

Collimation Setup and Performance

LHC Collimation Review – CERN, 14.- 15. June 2011

- Introduction:
 - LHC collimation system: settings, setup and qualification
- Performance of Collimation System
 - Inefficiency measurements compared to simulations
 - Performance stability
 - Inefficiency for ions
- Performance reach estimations for 3.5 TeV and 7 TeV
 - Instantaneous lifetime, quench limit, achievable inefficiency
- Conclusion

- LHC Collimation Project CERN
- 44/43 collimators per beam installed in the LHC ring
- 4 stage cleaning
- IR3 momentum cleaning
 - IR7 betatron cleaning
- Injection and Dump protection
- Protection of Experimental insertions and triplets

Beam based setup and qualification of collimation system

- Centre collimator jaws around beam (by touching the beam halo).
- Determine local beam size at collimators.
- Set up system with agreed collimator settings.

→~15mins per collimator & machine state (two beams in parallel, semi-automatic application).

- Qualify system by measuring the cleaning efficiency
 - β-tron losses by crossing a third integer tune resonance (B1-h, B1-v, B2-h, B2-v).
 - Momentum losses by changing the RF frequency (± 1000 Hz, B1+B2). 1000Hz to make sure that full beam is lost with offmomentum error. Could use smaller.

Goal: minimize blue spikes (losses to sc. Magnets)

Ions: Beam2 Leakage from IR7 Collimation Much Worse (as expected)

Betatron losses B2 v, 3.5 *Z TeV , physics conditions

• Leakage to IR7 DS higher in B2 (compared to B1) due to asymmetry of hor dispersion function between B1 and B2

Courtesy G. Bellodi

LHC Collimation Project

- Simulation performed with perfect machine
- Uncertainties in cross sections for hadronic fragmentation and electrom. dissociation with Pb nuclei on carbon/tungsten (although using state of the art simulations)
- Positions of loss peaks in the dispersion suppressor can be reproduced in simulations.
- Leakage higher in measurements than in simulations
- To be understood further

Cleaning inefficiency with Ions factor 50 to 100 worse compared to protons:

Leakage for ions into specific regions (ratio to losses at highest primary collimator)

	DS	COLD	ТСТ
B1h	0.02	0.006	1.0e-4
B1v	0.027	0.005	0.001
B2h	0.03	0.011	8e-5
B2v	0.025	0.006	1.4e-4
B1+B2 pos. off momentum	0.045	8e-4	0.06
B1+B2 neg. off momentum	0.007	2e-4	0.005

- As expected cleaning with ions much worse (only one stage cleaning).
- Leakage in the order of percent into DS and TCTs.
- Losses very localized.

Measurement: Cleaning with nominal and tight collimator settings

Leakage during betatron losses into Q8 of IR7 DS

Performance Reach: 3.5 TeV

	3.5 TeV						
	η_{ineff}	Efficiency	$R_{q} L_{dil} [p/s]$	τ _{min} [h]	N _{max} [p]	N _{lim} @BLM [p]	N_{lim}/N_{nom}
2010	5.20E-04	99.95%	8.40E+07	0.6	3.7E+14	1.2E+14	41%
2011	1.56E-04	99.98%	1.22E+09	1.0	2.8E+16	0.94E+16	2900%
BLM						4.0E+16	12400%
Cleaning efficiency: Gain factor 3.3 (MD result)		ain factor 11 operat	ne: : 1.7 tion)	Scaling highest BLM signal in cold region			
		Quenc dilut Gain	Quench limit times dilution length: Gain factor 14.5			to dump t	hreshold
	(MD result)				-	Performance reases talk of G. B.	ach with io ellodi

Performance Reach: 7 TeV

Assumptions

- Same **minimum beam lifetime** at 3.5 TeV and 7 TeV.
- Minimum beam lifetime independent from intensity.
- No disturbing effect from much larger impedance.
- Theoretical scaling of cleaning efficiency and quench limit.
- Same spatial distribution of losses in SC magets at 3.5 TeV and 7 TeV:
- Tight collimator **settings achievable** in routine operation and at 7 TeV.
- No disturbing effect from **smaller impact** parameters at 7 TeV.
- Both beams behave the same.
- Same locations for peak loss into SC magnets.
- No other performance limits included (IR1/5, ...)

Conclusion

- Phase-I LHC collimation system delivers **expected collimation efficiency**.
- Setup procedure has been refined, optimized and performed in a semi-automatic way (15-20mins per collimator needed)
- Validity of collimation setup ~5-6 months, i.e. two setups for a 10 months running period expected.
- Instantaneous lifetime about factor 7 higher than specified.
- Cleaning inefficiency can be reduced by a factor > 3.3 with tight settings (MD result).
- Product of **quench limit times dilution factor** was measured to be a factor **14.5 higher** than expected (MD result lower limit).
- With this we should be **good for nominal intensity at 3.5 and 7.0 TeV** (in terms of cleaning efficiency other issues like R2E not considered here). Scaling losses to **BLM threshold** gives **consistent result**.
- But: Long list of **assumptions raise uncertainties** in performance expectations.
- Can we **assume the same performance** of the LHC at 7 TeV (lifetimes, loss locations and dilution, scaling of inefficiency and quench limit, ...)?
- Cleaning with **ions** much **less efficient** than for protons (as expected): Leakage in orders of **percents into DS magnets** and TCTs, very localized losses.

Backup Slides

Collimator Settings

	Injection optics	Injection optics	Squeezed optics
Energy [GeV]	450	3500	3500
Primary cut IR7 (H, V, S) [o]	5.7	5.7	5.7
Secondary cut IR7 (H, V, S) [σ]	6.7	8.8	8.8
Quaternary cut IR7 (H, V) [0]	10.0	17.7	17.7
Primary cut IR3 (H) [o]	8.0	12	12
Secondary cut IR3 (H) [o]	9.3	15.6	15.6
Quaternary cut IR3 (H, V) [0]	10.0	17.6	17.6
Tertiary cut exp. (H, V) $[\sigma]$	13	26	11.8/26/11.8/11.8
TCSG/TCDQ IR6 (H) [0]	7/8	9.3/9.8	9.3/9.8

• Collimators are **driven by functions** during the ramp, squeeze and collapsing the separation bumps.

• Beam based setups performed 26.-28.02.2011 (Injection) and 06.-11.03.2011 (3.5 TeV).

 $c_{resp} \approx 2$

Positive momentum offset, B1+B2, 3.5TeV, **β***=3.5m

Goal: minimize blue spikes (losses to sc. Magnets)

