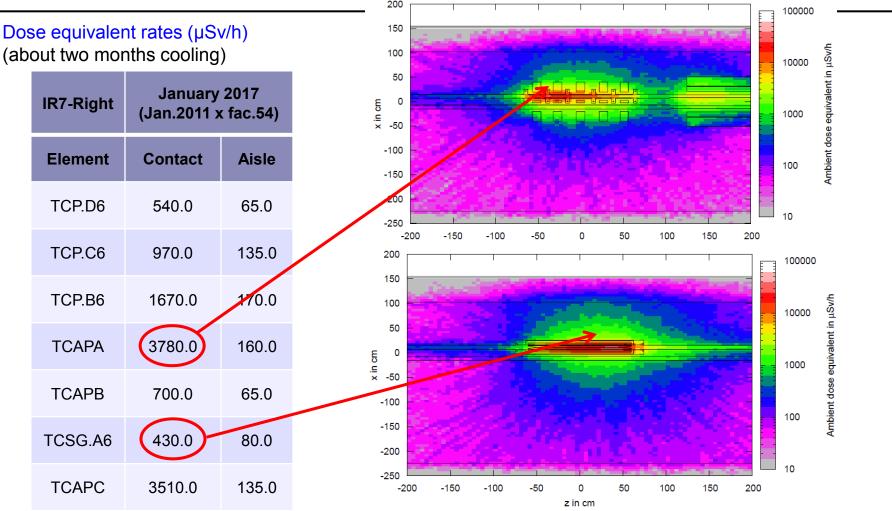
	January	2011	Januar	y 2013	Januar	January 2017 (Jan.2011 x fac.54)		Area	-	Ambient dose equivalent rate		
IR3-Right	(measure		(Jan.2011	-				classification	Dose limit	At permant workplaces	In low-occupancy areas	
Element	Contact	Aisle	Contact	Aisle	Contact	Aisle		Non-designated Area	1 mSv / y	< 0.5 µSv h ⁻¹	< 2.5 µSv h⁻¹	
TCP	13.0	0.3	195.0	4.5	702.0	16.0		Supervised Radiation Area	6 mSv / y	< 3 µSv h ⁻¹	< 15 µSv h ⁻¹	
TCAPA	24.0	0.7	360.0	11.0	1300.0	38.0		Simple				
D3	7.0		105.0		380.0		ion Mea	Controlled Radiation Area		< 10 µSv h ⁻¹	< 50 µSv h ⁻¹	
TCSG.5	7.5	0.2	113.0	3.0	405.0	11.0	led Radiation	Limited Stay Area	20 mSv / y		< 2 mSv h ⁻¹	
MQWA.C	9.0		135.0		490.0		Controlled	High Radiation Area			<100 mSv h ⁻¹	
								Prohibited Area			> 100 mSv h ⁻¹	

• Scaling assumes the IR7/3 loss ratio of the 2010 run

• Possible increased losses from combined momentum/betatron cleaning not included

• Contribution from beam-gas interactions not included (<1µSv/h in aisle, see later)

Dose rate predictions – *L***SS7**

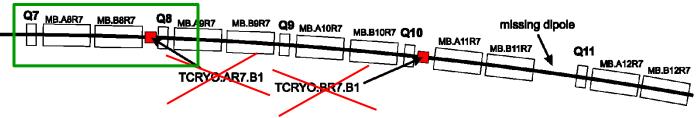

Dose equivalent rates (µSv/h) (about two months cooling)

IR7-Right	January		January		January			Area	Dose limit	Ambient dose	equivalent rate
	(measure	ement)	(Jan.2011	x fac.15)	(Jan.2011)	(Tac.54)		classification		At permant workplaces	In low-occupancy areas
Element	Contact	Aisle	Contact	Aisle	Contact	Aisle		Non-designated Area	1 mSv / y	< 0.5 µSv h⁻¹	< 2.5 µSv h ⁻¹
TCP.D6	10.0	1.2	150.0	18.0	540.0	65.0		Supervised	6 mSv / y	< 3 µSv h ⁻¹	< 15 µSv h ⁻¹
TCP.C6	18.0	2.5	270.0	38.0	970.0	135.0		Radiation Area	0 113V / y	< 5 µ50 m	
TCP.B6	31.0	3.1	465.0	47.0	1670.0	170.0	tion Area	Simple Controlled Radiation Area		< 10 µSv h ⁻¹	< 50 µSv h ⁻¹
TCAPA	70.0	3.0	1050.0	45.0	3780.0	160.0		Limited Stay Area	20 mSv / y		< 2 mSv h ⁻¹
ТСАРВ	13.0	1.2	195.0	18.0	700.0	65.0	Controlled	High Radiation Area			<100 mSv h ⁻¹
								Prohibited Area			> 100 mSv h ⁻¹
TCSG.A6	8.0	1.5	120.0	23.0	430.0	80.0					
TCAPC	65.0	2.5	975.0	38.0	3510.0	135.0					

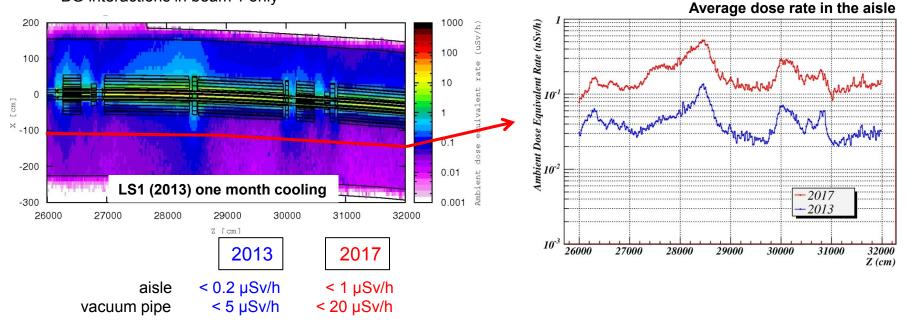
S.Roesler et al., EDMS 863919

Dose rate predictions – LSS7

• reasonable agreement for passive absorber

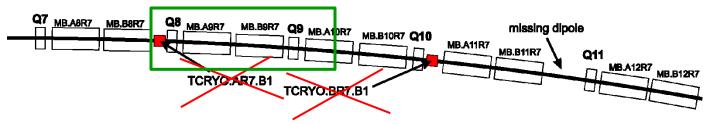

• dose rate somewhat lower than predicted for first secondary collimator (due to present collimator settings?)

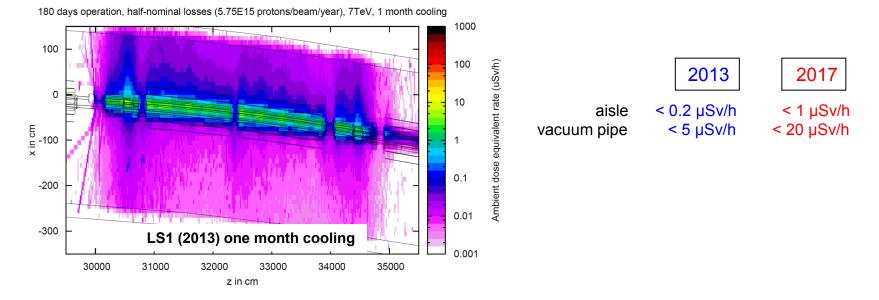
Dose rate predictions – *dispersion suppressors*


Two contributions:

1) Beam-gas interactions

- here: DS at Point 7 (similar for Point 3) assumed BG density: 1×10^{15} H₂ eq./m³


- BG interactions in beam 1 only



Dose rate predictions – *dispersion suppressors*

2) Point-losses of protons scattered in the collimators

- here: DS at Point 7 (results existing from Phase II collimation review in 2009 providing envelope for Point 3)

Uncertainties and verification

Numerous sources of *uncertainties*:

- actual beam-gas pressure
- activation by ion and special runs (scrubbing, MD's, etc.)
- loss assumptions (IR3 vs. IR7)
- differences between actual and simulated geometry (collimator settings, imperfections, etc.)
- FLUKA models (e.g., for prediction of activation) and simulations (statistical uncertainties)
 ...

Verification by measurements essential

- survey measurements during technical stops to monitor evolution of residual dose rates
- integrated BLM readings to identify loss points and provide "relative" information
- material samples, especially of materials on which destructive work is foreseen (*e.g.*, civil engineering, soldering)

<u>Example</u>: interconnect consolidation

- a large number of samples of typical materials (copper, SS, Sn, Ag) have been fixed outside of typical and worst interconnects
- allows monitoring of the evolution of activation

Summary and conclusions - 1

• Based on the operational scenarios for runs 2014-2016, beam intensity-dependent activation and residual dose rates will increase by about a factor of 3-4 from shutdown 2013 until shutdown 2017.

Collimation regions LSS3/7:

- Passage through and work in the area will become more and more restricted (maybe still Simple Controlled Area in 2013, certainly Limited Stay Area in 2017).
- At present, activation in LSS3 is about a factor of 3 lower than in LSS7 (may not be the case anymore if betatron cleaning is moved to IR3).
- Significant risk of contamination for work that requires machining, drilling etc. in the area.

Dispersion suppressor areas DS3/7:

- Low/moderate residual dose rates expected for most of the area: few μ Sv/h in the aisle, <50 μ Sv/h on beam pipe or components close to it.
- Nevertheless, beam-line components are radioactive risk of contamination for work that requires machining.

Summary and conclusions - 2

- (Of course) the installation of DS collimators should be performed as early as reasonably possible (ALARA).
- If the installation is postponed to 2017 it is strongly advised to prepare it as much as possible, especially to perform all modifications (cabling, *etc.*) that require work in LSS3 (and LSS7?) and any civil engineering (cutting tunnel wall in DS regions) already during 2013.
- Access and transport should avoid passage along collimation region as much as possible. Mobile shielding in front of "hot spots" could relax constraints in this regard.

HSE Occupational Health & Safety and Environmental Protection Unit

Additional information (RP rules and regulations)

RP rules and regulations – *radiological risks*

External exposure

- work in vicinity of activated components
- whole-body dose mostly due to gamma-emitting nuclides
- beta-emitted also contribute to dose to extremities
- legal limits (Radiation workers category B): 6 mSv (whole-body dose)

150 mSv (extremities)

- design constraint: 2 mSv/intervention/year per person
- compare:

Dose interval	Persons	Persons	Persons	Persons	Persons
(mSv)	Concerned	Concerned	Concerned	Concerned	Concerned
	(2005)	(2006)	(2007)	(2008)	(2009)
0.0	3074	4192	5131	5143	5042
0.1-0.9	1522	1738	898	1020	1219
1.0-1.9	53	37	33	40	39
2.0-2.9	9	17	2	3	13
3.0-3.9	3	4	1	1	2
4.0-4.9	4	2	1	1	-
5.0-5.9	1	-	-	-	-
> 6.0	-	-	-	-	-

Source: RP Annual Report 2009

RP rules and regulations – *radiological risks*

Internal exposure

- machining, welding, soldering of activated components
- dose due to mobile gamma and beta-emitting nuclides
- risk assessment with nuclide-dependent values adapted from Swiss legislation:

		1	halatica			d'appréciation		Limite d'exemp- tion	Limite d'auto- risation	Valeurs directrices		
Nucléide	Période	Type de désintégra- tion/ de rayonneme	Sv/Bq	Ingestio	h ₁₀ (mSv/h)/G a 1 m de cistance	h _{0,07} Bq (mSv/h)/GE à 10 cm de distance	h _{c0,07} Bq (mSv/h)/ (kBq/cm ²)	LE Bq/kg ou LE _{abs} Bq	LA Bq	CA Bq/m ³	CS Bq/cm ²	Nucléide de filiation instable
1	2	3	4	5	(7	8	9	10	11	12	13
Co-55 Co-56 Co-57 Co-58 Co-60 Co-60m Co-61 Co-62m Ni-56 Ni-56 Ni-57 Ni-59 Ni-63 Ni-63 Ni-65 Ni-66 / Cu-66 Cu-60 Cu-61 Cu-64 Cu-64 Cu-67 Zn-62 / Cu-62 Zn-63 Zn-65 Zn-65 Zn-65 Zn-65	17.54 h 78.76 d 270.9 d 70.80 d 9.15 h 5.271 a 10.47 m 1.65 h 13.91 m 6.10 d 36.08 h 7.5 E4 a 96 a 2.520 h 54.6 h 23.2 m 3.408 h 12.701 h 61.86 h 9.26 h 38.1 m 243.9 d 57 m	$\begin{array}{c} \epsilon, \beta^{+}, \gamma \\ \epsilon, \epsilon, \gamma \\ \epsilon, \gamma \\ \epsilon, \gamma \\ \beta^{+}, \gamma \\ \epsilon, \beta^{+}, \gamma \\ \beta^{+}, \gamma \\ \epsilon, \beta^{+}, \gamma \\ \epsilon, \beta^{+}, \gamma \\ \epsilon, \beta, \gamma \\ \gamma $	3.7 E-11 9.6 E-10 7.6 E-10 2.2 E-10 5.2 E-10 1.3 E-10	1.1 E-09 2.5 E-09 2.1 E-10 7.4 E-10 2.4 E-11 3.4 E-09 1.7 E-12 7.4 E-11 4.7 E-11 8.6 E-10 8.7 E-10 6.3 E-11 1.5 E-10 3.0 E-09 7.0 E-11 1.2 E-10 3.4 E-10 9.4 E-10 9.4 E-10 9.4 E-11 3.9 E-09 3.1 E-11	0.302 0.485 0.021 0.147 0.001 0.366 0.001 0.436 0.260 0.278 0.001 0.081 0.001 0.081 0.039 0.596 0.128 0.030 0.175 0.081 0.175	$\begin{array}{c} 1000\\ 300\\ 100\\ 300\\ 10\\ 1000\\ 20\\ 1000\\ 1000\\ 1000\\ 60\\ 700\\ 10\\ <1\\ 1000\\ 2000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 40\\ 1000\\ \end{array}$	$\begin{array}{c} 1.4\\ 0.6\\ 0.1\\ 0.3\\ < 0.1\\ 1.1\\ < 0.1\\ 1.6\\ 1.8\\ 0.1\\ 0.8\\ < 0.1\\ < 0.1\\ 0.8\\ < 0.1\\ 1.6\\ 2.2\\ 1.8\\ 1.1\\ 0.8\\ 1.4\\ 1.9\\ 1.6\\ 0.1\\ 1.6\end{array}$	9 E+03 4 E+03 5 E+04 1 E+04 4 E+05 1 E+05 1 E+05 1 E+05 2 E+05 1 E+04 2 E+05 7 E+04 2 E+05 7 E+04 3 E+03 1 E+05 8 E+04 8 E+04 3 E+04 1 E+05 3 E+04 3 E+04 1 E+05 3 E+04 3 E+04 1 E+05 3 E+04 3 E+04 1 E+05 3 E+04 3 E+04 3 E+04 3 E+04 3 E+04 3 E+05 3 E+04 3 E+04 3 E+05 3 E+0	$\begin{array}{c} 6 \ E+06\\ 1 \ E+06\\ 3 \ E+06\\ 3 \ E+08\\ 3 \ E+08\\ 3 \ E+08\\ 3 \ E+08\\ 5 \ E+06\\ 7 \ E+07\\ 1 \ E+08\\ 5 \ E+06\\ 2 \ E+07\\ 3 \ E+07\\ 3 \ E+07\\ 3 \ E+06\\ 8 \ E+07\\ 3 \ E+06\\ 8 \ E+06\\ 8 \ E+06\\ 8 \ E+06\\ 1 \ E+08\\ \end{array}$	1 E+04 2 E+03 1 E+04 5 E+03 5 E+05 5 E+05 5 E+05 2 E+05 9 E+03 1 E+04 4 E+04 4 E+04 4 E+04 4 E+04 1 E+05 7 E+04 6 E+04 1 E+05 7 E+04 1 E+05 3 E+03 2 E+05 3 E+05 5 E+04 4 E+04 5 E+04 5 E+05 7 E+04 5 E+05 5	1 10 3 100 30 30 30 1 100 100	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

RP rules and regulations – *ALARA*

Optimization is a legal requirement if accumulated individual dose exceeds 100 µSv/year (ALARA)

50 µSv∙	n ⁻¹ 2 mS	öv∙h⁻¹	
niveau I	niveau II	niveau III	
CRITÈRE DE DOSE IN			
	ionnel individuel (<i>H_i</i>) pour l'ir		
des interventions de mei une année :	me nature lorsque celles-ci so	ont repetees plusieurs	ois sur
100 µS	v 1 n	ıSv	
niveau I	niveau II	niveau III	<
			-
PITÈRE DE DOSE CO			L
Équivalent de dose prévis	ionnel collective (H_c) pour l'ir		
Équivalent de dose prévis des interventions de mê			fois sur
Équivalent de dose prévis des interventions de mêi une année :	ionnel collective (H_c) pour l'ir me nature lorsque celles-ci so	ont répétées plusieurs	
des interventions de mê une année : 500 µS	ionnel collective (H _c) pour l'ir me nature lorsque celles-ci su v 10 r	ont répétées plusieurs mSv	fois sur
Équivalent de dose prévis des interventions de mê une année :	ionnel collective (H_c) pour l'ir me nature lorsque celles-ci so	ont répétées plusieurs	ois sur Optimize
Équivalent de dose prévis des interventions de mê une année : 500 µS	ionnel collective (H _c) pour l'ir me nature lorsque celles-ci su v 10 r	ont répétées plusieurs mSv	fois sur
Équivalent de dose prévis des interventions de mêi une année : 500 μS niveau I	ionnel collective (H _c) pour l'ir me nature lorsque celles-ci su v 10 r	ont répétées plusieurs nSv niveau III	ois sur Optimize • work ce
Équivalent de dose prévis des interventions de mêi une année : 500 μS niveau I CRITÈRE DE CONTAM	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU	ont répétées plusieurs nSv niveau III	ois sur Optimize • work ce • work p
Équivalent de dose prévis des interventions de mêi une année : 500 µS niveau I CRITÈRE DE CONTAM	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU	ont répétées plusieurs nSv niveau III	ois sur Optimize • work ce
Équivalent de dose prévis des interventions de mêi une année : 500 µS niveau I CRITÈRE DE CONTAM Activité aérienne spécifiqu	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU	ont répétées plusieurs n Sv niveau III JE	ois sur Optimize • work ce • work p • handlir
Équivalent de dose prévis des interventions de mêi une année : 500 µS niveau I CRITÈRE DE CONTAM Activité aérienne spécifiqu 5 CA	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU INATION ATMOSPHÉRIQU	nsv nsv niveau III JE CA	ois sur Optimize • work ce • work p • handlir • design
Équivalent de dose prévis des interventions de mêi une année : 500 µS niveau I CRITÈRE DE CONTAM Activité aérienne spécifiqu 5 CA niveau I	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU te CA : 200 niveau II	nsv nsv niveau III JE CA	ois sur Optimize • work ce • work p • handlir
Équivalent de dose prévis des interventions de mêi une année : 500 µS niveau I CRITÈRE DE CONTAM Activité aérienne spécifiqu 5 CA niveau I CRITÈRE DE CONTAM	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU re CA : 200 niveau II INATION SURFACIQUE	nsv nsv niveau III JE CA	ois sur Optimize • work ce • work p • handlir • design
Équivalent de dose prévis des interventions de mêi une année : 500 µS niveau I CRITÈRE DE CONTAM Activité aérienne spécifiqu 5 CA niveau I CRITÈRE DE CONTAM	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU re CA : 200 niveau II INATION SURFACIQUE	nsv nsv niveau III JE CA	ois sur Optimize • work ce • work p • handlir • design
Équivalent de dose prévis des interventions de mêi une année : 500 µS niveau I CRITÈRE DE CONTAM Activité aérienne spécifiqu 5 CA niveau I	ionnel collective (<i>H_c</i>) pour l'ir me nature lorsque celles-ci so v 10 r niveau II INATION ATMOSPHÉRIQU e CA : 200 niveau II INATION SURFACIQUE que CA :	nsv nsv niveau III JE CA	ois sur Optimize • work ce • work p • handlir • design

on includes

dination

- edures
- ools

	Type d'intervention		étitiv nériq		l .	nctue nitaire	.
	Niveau de risque	Ι	II	III	Ι	II	III
	Dosimétrie individue ll e	•	•	•	•	•	•
Dosimétrie opér	Dosimétrie opérationnelle sans alarme						
Dosimétrie opér	Dosimétrie opérationnelle avec alarme					•	•
	Docts. descriptifs		0	0			0
Dossier de sécurité	Docts. justificatifs		0	•			•
	Docts. d'exploitation		0	0			0
Analyse de	e risques radiologiques	•	•	•	•	•	•
Calculs radiolo	giques / codes simples			•			•
Calculs radiolog	iques / codes élaborés			•			•
Justification par	analyses multi-critères		0	•		0	0
Prise en compte	du retour d'expérience	•	•	•	•	•	•
	DIMR de niveau I	•			•		
Dossier d'intervention en milieu radioactif	DIMR de niveau II		•			•	
	DIMR de niveau III			•			•
Cart	ographie dosimétrique	0	•	•	0	•	•
Relevé de déci	sions du comité ALARA			•			0
Fiche d'écar	t / Retour d'expérience	0	0	0	0	0	0

- required
- optional

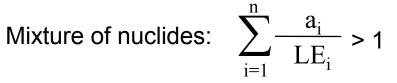
Note: 1 Sv = 100 rem

RP rules and regulations – *area classification*

Tableau 4 — Résumés des critères de classification des zones non règlementée et radiologiques règlementées du CERN.

		assification e la zone	Limite de dose		t d'équivalent lose maximal vail Zone de passage		surfacique	Catégories de travailleurs autorisés à accéder à la zone	Dosimétrie requise
		Zone non glementée	1 mSv∙an⁻¹	< 0,5 µSv⋅h⁻¹	< 2,5 µSv⋅h⁻¹	-	-	Toutes	Aucune dosimétrie requise
Î		radiologique urveillée	6 mSv∙an⁻¹	< 3 µSv⋅h⁻¹	< 15 µSv∙h⁻¹	-	-	Catégorie A Catégorie B Catégorie C (VCT)	Dosimètre personnel
2002		Zone contrôlée simple		< 10 µSv∙h⁻¹	< 50 µSv⋅h ⁻¹	-	-	Catégorie A Catégorie B *	Dosimètres personnel <u>et</u> dosimétries opérationnelles**
	e radiologique contrôlée	Zone de séjour limité	20 mSv⋅an⁻¹		< 2 mSv⋅h ⁻¹	< 100 CA	< 4000 CS	Catégorie A * Catégorie B *	
	Zone ra con	Zone de haute activité			< 100 mSv·h ⁻¹	< 1000 CA	< 40′000 CS	Catégorie A * Catégorie B *	Dosimètres personnel <u>et</u> dosimétries opérationnelles
\downarrow		Zone interdite			> 100 mSv·h ⁻¹	< 1000 CA	> 40'000 CS	Aucune	

* La présence en Zones contrôlées des travailleurs de catégories A et B est limitée pour garantir le non dépassement des limites règlementaires.


Note: 1 mSv = 100 mrem

Radiation Areas

RP rules and regulations – *radioactive material*

Radioactive = specific and total activities exceed LE or dose rate at 10cm distance >10 µSv/h

LE values:

ingestion of activity LE leads to a dose of 10 µSv

					Grandeurs of	l'appréciation		Limite d'exemp-	Limite d'auto- risation	Valeurs directrices	to a dose of
Nucléide	Période	Type de désintégra- tion/ de rayonnement	e _{inh} Sv/Bq	e _{ing} Sv/Bq	h ₁₀ (mSv/h)/GE à 1 m de distance	h _{0,07} 8q (mSv/h)/GB à 10 cm de distance	h _{c0,07} q (mSv/h)/ (kBq/cm ²)	LE Bq/kg ou LE _{abs} B	Bq	CA Bq/m ³	CS Nucléide de filiation Bq/cm ² instable
1	2	3	4	5	6	7	8	9	10	11	12 13
Co-55 Co-56 Co-57 Co-58 Co-58m Co-60 Co-60m Co-61 Co-62m Ni-57 Ni-57 Ni-57 Ni-57 Ni-55 Ni-65 Ni-66 / Cu-66 Cu-60 Cu-61 Cu-64 Cu-64 Cu-67 Zn-62 / Cu-62 Zn-63 Zn-65	17.54 h 78.76 d 270.9 d 70.80 d 9.15 h 5.271 a 10.47 m 1.65 h 13.91 m 6.10 d 36.08 h 7.5 E4 a 96 a 2.520 h 54.6 h 23.2 m 3.408 h 12.701 h 61.86 h 9.26 h 38.1 m 243.9 d	$\begin{array}{c} \epsilon, \beta^{*}, \gamma\\ \epsilon, \beta^{*}, \gamma\\ \epsilon, \beta^{*}, \gamma\\ \epsilon, \beta^{*}, \gamma\\ \beta^{*}, \gamma\\ \beta^{*}, \gamma\\ \beta^{*}, \gamma\\ \beta^{*}, \gamma\\ \epsilon, \beta^{*}, \gamma\\ \end{array}$	$\begin{array}{c} 8.3 \\ \text{E-10} \\ 4.9 \\ \text{E-09} \\ 6.0 \\ \text{E-10} \\ 1.7 \\ \text{E-09} \\ 1.7 \\ \text{E-08} \\ 1.2 \\ \text{E-11} \\ 1.7 \\ \text{E-08} \\ 1.2 \\ \text{E-11} \\ 3.7 \\ \text{E-11} \\ 3.7 \\ \text{E-11} \\ 3.7 \\ \text{E-11} \\ 3.7 \\ \text{E-11} \\ 1.3 \\ \text{E-10} \\ 1.3 \\ \text{E-10} \\ 1.2 \\ \text{E-10} \\ 1.5 \\ \text{E-10} \\ 5.8 \\ \text{E-10} \\ 5.8 \\ \text{E-10} \\ 6.6 \\ \text{E-10} \\ 6.6 \\ \text{E-11} \\ 2.8 \\ \text{E-09} \end{array}$	1.1 E-09 2.5 E-09 2.5 E-09 2.1 E-10 7.4 E-10 2.4 E-11 3.4 E-09 1.7 E-12 7.4 E-11 4.7 E-11 8.6 E-10 8.7 E-10 6.3 E-11 1.5 E-10 3.0 E-09 7.0 E-11 1.2 E-10 3.4 E-10 9.4 E-10 7.9 E-11 3.9 E-09	$\begin{array}{c} 0.302\\ 0.485\\ 0.021\\ 0.147\\ <0.001\\ 0.366\\ 0.001\\ 0.017\\ 0.436\\ 0.260\\ 0.278\\ <0.001\\ <0.001\\ 0.081\\ 0.039\\ 0.596\\ 0.128\\ 0.030\\ 0.018\\ 0.319\\ 0.175\\ 0.086\end{array}$	$\begin{array}{c} 1000\\ 300\\ 100\\ 300\\ 10\\ 1000\\ 20\\ 1000\\ 1000\\ 60\\ 700\\ 10\\ <1\\ 1000\\ 2000\\ 1000\\ 1000\\ 1000\\ 1000\\ 40 \end{array}$	$\begin{array}{c} 1.4\\ 0.6\\ 0.1\\ 0.3\\ <0.1\\ 1.1\\ <0.1\\ 1.6\\ 1.8\\ 0.1\\ 0.8\\ <0.1\\ 1.6\\ 2.2\\ 1.8\\ 1.1\\ 0.8\\ 1.4\\ 1.9\\ 1.6\\ 0.1\\ \end{array}$	$\begin{array}{c} 9 \ E{+}03 \\ 4 \ E{+}03 \\ 5 \ E{+}04 \\ 1 \ E{+}04 \\ 4 \ E{+}05 \\ 1 \ E{+}05 \\ 1 \ E{+}05 \\ 1 \ E{+}06 \\ 1 \ E{+}05 \\ 2 \ E{+}05 \\ 1 \ E{+}04 \\ 2 \ E{+}05 \\ 3 \ E{+}04 \\ 1 \ E{+}04 \\ 1 \ E{+}04 \\ 1 \ E{+}04 \\ 3 \ E{+}04 \\ 1 \ E{+}05 \\ 3 \ E{+}05 \\ 3 \ E{+}04 \\ 1 \ E{+}05 \\ 3 \ E{+}05 \\ 3 \ E{+}05 \\ 3 \ E{+}05 \\ 3 \ E{+}05 \\ 4 \ E{+}05 $	$\begin{array}{c} 6 \\ E+06 \\ 1 \\ E+06 \\ 3 \\ E+06 \\ 3 \\ E+06 \\ 3 \\ E+07 \\ 1 \\ E+09 \\ 7 \\ E+07 \\ 1 \\ E+07 \\ 1 \\ E+07 \\ 3 \\ E+07 \\ 9 \\ E+06 \\ 8 \\ E+06 \\ 8 \\ E+07 \\ 2 \\ E+06 \\ 2 \\ $	$\begin{array}{c} 1 \ E+04\\ 2 \ E+03\\ 1 \ E+04\\ 5 \ E+03\\ 5 \ E+02\\ 7 \ E+06\\ 1 \ E+05\\ 2 \ E+05\\ 9 \ E+03\\ 1 \ E+04\\ 4 \ E+04\\ 4 \ E+04\\ 1 \ E+05\\ 3 \ E+03\\ \end{array}$	3-> Fe-55 10 100 30 1000-> Co-58 [6] 3 300-> Co-60 [6] 3 30-> Co-56 [6] 10-> Co-57 1000 1000 1000 3 3 3 3 3 3 3 3 3 3 3 3 3

Source: ORaP, Swiss legislation